1
|
Yadav M, Mallappa RH, Ambatipudi K. Human milk fat globule delivers entrapped probiotics to the infant's gut and acts synergistically to ameliorate oxidative and pathogenic stress. Food Chem 2025; 462:141030. [PMID: 39241685 DOI: 10.1016/j.foodchem.2024.141030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The human milk fat globule membrane (hMFGM) and Lactobacillus modulate the infant's gut and benefit health. Hence, the current study assesses the probiotic potential of Lactiplantibacillus plantarum (MRK3), Limosilactobacillus ferementum (MK1) isolated from infant feces, and its interaction with hMFGM during conditions mimicking infant digestive tract. Both strains showed high tolerance to gastrointestinal conditions, cell surface hydrophobicity, and strong anti-pathogen activity against Staphylococcus aureus. During digestion, hMFGM significantly exhibited xanthine oxidase activity, membrane roughness, and surface topography. In the presence of hMFGM, survival of MRK3 was higher than MK1, and electron microscopic observation revealed successful entrapment of MRK3 in the membrane matrix throughout digestion. Interestingly, probiotic-membrane matrix interaction showed significant synergy to alleviate oxidative stress and damage induced by cell-free supernatant of Escherichia coli in Caco-2 cells. Our results show that a probiotic-encapsulated membrane matrix potentially opens the functional infant formula development pathway.
Collapse
Affiliation(s)
- Monica Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Dairy Microbiology Division, Indian Council of Agriculture Research-National Dairy Research Institute, Karnal 132001, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
2
|
Mykhalevych A, Buniowska-Olejnik M, Polishchuk G, Puchalski C, Kamińska-Dwórznicka A, Berthold-Pluta A. The Influence of Whey Protein Isolate on the Quality Indicators of Acidophilic Ice Cream Based on Liquid Concentrates of Demineralized Whey. Foods 2024; 13:170. [PMID: 38201198 PMCID: PMC10779262 DOI: 10.3390/foods13010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The use of liquid whey concentrates in the composition of ice cream, especially in combination with other powdered whey proteins, is limited due to their understudied properties. This article shows the main rheological and thermophysical characteristics of ice cream mixes, as well as color parameters, microstructure, analysis of ice crystals and quality indicators of ice cream during storage. The most significant freezing of free water (p ≤ 0.05) was observed in the temperature range from the cryoscopic temperature to -10 °C. The microscopy of experimental ice cream samples based on hydrolyzed whey concentrates indicates the formation of a homogeneous crystalline structure of ice crystals with an average diameter of 13.75-14.75 μm. Microstructural analysis confirms the expediency of using whey protein isolate in ice cream, which ensures uniform distribution of air bubbles in the product and sufficient overrun (71.98-76.55%). The combination of non-hydrolyzed whey concentrate and 3% whey protein isolate provides the highest stability to preserve the purity and color intensity of the ice cream during storage. The produced ice cream can be classified as probiotic (number of Lactobacillus acidophilus not lower than 6.2 log CFU/g) and protein-enriched (protein supply from 15.02-18.59%).
Collapse
Affiliation(s)
- Artur Mykhalevych
- Department of Milk and Dairy Products Technology, Educational and Scientific Institute of Food Technologies, National University of Food Technologies, Volodymyrska 68 St., 01033 Kyiv, Ukraine;
| | - Magdalena Buniowska-Olejnik
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklinskiej 2D St., 35-601 Rzeszow, Poland;
| | - Galyna Polishchuk
- Department of Milk and Dairy Products Technology, Educational and Scientific Institute of Food Technologies, National University of Food Technologies, Volodymyrska 68 St., 01033 Kyiv, Ukraine;
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland;
| | - Anna Kamińska-Dwórznicka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C, 02-776 Warsaw, Poland;
| | - Anna Berthold-Pluta
- Division of Milk Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c Street, 02-776 Warsaw, Poland
| |
Collapse
|
3
|
Wang A, Zhong Q. Drying of probiotics to enhance the viability during preparation, storage, food application, and digestion: A review. Compr Rev Food Sci Food Saf 2024; 23:e13287. [PMID: 38284583 DOI: 10.1111/1541-4337.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Functional food products containing viable probiotics have become increasingly popular and demand for probiotic ingredients that maintain viability and stability during processing, storage, and gastrointestinal digestions. This has resulted in heightened research and development of powdered probiotic ingredients. The aim of this review is to overview the development of dried probiotics from upstream identification to downstream applications in food. Free probiotic bacteria are susceptible to various environmental stresses during food processing, storage, and after ingestion, necessitating additional materials and processes to preserve their activity for delivery to the colon. Various classic and emerging thermal and nonthermal drying technologies are discussed for their efficiency in preparing dehydrated probiotics, and strategies for enhancing probiotic survival after dehydration are highlighted. Both the formulation and drying technology can influence the microbiological and physical properties of powdered probiotics that are to be characterized comprehensively with various techniques. Furthermore, quality control during probiotic manufacturing and strategies of incorporating powdered probiotics into liquid and solid food products are discussed. As emerging technologies, structure-design principles to encapsulate probiotics in engineered structures and protective materials with improved survivability are highlighted. Overall, this review provides insights into formulations and drying technologies required to supplement viable and stable probiotics into functional foods, ensuring the retention of their health benefits upon consumption.
Collapse
Affiliation(s)
- Anyi Wang
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
- International Flavors and Fragrances, Palo Alto, California, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
4
|
Evangelista AG, Matté EHC, Corrêa JAF, Gonçalves FDR, Dos Santos JVG, Biauki GC, Milek MM, Costa LB, Luciano FB. Bioprotective potential of lactic acid bacteria for Salmonella biocontrol in vitro. Vet Res Commun 2023; 47:1357-1368. [PMID: 36823482 DOI: 10.1007/s11259-023-10083-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
Lactic acid bacteria (LAB) are an important option for Salmonella control in animal production, resulting in lower antibiotic use. The objective of this research was to isolate LAB from meat products and from commercial probiotics sold as nutritional supplements for in vitro verification of their bioprotective potential. Eleven bacteria were identified as Pediococcus acidilactici, two as Lacticaseibacillus rhamnosus, one as Lacticaseibacillus paracasei paracasei, one as Limosilactobacillus fermentum, and one as a consortium of Lactobacillus delbrueckii bulgaricus and L. fermentum. All bacteria showed inhibitory activity against Salmonella, with emphasis on the inhibition of P. acidilactici PUCPR 011 against Salmonella Enteritidis 33SUSUP, S. Enteritidis 9SUSP, S. Enteritidis 56301, S. Enteritidis CRIFS 1016, Salmonella Typhimurium ATCC™ 14,028®, and Salmonella Gallinarum AL 1138, with inhibition halos of 7.3 ± 0.5 mm, 7.7 ± 1.0 mm, 9.0 ± 1.8 mm, 7.3 ± 0.5 mm, 7.7 ± 1.0 mm, and 7.3 ± 0.5, respectively. The isolates P. acidilactici PUCPR 011, P. acidilactici PUCPR 012, P. acidilactici PUCPR 014, L. fermentum PUCPR 005, L. paracasei paracasei PUCPR 013, and L. rhamnosus PUCPR 010 showed inhibition greater than 2 mm against at least 3 Salmonella and were used for encapsulation and in vitro digestion. The encapsulation efficiency ranged from 76.89 ± 1.54 to 116.48 ± 2.23%, and the population after 12 months of storage was from 5.31 ± 0.17 to 9.46 ± 0.09 log CFU/g. When simulating swine and chicken digestion, there was a large reduction in bacterial viability, stabilizing at concentrations close to 2.5 log CFU/mL after the analyses. The analyzed bacteria showed strong in vitro bioprotective potential; further analyses are required to determine in vivo effectiveness.
Collapse
Affiliation(s)
- Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil.
| | - Eduardo Henrique Custódio Matté
- Undergraduate Program in Biotechnology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Jessica Audrey Feijó Corrêa
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Francieli Dalvana Ribeiro Gonçalves
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - João Vitor Garcia Dos Santos
- Undergraduate Program in Biotechnology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Gabrieli Camila Biauki
- Undergraduate Program in Biotechnology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Mônica Moura Milek
- Undergraduate Program in Biotechnology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Leandro Batista Costa
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil.
| |
Collapse
|
5
|
Akkurt S, Renye J, Tomasula PM. Encapsulation of Lactobacillus rhamnosus GG in edible electrospun mats from calcium and sodium caseinates with pullulan blends. JDS COMMUNICATIONS 2022; 3:381-386. [PMID: 36465510 PMCID: PMC9709594 DOI: 10.3168/jdsc.2021-0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/04/2022] [Indexed: 06/17/2023]
Abstract
Electrospinning has been proposed as a method to encapsulate and preserve bioactive compounds in nanofibrous mats to ensure their delivery and associated health benefits when consumed directly or added to a food formulation. In previous work, we demonstrated the production of edible fibers to form mats of both calcium (CaCAS) and sodium (NaCAS) caseinate-pullulan (PUL), with the polysaccharide PUL added as a carrier to facilitate molecular entanglement for fiber formation. In this study, we determined the viability of the probiotic bacteria, Lactobacillus rhamnosus GG (LGG), used as a model bacterium, in mats of CaCAS-PUL and NaCAS-PUL. Electrospinning of aqueous solutions at room temperature (21 ± 1°C) of 15% (wt/wt) CaCAS and NaCAS mixed with 15% (wt/wt) PUL, with a 1:1 ratio of CAS:PUL, resulted in fibrous mats with average fiber diameter sizes of 233 ± 20 and 244 ± 21 nm, respectively, as determined by scanning electron microscopy. Addition of LGG in the amounts of 9.3 and 9.0 log10 cfu/mL to the CaCAS-PUL and NaCAS-PUL solutions before electrospinning resulted in average fiber diameter sizes of 212 ± 14 and 286 ± 16 nm, respectively. The LGG was found to be distributed within the CaCAS-PUL and NaCAS-PUL fibers. The addition of LGG increased the shear viscosity and conductivity of the CaCAS-PUL solution, enhancing molecular entanglement and resulting in thinner fibers. For NaCAS, LGG increased the conductivity but reduced shear viscosity. Adjustment of the NaCAS-PUL composition would be needed to optimize conditions for thinner fibers. The numbers of viable LGG recovered from the CaCAS-PUL and NaCAS-PUL nanofibrous mats after electrospinning were 9.5 and 9.6 log10 cfu/g, respectively, proving that the electrospinning conditions used were capable of supporting probiotic encapsulation. These results demonstrate that food-grade electrospun fibrous mats can be used to develop functional foods with delivery of probiotics to improve human or animal health.
Collapse
|
6
|
Sodium alginate-based wall materials microencapsulated Lactobacillus plantarum CICC 20022: characteristics and survivability study. Food Sci Biotechnol 2022; 31:1463-1472. [DOI: 10.1007/s10068-022-01134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
|
7
|
Sadiq U, Gill H, Chandrapala J. Casein Micelles as an Emerging Delivery System for Bioactive Food Components. Foods 2021; 10:foods10081965. [PMID: 34441743 PMCID: PMC8392355 DOI: 10.3390/foods10081965] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
Bioactive food components have potential health benefits but are highly susceptible for degradation under adverse conditions such as light, pH, temperature and oxygen. Furthermore, they are known to have poor solubilities, low stabilities and low bioavailabilities in the gastrointestinal tract. Hence, technologies that can retain, protect and enable their targeted delivery are significant to the food industry. Amongst these, microencapsulation of bioactives has emerged as a promising technology. The present review evaluates the potential use of casein micelles (CMs) as a bioactive delivery system. The review discusses in depth how physicochemical and techno-functional properties of CMs can be modified by secondary processing parameters in making them a choice for the delivery of food bioactives in functional foods. CMs are an assembly of four types of caseins, (αs1, αs2, β and κ casein) with calcium phosphate. They possess hydrophobic and hydrophilic properties that make them ideal for encapsulation of food bioactives. In addition, CMs have a self-assembling nature to incorporate bioactives, remarkable surface activity to stabilise emulsions and the ability to bind hydrophobic components when heated. Moreover, CMs can act as natural hydrogels to encapsulate minerals, bind with polymers to form nano capsules and possess pH swelling behaviour for targeted and controlled release of bioactives in the GI tract. Although numerous novel advancements of employing CMs as an effective delivery have been reported in recent years, more comprehensive studies are required to increase the understanding of how variation in structural properties of CMs be utilised to deliver bioactives with different physical, chemical and structural properties.
Collapse
|
8
|
Characterization and Cell Viability of Probiotic/Prebiotics Film Based on Duck Feet Gelatin: A Novel Poultry Gelatin as a Suitable Matrix for Probiotics. Foods 2021; 10:foods10081761. [PMID: 34441538 PMCID: PMC8392242 DOI: 10.3390/foods10081761] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/17/2023] Open
Abstract
The probiotic viability, physicochemical, mechanical, barrier, and microstructure properties of synbiotic edible films (SEFs) based on duck feet gelatin (DFG) were evaluated. Four synbiotic systems were obtained by mixing four types of prebiotics, namely, dextrin, polydextrose, gum Arabic, and sago starch, with DFG to immobilize of probiotic (Lactobacillus casei ATCC). The ability of DFG to create a suitable matrix to increase probiotic viability was compared with those of other commercial gelatins in a preliminary evaluation. The DFG showed proper probiotic viability compared with other gelatins. The addition of prebiotics reduced the transparency of SEFs and increased color differentiation, uniformity, and complete coverage of probiotic cells. The estimated shelf-life of surviving bacteria in the SEFs stored at 4 and 25 °C showed that gum arabic showed the best performance and enhanced the viability of L. casei by 42% and 45%, respectively. Dextrin, polydextrose, and sago starch enhanced the viability of L. casei at 4 and 25 °C by 26% and 35%, 26% and 5%, and 20% and 5%, respectively. The prebiotics improved the physicochemical, mechanical, and barrier properties of all SEFs, except polydextrose film. The viability of L. casei can be increased with the proper selection of gelatin and prebiotics.
Collapse
|
9
|
Iqbal R, Liaqat A, Jahangir Chughtai MF, Tanweer S, Tehseen S, Ahsan S, Nadeem M, Mehmood T, Ur Rehman SJ, Saeed K, Sameed N, Aziz S, Tahir AB, Khaliq A. Microencapsulation: a pragmatic approach towards delivery of probiotics in gut. J Microencapsul 2021; 38:437-458. [PMID: 34192983 DOI: 10.1080/02652048.2021.1949062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Probiotics confer numerous health benefits and functional foods prepared with these microbes own largest markets. However, their viability during transit from gastrointestinal tract is a concerning issue. Microencapsulation of probiotics is a novel technique of major interest to increase their survivability in GIT and food matrices by providing a physical barrier to protect them under harsh conditions. This article contributes the knowledge regarding microencapsulation by discussing probiotic foods, different methods and approaches of microencapsulation, coating materials, their release mechanisms at the target site, and interaction with probiotics, efficiency of encapsulated probiotics, their viability assessment methods, applications in food industry, and their future perspective. In our opinion, encapsulation has significantly got importance in the field of innovative probiotic enriched functional foods development to preserve their viability and long-term survival rate until product expiration date and their passage through gastro-intestinal tract. Previous review work has targeted some aspects of microencapsulation, this article highlights different methods of probiotics encapsulation and coating materials in relation with food matrices as well as challenges faced during applications: Gut microbiota; Lactic acid bacteria; Micro-encapsulation; Stability enhancement; Cell's release, Health benefits.
Collapse
Affiliation(s)
- Rabia Iqbal
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Atif Liaqat
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Farhan Jahangir Chughtai
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Saira Tanweer
- University College of Agriculture and Environmental Sciences, Islamia University, Bahawalpur, Pakistan
| | - Saima Tehseen
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Samreen Ahsan
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Tariq Mehmood
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Syed Junaid Ur Rehman
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Kanza Saeed
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Nimra Sameed
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Shoaib Aziz
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Assam Bin Tahir
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
10
|
Li H, Li Y, Zhang T, Liu T, Yang J, Luo X, Li H, Xue C, Yu J. Co-encapsulation of Lactobacillus paracasei with lactitol in caseinate gelation cross-linked by Zea mays transglutaminase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Impact of Lacticaseibacillus rhamnosus GG on the Emulsion Stability of Raw Milk. Foods 2021; 10:foods10050991. [PMID: 34062810 PMCID: PMC8147333 DOI: 10.3390/foods10050991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Lactic acid bacteria (LAB) have been studied for several decades to understand and determine their mechanism and interaction within the matrix into which they are introduced. This study aimed to determine the spatial distribution of Lacticaseibacillus rhamnosus GG (LGG) in a dairy matrix and to decipher its behaviour towards milk components, especially fat globules. Two strains of this widely studied bacterium with expected probiotic effects were used: LGG WT with pili on the cell surface and its pili-depleted mutant—LGG ΔspaCBA—in order to determine the involvement of these filamentous proteins. In this work, it was shown that LGG ΔspaCBA was able to limit creaming with a greater impact than the wild-type counterpart. Moreover, confocal imaging evidenced a preferential microbial distribution as aggregates for LGG WT, while the pili-depleted strain tended to be homogenously distributed and found as individual chains. The observed differences in creaming are attributed to the indirect implication of SpaCBA pili. Indeed, the bacteria-to-bacteria interaction surpassed the bacteria-to-matrix interaction, reducing the bacterial surface exposed to raw milk. Conversely, LGG ΔspaCBA may form a physical barrier responsible for preventing milk fat globules from rising to the surface.
Collapse
|
12
|
Lu W, Fu N, Woo MW, Chen XD. Exploring the interactions between Lactobacillus rhamnosus GG and whey protein isolate for preservation of the viability of bacteria through spray drying. Food Funct 2021; 12:2995-3008. [PMID: 33704292 DOI: 10.1039/d0fo02906h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protective agents used in spray drying protect the activity of lactic acid bacteria (LAB) by stabilizing the subcellular structures, constituting a protective layer at the cellular surface, or having mild drying kinetics. The effects of a reputed protectant, whey protein isolate (WPI), on Lactobacillus rhamnosus GG (LGG) were examined by exposing the cells to WPI solution to induce protein adsorption at the cellular surface prior to spray drying. WPI-treated LGG demonstrated enhanced thermotolerance with cell survival increased by 1.64 log after heat treatment. The survival after spray drying was significantly decreased from 45.75% to 8.6% and from 32.96% to 10.44%, when the WPI-treated cells were resuspended in trehalose solution or reconstituted skimmed milk as protectant, respectively, associated with decreased growth capability and metabolic activity. The contact with WPI appeared to stimulate the cellular response of LGG. With well-maintained cell viability and intact cellular membrane, the metabolic activity of WPI-treated LGG was decreased, and subsequent resuspension of the cells in trehalose solution led to a reduction in the stability of the cellular surface charge. The WPI-treated cells showed marginally increased surface roughness, indicating possible WPI attachment, but there was no thick protein coverage at the cellular surface and the size distribution of cells was unaffected. It was proposed that the enhanced thermotolerance and the decreased survival of spray-dried LGG could be linked to the cellular response toward WPI and protectant media, which may vary among individual LAB strains. Modulating the strain-specific interactions between the LAB cells and the protectant constituents could be crucial to maximizing cell viability retention after spray drying.
Collapse
Affiliation(s)
- Wenjie Lu
- FoodPRINT International Associated Laboratory INRAE, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | |
Collapse
|
13
|
Dos Santos Morais R, El-Kirat-Chatel S, Burgain J, Simard B, Barrau S, Paris C, Borges F, Gaiani C. A Fast, Efficient and Easy to Implement Method to Purify Bacterial Pili From Lacticaseibacillus rhamnosus GG Based on Multimodal Chromatography. Front Microbiol 2020; 11:609880. [PMID: 33391233 PMCID: PMC7775309 DOI: 10.3389/fmicb.2020.609880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023] Open
Abstract
Pili are polymeric proteins located at the cell surface of bacteria. These filamentous proteins play a pivotal role in bacterial adhesion with the surrounding environment. They are found both in Gram-negative and Gram-positive bacteria but differ in their structural organization. Purifying these high molecular weight proteins is challenging and has certainly slowed down their characterization. Here, we propose a chromatography-based protocol, mainly relying on multimodal chromatography (core bead technology using Capto Core 700 resin), to purify sortase-dependent SpaCBA pili from the probiotic strain Lacticaseibacillus rhamnosus GG (LGG). Contrary to previously published methods, this purification protocol does not require specific antibodies nor complex laboratory equipment, including for the multimodal chromatography step, and provides high degree of protein purity. No other proteins were detectable by SDS-PAGE and the 260/280 nm ratio (∼0.6) of the UV spectrum confirmed the absence of any other co-purified macromolecules. One can obtain ∼50 μg of purified pili, starting from 1 L culture at OD600nm ≈ 1, in 2–3 working days. This simple protocol could be useful to numerous laboratories to purify pili from LGG easily. Therefore, the present work should boost specific studies dedicated to LGG SpaCBA pili and the characterization of the interactions occurring with their protein partners at the molecular level. Moreover, this straightforward purification process might be extended to the purification of sortase-dependant pili from other Gram-positive bacteria.
Collapse
Affiliation(s)
| | - Sofiane El-Kirat-Chatel
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS-Université de Lorraine, Nancy, France
| | - Jennifer Burgain
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Blandine Simard
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Sarah Barrau
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Cédric Paris
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Claire Gaiani
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France.,Institut Universitaire de France, Parris, France
| |
Collapse
|
14
|
Effect of manganese sulfate and vitamin B12 on the properties of physicochemical, textural, sensory and bacterial growth of set yogurt. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00720-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Gomand F, Mitchell WH, Burgain J, Petit J, Borges F, Spagnolie SE, Gaiani C. Shaving and breaking bacterial chains with a viscous flow. SOFT MATTER 2020; 16:9273-9291. [PMID: 32930313 DOI: 10.1039/d0sm00292e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Some food and ferment manufacturing steps such as spray-drying result in the application of viscous stresses to bacteria. This study explores how a viscous flow impacts both bacterial adhesion functionality and bacterial cell organization using a combined experimental and modeling approach. As a model organism we study Lactobacillus rhamnosus GG (LGG) "wild type" (WT), known to feature strong adhesive affinities towards beta-lactoglobulin thanks to pili produced by the bacteria on cell surfaces, along with three cell-surface mutant strains. Applying repeated flows with high shear-rates reduces bacterial adhesive abilities up to 20% for LGG WT. Bacterial chains are also broken by this process, into 2-cell chains at low industrial shear rates, and into single cells at very high shear rates. To rationalize the experimental observations we study numerically and analytically the Stokes equations describing viscous fluid flow around a chain of elastically connected spheroidal cell bodies. In this model setting we examine qualitatively the relationship between surface traction (force per unit area), a proxy for pili removal rate, and bacterial chain length (number of cells). Longer chains result in higher maximal surface tractions, particularly at the chain extremities, while inner cells enjoy a small protection from surface tractions due to hydrodynamic interactions with their neighbors. Chain rupture therefore may act as a mechanism to preserve surface adhesive functionality in bacteria.
Collapse
Affiliation(s)
- Faustine Gomand
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France. and Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706, USA.
| | - William H Mitchell
- Department of Mathematics, Statistics, and Computer Science, Macalester College, 1600 Grand Ave, St. Paul, MN 55105, USA.
| | - Jennifer Burgain
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| | - Jérémy Petit
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| | - Frédéric Borges
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| | - Saverio E Spagnolie
- Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706, USA.
| | - Claire Gaiani
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
16
|
Zhao M, Huang X, Zhang H, Zhang Y, Gänzle M, Yang N, Nishinari K, Fang Y. Probiotic encapsulation in water-in-water emulsion via heteroprotein complex coacervation of type-A gelatin/sodium caseinate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105790] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Obeid S, Guyomarc'h F. Atomic force microscopy of food assembly: Structural and mechanical insights at the nanoscale and potential opportunities from other fields. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Microencapsulation Delivery System in Food Industry—Challenge and the Way Forward. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/7531810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microencapsulation is a promising technique, which provides core materials with protective barrier, good stability, controlled release, and targeting delivery. Compared with the pharmaceutical, cosmetic, and textile industries, food processing has higher requirements for safety and hygiene and calls for quality and nutrition maintenance. This paper reviews the widely used polymers as microcapsule wall materials and the application in different food products, including plant-derived food, animal-derived food, and additives. Also, common preparation technologies (emphasizing advantages and disadvantages), including spray-drying, emulsification, freeze-drying, coacervation, layer-by-layer, extrusion, supercritical, fluidized bed coating, electrospray, solvent evaporation, nanocapsule preparation, and their correlation with selected wall materials in recent 10 years are presented. Personalized design and cheap, efficient, and eco-friendly preparation of microcapsules are urgently required to meet the needs of different processing or storage environments. Moreover, this review may provide a reference for the microencapsulation research interests and development on future exploration.
Collapse
|
19
|
Dramé I, Formosa-Dague C, Lafforgue C, Chapot-Chartier MP, Piard JC, Castelain M, Dague E. Analysis of Homotypic Interactions of Lactococcus lactis Pili Using Single-Cell Force Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21411-21423. [PMID: 32314572 DOI: 10.1021/acsami.0c03069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell surface proteins of Gram-positive bacteria play crucial roles in their adhesion to abiotic and biotic surfaces. Pili are long and flexible proteinaceous filaments known to enhance bacterial initial adhesion. They promote surface colonization and are thus considered as essential factors in biofilm cohesion. Our hypothesis is that pili mediate interactions between cells and may thereby directly affect biofilm formation. In this study, we use single-cell force spectroscopy (SCFS) to quantify the force of the homotypic pili interactions between individual bacterial cells, using different Lactococcus lactis strains producing pili or not as model bacteria. Moreover the force-distance curves were analyzed to determine the physical and nanomechanical properties of L. lactis pili. The results for pili-devoided strains showed a weak adhesion between cells (adhesion forces and work in the range of 100 pN and 7 × 10-18 J, respectively). On the contrary, the piliated strains showed high adhesion levels with adhesion forces and adhesion work over 200 pN and 50 × 10-18 J, respectively. The force-extension curves showed multiple adhesion events, typical of the unfolding of macromolecules. These unfolding force peaks were fitted using the physical worm-like chain model to get fundamental knowledge on the pili nanomechanical properties. In addition, SCFS applied to a L. lactis isolate expressing both pili and mucus-binding protein at its surface and two derivative mutants revealed the capacity of pili to interact with other surface proteins including mucus-binding proteins. This study demonstrates that pili are involved in L. lactis homotypic interactions and thus can influence biofilm structuring.
Collapse
Affiliation(s)
- Ibrahima Dramé
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31000 Toulouse, France
- LAAS-CNRS, Université de Toulouse, CNRS, 31000 Toulouse, France
| | | | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Mickaël Castelain
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31000 Toulouse, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31000 Toulouse, France
| |
Collapse
|
20
|
Xiao Y, Han C, Yang H, Liu M, Meng X, Liu B. Layer (whey protein isolate) -by-layer (xanthan gum) microencapsulation enhances survivability of L. bulgaricus and L. paracasei under simulated gastrointestinal juice and thermal conditions. Int J Biol Macromol 2020; 148:238-247. [DOI: 10.1016/j.ijbiomac.2020.01.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/30/2019] [Accepted: 01/11/2020] [Indexed: 01/02/2023]
|
21
|
Wang A, Lin J, Zhong Q. Physical and microbiological properties of powdered Lactobacillus salivarius NRRL B-30514 as affected by relative amounts of dairy proteins and lactose. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Mahmoud M, Abdallah NA, El-Shafei K, Tawfik NF, El-Sayed HS. Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon 2020; 6:e03541. [PMID: 32190759 PMCID: PMC7068628 DOI: 10.1016/j.heliyon.2020.e03541] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/24/2020] [Accepted: 03/02/2020] [Indexed: 12/29/2022] Open
Abstract
A comparison between the most investigated alginate-based encapsulating agents was performed in the current study. Here, the survivability of Lactobacillus plantarum microencapsulated with alginate (Alg) combined with skim milk (Sm), dextrin (Dex), denatured whey protein (DWP) or coated with chitosan (Ch) was evaluated after exposure to different heat treatments and in presence of some food additives, during storage and under simulated gastrointestinal condition. In addition, the encapsulated cells were evaluated for production of different bioactive compounds such as exopolysacchar. ides and antimicrobial substances compared with the unencapsulated cells. The results showed that only Alg-Sm maintained the viability of the cells >106 cfu/g at the pasteurization temperature (65 °C for 30 min). Interestingly, storage under refrigeration conditions increased the viability of L. plantarum entrapped within all the tested encapsulating agents for 4 weeks. However, under freezing condition, only Alg-DWP and Alg-Sm enhanced the survival of the entrapped cells for 3 months. All the microencapsulated cells were capable of growing at the different NaCl concentrations (1%-5%) except for cells encapsulated with Alg-Dex, showed viability loss at 3% and 5% NaCl concentrations. Tolerance of the microencapsulated cells toward organic acids was varied depending on the type of organic acid. Alg-Ch and Alg-Sm provide better survival for the cells under simulated gastric juice; however, all offer a good survival for the cells under simulated intestinal condition. Our findings indicated that Alg-Sm proved to be the most promising encapsulating combination that maintains the survivability of L. plantarum to the recommended dose level under almost all the stress conditions adopted in the current study. Interestingly, the results also revealed that microencapsulation does not affect the metabolic activity of the entrapped cells and there was no significant difference in production of bioactive compounds between the encapsulated and the unencapsulated cells.
Collapse
Affiliation(s)
- Mona Mahmoud
- Dairy Department (Microbiology lab.), National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Nagwa A. Abdallah
- Microbiology Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| | - Kawther El-Shafei
- Dairy Department (Microbiology lab.), National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Nabil F. Tawfik
- Dairy Department (Microbiology lab.), National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Hoda S. El-Sayed
- Dairy Department (Microbiology lab.), National Research Centre, Dokki, 12622, Cairo, Egypt
| |
Collapse
|
23
|
Arslan-Tontul S. The Combined Usage of β-Cyclodextrin and Milk Proteins in Microencapsulation of Bifidobacterium bifidum BB-12. Probiotics Antimicrob Proteins 2019; 12:747-755. [PMID: 31797282 DOI: 10.1007/s12602-019-09621-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study aimed to determine the effects of combined usage of β-cyclodextrin with whey protein isolate and sodium caseinate on the microencapsulation of Bifidobacterium bifidum-BB12 by spray drying.From the results, the highest count of B. bifidum was provided by whey protein isolate as 8.62 log CFU/g. The increasing concentration of β-cyclodextrin considerably increases gastric and intestinal resistance to B. bifidum cells. In the gastric and intestinal test, the highest protection was determined in whey protein isolate substituted with 10% β-cyclodextrin with reduction rates of 0.98 and 3.30%, respectively. Moreover, free cells did not survive in the same gastric conditions. The lowest hygroscopicity was determined in whey protein isolate as 8.57%. It must be noted that increasing β-cyclodextrin concentration in carrier material combination led to an increase in hygroscopicity of microcapsules. In general, substitution with β-cyclodextrin increased the particle size of microparticles, and microcapsules produced with whey protein isolate had a smaller size than that of sodium caseinate.
Collapse
Affiliation(s)
- Sultan Arslan-Tontul
- Agricultural Faculty, Department of Food Engineering, Selçuk University, 42130, Konya, Turkey.
| |
Collapse
|
24
|
The surface properties of milk fat globules govern their interactions with the caseins: Role of homogenization and pH probed by AFM force spectroscopy. Colloids Surf B Biointerfaces 2019; 182:110363. [DOI: 10.1016/j.colsurfb.2019.110363] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/03/2019] [Accepted: 07/13/2019] [Indexed: 01/06/2023]
|
25
|
Chua JCL, Hale JDF, Silcock P, Bremer PJ. Bacterial survival and adhesion for formulating new oral probiotic foods. Crit Rev Food Sci Nutr 2019; 60:2926-2937. [PMID: 31556313 DOI: 10.1080/10408398.2019.1669528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Probiotics are defined as live microorganisms, which, when administered in adequate amounts, confer health benefits to the host. Traditionally, probiotic food research has heavily focused on the genera Bifidobacteria and Lactobacilli, along with their benefits for gut health. Recently with the identification of new probiotic strains specifically intended for oral health applications, the development of probiotic foods for oral health benefits has garnered interest, with a renewed focus on identifying new food formats for delivering probiotics. The development of novel oral probiotic foods is highly complex, as the composition of a food matrix dictates: (1) bacterial viability during production and shelf life and (2) how bacteria partition with components within a food matrix and subsequently adhere to oral cavity surfaces. At present, virtually no information is available on oral probiotic strains such as Streptococcus salivarius; specifically, how orally-derived strains survive under different food parameters. Furthermore, limited information exists on the partition behavior of probiotics with food components, governed by physico-chemical interactions and adhesion phenomena. This review aspires to examine this framework by providing a foundation with existing literature related to the common probiotic genera, in order to inform and drive future attempts of designing new oral probiotic food formats.
Collapse
Affiliation(s)
- Jonathan C L Chua
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | | | - Pat Silcock
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Phil J Bremer
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
26
|
Effect of Encapsulated Probiotic Starter Culture on Rheological and Structural Properties of Natural Hydrogel Carriers Affected by Fermentation and Gastrointestinal Conditions. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09598-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Gomand F, Borges F, Guerin J, El-Kirat-Chatel S, Francius G, Dumas D, Burgain J, Gaiani C. Adhesive Interactions Between Lactic Acid Bacteria and β-Lactoglobulin: Specificity and Impact on Bacterial Location in Whey Protein Isolate. Front Microbiol 2019; 10:1512. [PMID: 31333617 PMCID: PMC6617547 DOI: 10.3389/fmicb.2019.01512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
In the last decade, there has been an increasing interest in the potential health effects associated with the consumption of lactic acid bacteria (LAB) in foods. Some of these bacteria such as Lactobacillus rhamnosus GG (LGG) are known to adhere to milk components, which may impact their distribution and protection within dairy matrices and therefore is likely to modulate the efficiency of their delivery. However, the adhesive behavior of most LAB, as well as its effect on food structuration and on the final bacterial distribution within the food matrix remain very poorly studied. Using a recently developed high-throughput approach, we have screened a collection of 73 LAB strains for their adhesive behavior toward the major whey protein β-lactoglobulin. Adhesion was then studied by genomics in relation to common bacterial surface characteristics such as pili and adhesion-related domain containing proteins. Representative adhesive and non-adhesive strains have been studied in further depth through biophysical measurement using atomic force microscopy (AFM) and a relation with bacterial distribution in whey protein isolate (WPI) solution has been established. AFM measurements have revealed that bacterial adhesion to β-lactoglobulin is highly specific and cannot be predicted accurately using only genomic information. Non-adhesive strains were found to remain homogeneously distributed in solution whereas adhesive strains gathered in flocs. These findings show that several LAB strains are able to adhere to β-lactoglobulin, whereas this had only been previously observed on LGG. We also show that these adhesive interactions present similar characteristics and are likely to impact bacterial location and distribution in dairy matrices containing β-lactoglobulin. This may help with designing more efficient dairy food matrices for optimized LAB delivery.
Collapse
Affiliation(s)
- Faustine Gomand
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Justine Guerin
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Sofiane El-Kirat-Chatel
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Université de Lorraine, Villers-lès-Nancy, France
| | - Gregory Francius
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Université de Lorraine, Villers-lès-Nancy, France
| | - Dominique Dumas
- Plateforme d'Imagerie et de Biophysique Cellulaire de Nancy (PTIBC IBISA-NANCY), UMS 2008, IMOPA UMR 7365 - Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jennifer Burgain
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Claire Gaiani
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
28
|
Gul O, Atalar I, Gul LB. Effect of different encapsulating agent combinations on viability of Lactobacillus casei Shirota during storage, in simulated gastrointestinal conditions and dairy dessert. FOOD SCI TECHNOL INT 2019; 25:608-617. [PMID: 31146586 DOI: 10.1177/1082013219853462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the effects of various matrices consisting of maltodextrin and reconstitute skim milk and their binary and ternary mixtures with gum Arabic in the microencapsulation of Lactobacillus casei Shirota by freeze-drying technique were assessed. Microcapsules produced with reconstitute skim milk showed high viability (>99%) after freeze drying. While the free cells were completely inactivated after exposure to simulated gastrointestinal conditions, the survival rates of microencapsulated L. casei Shirota were found high for all microcapsules except for maltodextrin and maltodextrin:gum Arabic formulas. The viability of microencapsulated L. casei Shirota during storage at refrigerate and room temperatures decreased between 0.39 and 2.43 log cycles and microcapsules produced with reconstitute skim milk:gum Arabic was found more durable at the both storage conditions. Reduction in the number of free cells was higher than encapsulated L. casei Shirota numbers during production of dessert, however the viability of encapsulated L. casei Shirota was found stable for 14 days of storage and consequently desserts containing encapsulated L. casei Shirota (except maltodextrin) showed stable pH values. This study revealed that combination of reconstitute skim milk:gum Arabic was an effective wall matrix for microencapsulation of L. casei Shirota by freeze drying and also very resistant against gastrointestinal fluids and storage conditions in view of protection of L. casei Shirota.
Collapse
Affiliation(s)
- Osman Gul
- 1 Program of Food Technology, Yeşilyurt Demir-Çelik Vocational School, Ondokuz Mayis University, Samsun, Turkey
| | - Ilyas Atalar
- 2 Food Engineering Department, Engineering Faculty, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Latife Betul Gul
- 3 Food Engineering Department, Engineering Faculty, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
29
|
Dawlal P, Brabet C, Thantsha MS, Buys EM. Visualisation and quantification of fumonisins bound by lactic acid bacteria isolates from traditional African maize-based fermented cereals, ogi and mahewu. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:296-307. [PMID: 30676861 DOI: 10.1080/19440049.2018.1562234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Consumption of fumonisin-contaminated foods has a negative influence on the health of humans (carcinogen; oesophageal cancer in Eastern Cape in South Africa). Lactic acid bacteria (LAB) have emerged as a promising natural detoxification agent against mycotoxins. The aim of this study was to visualise the interaction between fumonisins (FB1 and FB2) and LAB: Lactobacillus plantarum FS2, L. delbrueckii subsp. delbrueckii CIP 57.8T and Pediococcus pentosaceus D39, isolated from traditional fermented maize-based products (ogi and mahewu) using confocal laser scanning microscopy (CLSM) and to then quantify the LAB-bound fumonisin using high performance liquid chromatography (HPLC). The objective was to obtain a physically visible and quantifiable binding interaction between fumonisins and LAB strains with the aim of utilising LAB as a possible detoxifying agent. Fumonisins were derivatised using naphthalene-2,3-dicarboxaldehyde (NDA) and then combined with non-fluorescent LAB cells (viable and non-viable). For the quantification of bound fumonisins, viable and non-viable cells were incubated in the presence of predetermined concentrations of fumonisins and the level of fumonisin in the suspension was determined. CLSM showed the derivatised green fluorescent fumonisins binding to the surface of each of the LAB cells. For viable cells, L. plantarum FS2 bound FB1 most effectively while P. pentosaceus D39 bound the least level of FB1. The highest levels of FB2 were bound by L. plantarum R 1096 and the least by L. delbrueckii CIP 57.8 T. For non-viable cells, L. plantarum FS2 was also the most effective for binding both fumonisins with P. pentosaceus D39 and L. delbrueckii CIP 57.8 T being the least effective for FB1 and FB2, respectively. To our knowledge, this is the first study to visualise the interaction between LAB and fumonisins. We demonstrate that LAB isolates from indigenous fermented maize-based beverages bind fumonisins and thus present a potential strategy for their reduction in these traditional foods.
Collapse
Affiliation(s)
- Pranitha Dawlal
- a Council for Scientific and Industrial Research (CSIR), Biosciences , Pretoria , South Africa.,b Department of Consumer and Food Sciences , University of Pretoria , Pretoria , South Africa
| | - Catherine Brabet
- c Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) , UMR - Qualisud , Montpellier Cedex 5 , France
| | - Mapitsi S Thantsha
- d Department of Biochemistry, Genetics and Microbiology , University of Pretoria , Pretoria , South Africa
| | - Elna M Buys
- b Department of Consumer and Food Sciences , University of Pretoria , Pretoria , South Africa
| |
Collapse
|
30
|
Gomand F, Borges F, Salim D, Burgain J, Guerin J, Gaiani C. High-throughput screening approach to evaluate the adhesive properties of bacteria to milk biomolecules. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Tarazanova M, Huppertz T, Kok J, Bachmann H. Influence of lactococcal surface properties on cell retention and distribution in cheese curd. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Tarazanova M, Huppertz T, Kok J, Bachmann H. Altering textural properties of fermented milk by using surface-engineered Lactococcus lactis. Microb Biotechnol 2018; 11:770-780. [PMID: 29745037 PMCID: PMC6011991 DOI: 10.1111/1751-7915.13278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/20/2018] [Accepted: 03/30/2018] [Indexed: 01/23/2023] Open
Abstract
Lactic acid bacteria are widely used for the fermentation of dairy products. While bacterial acidification rates, proteolytic activity and the production of exopolysaccharides are known to influence textural properties of fermented milk products, little is known about the role of the microbial surface on microbe-matrix interactions in dairy products. To investigate how alterations of the bacterial cell surface affect fermented milk properties, 25 isogenic Lactococcus lactis strains that differed with respect to surface charge, hydrophobicity, cell chaining, cell-clumping, attachment to milk proteins, pili expression and EPS production were used to produce fermented milk. We show that overexpression of pili increases surface hydrophobicity of various strains from 3-19% to 94-99%. A profound effect of different cell surface properties was an altered spatial distribution of the cells in the fermented product. Aggregated cells tightly fill the cavities of the protein matrix, while chaining cells seem to be localized randomly. A positive correlation was found between pili overexpression and viscosity and gel hardness of fermented milk. Gel hardness also positively correlated with clumping of cells in the fermented milk. Viscosity of fermented milk was also higher when it was produced with cells with a chaining phenotype or with cells that overexpress exopolysaccharides. Our results show that alteration of cell surface morphology affects textural parameters of fermented milk and cell localization in the product. This is indicative of a cell surface-dependent potential of bacterial cells as structure elements in fermented foods.
Collapse
Affiliation(s)
- Mariya Tarazanova
- NIZO B.V.P.O. Box 206710 BAEdeThe Netherlands
- TiFNP.O. Box 5576700 ANWageningenThe Netherlands
- Molecular GeneticsUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Thom Huppertz
- NIZO B.V.P.O. Box 206710 BAEdeThe Netherlands
- TiFNP.O. Box 5576700 ANWageningenThe Netherlands
- Present address:
FrieslandCampinaStationsplein 43818 LE AmersfoortThe Netherlands
| | - Jan Kok
- TiFNP.O. Box 5576700 ANWageningenThe Netherlands
- Molecular GeneticsUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Herwig Bachmann
- NIZO B.V.P.O. Box 206710 BAEdeThe Netherlands
- TiFNP.O. Box 5576700 ANWageningenThe Netherlands
| |
Collapse
|
33
|
Fu N, Huang S, Xiao J, Chen XD. Producing Powders Containing Active Dry Probiotics With the Aid of Spray Drying. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:211-262. [PMID: 29860975 DOI: 10.1016/bs.afnr.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotics are microorganisms capable of conferring health benefits to humans and animals when ingested. Probiotic products that prevail in food market usually contain viable bacteria from Lactobacillus and Bifidobacterium genera. Bacterial strains in these genera often have complex nutrient requirements and tend to be fragile under environmental stresses. How to incorporate the cells into food matrix without causing undesired viability loss is a key issue for developing products of viable probiotics. Spray drying offers a rapid way to produce powders encapsulating probiotics in a matrix of protectant(s), which may extend the term of viability preservation and expand the application of probiotic products. In spray drying, feed solution that contains probiotic cells and dissolved or suspended protectant solids are atomized into droplets, which are quickly converted into particles by drying in a hot airflow. The harsh conditions and interplaying stresses make the maintenance of cell viability a challenging task. To enhance cell survival in dried powders, various approaches have been attempted, including the enhancement of the intrinsic stress tolerance of cells, adjustment of protectant composition, and optimization of the production process and dryer settings. This chapter discusses important factors influencing probiotic viability during spray drying from aspects of microbiology, food chemistry, and drying process. The mechanisms underlying the influences at the droplet and cellular levels and strategies taken to protect cell viability at the process level are discussed.
Collapse
Affiliation(s)
- Nan Fu
- China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, PR China.
| | - Song Huang
- China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, PR China; UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Jie Xiao
- China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Xiao Dong Chen
- China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, PR China
| |
Collapse
|
34
|
Prasanna P, Charalampopoulos D. Encapsulation of Bifidobacterium longum in alginate-dairy matrices and survival in simulated gastrointestinal conditions, refrigeration, cow milk and goat milk. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Shu G, He Y, Chen L, Song Y, Meng J, Chen H. Microencapsulation of Lactobacillus Acidophilus by Xanthan-Chitosan and Its Stability in Yoghurt. Polymers (Basel) 2017; 9:E733. [PMID: 30966036 PMCID: PMC6418684 DOI: 10.3390/polym9120733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022] Open
Abstract
Microencapsulations of Lactobacillus acidophilus in xanthan-chitosan (XC) and xanthan-chitosan-xanthan (XCX) polyelectrolyte complex (PEC) gels were prepared in this study. The process of encapsulation was optimized with the aid of response surface methodology (RSM). The optimum condition was chitosan of 0.68%, xanthan of 0.76%, xanthan-L. acidophilus mixture (XLM)/chitosan of 1:2.56 corresponding to a high viable count (1.31 ± 0.14) × 1010 CFU·g-1, and encapsulation yield 86 ± 0.99%, respectively. Additionally, the application of a new encapsulation system (XC and XCX) in yoghurt achieved great success in bacterial survival during the storage of 21 d at 4 °C and 25 °C, respectively. Specially, pH and acidity in yogurt were significantly influenced by the new encapsulation system in comparison to free suspension during 21 d storage. Our study provided a potential encapsulation system for probiotic application in dairy product which paving a new way for functional food development.
Collapse
Affiliation(s)
- Guowei Shu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yunxia He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Li Chen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yajuan Song
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jiangpeng Meng
- Xi'an Baiyue Goat Milk Corp., Ltd., Xi'an 710089, China.
| | - He Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
36
|
Soukoulis C, Behboudi-Jobbehdar S, Macnaughtan W, Parmenter C, Fisk ID. Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocoll 2017; 70:345-355. [PMID: 28867864 PMCID: PMC5429391 DOI: 10.1016/j.foodhyd.2017.04.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
Abstract
The incorporation of probiotics and bioactive compounds, via plasticised thin-layered hydrocolloids, within food products has recently shown potential to functionalise and improve the health credentials of processed food. In this study, choice of polymer and the inclusion of whey protein isolate was evaluated for their ability to stabalise live probiotic organisms. Edible films based on low (LSA) and high (HSA) viscosity sodium alginate, low esterified amidated pectin (PEC), kappa-carrageenan/locust bean gum (κ-CAR/LBG) and gelatine (GEL) in the presence or absence of whey protein concentrate (WPC) were shown to be feasible carriers for the delivery of L. rhamnosus GG. Losses of L. rhamnosus GG throughout the drying process ranged from 0.87 to 3.06 log CFU/g for the systems without WPC, losses were significantly reduced to 0 to 1.17 log CFU/g in the presence of WPC. Storage stability (over 25d) of L. rhamnosus GG at both tested temperatures (4 and 25 °C), in descending order, was κ-CAR/LBG > HSA > GEL > LSA = PEC. In addition, supplementation of film forming agents with WPC led to a 1.8- to 6.5-fold increase in shelf-life at 4 °C (calculated on the WHO/FAO minimum requirements of 6 logCFU/g), and 1.6-4.3-fold increase at 25 °C. Furthermore probiotic films based on HSA/WPC and κ-CAR/LBG/WPC blends had both acceptable mechanical and barrier properties.
Collapse
Affiliation(s)
- Christos Soukoulis
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), 5. Avenue des Hauts-Fourneaux, L-4362, Esch sur Alzette, Luxembourg
| | - Solmaz Behboudi-Jobbehdar
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, United Kingdom
| | - William Macnaughtan
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, United Kingdom
| | - Christopher Parmenter
- Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Ian D. Fisk
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, United Kingdom
| |
Collapse
|
37
|
Microencapsulation of functional strains by high pressure homogenization for a potential use in fermented milk. Food Res Int 2017; 97:250-257. [PMID: 28578048 DOI: 10.1016/j.foodres.2017.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 11/20/2022]
Abstract
This study was aimed to evaluate the potential of high pressure homogenization for the microencapsulation of two probiotic lactic acid bacteria, Lactobacillus paracasei A13 and Lactobacillus salivarius subsp. salivarius CET 4063 to produce functional fermented milks. Microcapsules of the considered functional microorganisms were obtained by HPH treatments at 50MPa in the presence of sodium alginate and vegetable oil. The microencapsulated microorganisms were then inoculated as adjuncts to produce fermented milks. As controls were used fermented milks in which the two probiotic lactobacilli were inoculated without encapsulation. The viability of the strains was monitored during almost 2months of refrigerated storage. The survival of lactic acid bacteria after the gastric-duodenal simulated test was determined. Fermented milk texture parameters, the presence of exo-polysaccharides and the production of volatile molecules were also evaluated over storage. The microcapsules, for both the considered probiotic strains, were homogeneous and with a size<100μM and therefore did not adversely affect the sensory properties of the fermented milks. The encapsulation decreased the hyperacidity phenomena generally related to the inclusion of probiotic microorganisms in fermented milks. The lower acidity of the products due to the microencapsulation was fundamental for the improvement of the viability of the starter culture and the sensory characteristics of the products. The microencapsulation conditions increased the resistance to the simulated digestion processes, although the strain Lb. paracasei A13 generally showed a higher resistance to the gastric barrier respect to Lb. salivarius CECT 4063. By contrast, the data obtained showed a reduction of EPS production by the microencapsulation. The volatile profiles showed specific profiles in relation to the probiotic strain used and microencapsulation process. In conclusion, the results of this study underlined the applicative potential of HPH microencapsulation of probiotic microorganisms to produce fermented milk with improved functionality and with enhanced sensory properties.
Collapse
|
38
|
Iskandar CF, Borges F, Taminiau B, Daube G, Zagorec M, Remenant B, Leisner JJ, Hansen MA, Sørensen SJ, Mangavel C, Cailliez-Grimal C, Revol-Junelles AM. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium. Front Microbiol 2017; 8:357. [PMID: 28337181 PMCID: PMC5341603 DOI: 10.3389/fmicb.2017.00357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium.
Collapse
Affiliation(s)
- Christelle F. Iskandar
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Bernard Taminiau
- Laboratory of Food Microbiology, Department of Food Science, Fundamental and Applied Research for Animal and Health, University of LiègeLiège, Belgium
| | - Georges Daube
- Laboratory of Food Microbiology, Department of Food Science, Fundamental and Applied Research for Animal and Health, University of LiègeLiège, Belgium
| | | | | | - Jørgen J. Leisner
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Martin A. Hansen
- Molecular Microbial Ecology Group, University of CopenhagenCopenhagen, Denmark
| | - Søren J. Sørensen
- Molecular Microbial Ecology Group, University of CopenhagenCopenhagen, Denmark
| | - Cécile Mangavel
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Catherine Cailliez-Grimal
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Anne-Marie Revol-Junelles
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| |
Collapse
|
39
|
Yang Y, Huang S, Wang J, Jan G, Jeantet R, Chen X. Mg2+improves the thermotolerance of probioticLactobacillus rhamnosusGG,Lactobacillus caseiZhang andLactobacillus plantarumP-8. Lett Appl Microbiol 2017; 64:283-288. [DOI: 10.1111/lam.12716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/10/2016] [Accepted: 12/29/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Y. Yang
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen City China
| | - S. Huang
- Suzhou Key Lab of Green Chemical Engineering; School of Chemical and Environmental Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou City China
- STLO; Agrocampus Ouest; INRA; Rennes France
| | - J. Wang
- Suzhou Key Lab of Green Chemical Engineering; School of Chemical and Environmental Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou City China
| | - G. Jan
- STLO; Agrocampus Ouest; INRA; Rennes France
| | - R. Jeantet
- STLO; Agrocampus Ouest; INRA; Rennes France
| | - X.D. Chen
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen City China
- Suzhou Key Lab of Green Chemical Engineering; School of Chemical and Environmental Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou City China
| |
Collapse
|
40
|
Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Guerin J, Burgain J, Borges F, Bhandari B, Desobry S, Scher J, Gaiani C. Use of imaging techniques to identify efficient controlled release systems of Lactobacillus rhamnosus GG during in vitro digestion. Food Funct 2017; 8:1587-1598. [DOI: 10.1039/c6fo01737a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Complementary microscopy techniques were used to highlight the importance of matrix formulation on lactic acid bacteria delivery system efficiency.
Collapse
Affiliation(s)
- Justine Guerin
- Université de Lorraine
- LIBio
- Laboratoire d'Ingénierie des Biomolécules
- F-54518 Vandœuvre-lès-Nancy
- France
| | - Jennifer Burgain
- Université de Lorraine
- LIBio
- Laboratoire d'Ingénierie des Biomolécules
- F-54518 Vandœuvre-lès-Nancy
- France
| | - Frédéric Borges
- Université de Lorraine
- LIBio
- Laboratoire d'Ingénierie des Biomolécules
- F-54518 Vandœuvre-lès-Nancy
- France
| | - Bhesh Bhandari
- University of Queensland
- School of Agricultural and Food Sciences
- St. Lucia
- Australia
| | - Stéphane Desobry
- Université de Lorraine
- LIBio
- Laboratoire d'Ingénierie des Biomolécules
- F-54518 Vandœuvre-lès-Nancy
- France
| | - Joël Scher
- Université de Lorraine
- LIBio
- Laboratoire d'Ingénierie des Biomolécules
- F-54518 Vandœuvre-lès-Nancy
- France
| | - Claire Gaiani
- Université de Lorraine
- LIBio
- Laboratoire d'Ingénierie des Biomolécules
- F-54518 Vandœuvre-lès-Nancy
- France
| |
Collapse
|
42
|
Wang J, Huang S, Fu N, Jeantet R, Chen XD. Thermal Aggregation of Calcium-Fortified Skim Milk Enhances Probiotic Protection during Convective Droplet Drying. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6003-6010. [PMID: 27420726 DOI: 10.1021/acs.jafc.6b02205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Probiotic bacteria have been reported to confer benefits on hosts when delivered in an adequate dose. Spray-drying is expected to produce dried and microencapsulated probiotic products due to its low production cost and high energy efficiency. The bottleneck in probiotic application addresses the thermal and dehydration-related inactivation of bacteria during process. A protective drying matrix was designed by modifying skim milk with the principle of calcium-induced protein thermal aggregation. The well-defined single-droplet drying technique was used to monitor the droplet-particle conversion and the protective effect of this modified Ca-aggregated milk on Lactobacillus rhamnosus GG. The Ca-aggregated milk exhibited a higher drying efficiency and superior protection on L. rhamnosus GG during thermal convective drying. The mechanism was explained by the aggregation in milk, causing the lower binding of water in the serum phase and, conversely, local concentrated milk aggregates involved in bacteria entrapment in the course of drying. This work may open new avenues for the development of probiotic products with high bacterial viability and calcium enrichment.
Collapse
Affiliation(s)
- Juan Wang
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University , Suzhou 215123, Jiangsu Province, China
| | - Song Huang
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University , Suzhou 215123, Jiangsu Province, China
- STLO, Agrocampus Ouest, INRA , 35000 Rennes, France
| | - Nan Fu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University , Suzhou 215123, Jiangsu Province, China
| | | | - Xiao Dong Chen
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University , Suzhou 215123, Jiangsu Province, China
| |
Collapse
|
43
|
|
44
|
Léonard L, Husson F, Langella P, Châtel JM, Saurel R. Aqueous two-phase system cold-set gelation using natural and recombinant probiotic lactic acid bacteria as a gelling agent. Colloids Surf B Biointerfaces 2016; 141:338-344. [DOI: 10.1016/j.colsurfb.2016.01.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|
45
|
Soukoulis C, Singh P, Macnaughtan W, Parmenter C, Fisk ID. Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films. Food Hydrocoll 2016; 52:876-887. [PMID: 26726280 PMCID: PMC4615137 DOI: 10.1016/j.foodhyd.2015.08.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 11/23/2022]
Abstract
Probiotic incorporation in edible films and coatings has been shown recently to be an efficient strategy for the delivery of probiotics in foods. In the present work, the impact of the compositional, physicochemical and structural properties of binary starch-protein edible films on Lactobacillus rhamnosus GG viability and stability was evaluated. Native rice and corn starch, as well as bovine skin gelatine, sodium caseinate and soy protein concentrate were used for the fabrication of the probiotic edible films. Starch and protein type both impacted the structural, mechanical, optical and thermal properties of the films, and the process loss of L. rhamnosus GG during evaporation-dehydration was significantly lower in the presence of proteins (0.91-1.07 log CFU/g) compared to solely starch based systems (1.71 log CFU/g). A synergistic action between rice starch and proteins was detected when monitoring the viability of L. rhamnosus GG over four weeks at fridge and room temperature conditions. In particular, a 3- to 7-fold increase in the viability of L. rhamnosus GG was observed in the presence of proteins, with sodium caseinate - rice starch based films offering the most enhanced stability. The film's shelf-life (as calculated using the FAO/WHO (2011) basis of 6 log viable CFU/g) ranged between 27-96 and 15-24 days for systems stored at fridge or room temperature conditions respectively.
Collapse
Affiliation(s)
- Christos Soukoulis
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Poonam Singh
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, United Kingdom
| | - William Macnaughtan
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, United Kingdom
| | - Christopher Parmenter
- Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Ian D. Fisk
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, United Kingdom
| |
Collapse
|
46
|
Burgain J, Scher J, Lebeer S, Vanderleyden J, Corgneau M, Guerin J, Caillet C, Duval JF, Francius G, Gaiani C. Impacts of pH-mediated EPS structure on probiotic bacterial pili–whey proteins interactions. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.06.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Abstract
There is increasing evidence that whey protein isolates (WPI), can be utilised to encapsulate and protect bioactive substances, including lactic acid bacteria, due to their physicochemical properties. However, little is known about what happens in the immediate vicinity of the cells. This study examined the protective behaviour of WPI for two strains of Lactobacillus plantarum, A17 and B21, during spray drying. B21 was found to be more hydrophobic than A17 and required 50% of the amount of WPI to provide comparably high survival (∼ 90%). We hypothesise that WPI protects the hydrophobic bacteria by initial attachment to the unfolded whey protein due to hydrophobic interactions followed by adhesion to the proteins, resulting in cells being embedded within the walls of the capsules. The encapsulated strains had a moisture content of approximately 5.5% and during storage trials at 20 °C retained viability for at least eight weeks.
Collapse
|
48
|
Preparation and properties of milk proteins-based encapsulated probiotics: a review. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13594-015-0223-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Burgain J, Scher J, Francius G, Borges F, Corgneau M, Revol-Junelles A, Cailliez-Grimal C, Gaiani C. Lactic acid bacteria in dairy food: surface characterization and interactions with food matrix components. Adv Colloid Interface Sci 2014; 213:21-35. [PMID: 25277266 DOI: 10.1016/j.cis.2014.09.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023]
Abstract
This review gives an overview of the importance of interactions occurring in dairy matrices between Lactic Acid Bacteria and milk components. Dairy products are important sources of biological active compounds of particular relevance to human health. These compounds include immunoglobulins, whey proteins and peptides, polar lipids, and lactic acid bacteria including probiotics. A better understanding of interactions between bioactive components and their delivery matrix may successfully improve their transport to their target site of action. Pioneering research on probiotic lactic acid bacteria has mainly focused on their host effects. However, very little is known about their interaction with dairy ingredients. Such knowledge could contribute to designing new and more efficient dairy food, and to better understand relationships between milk constituents. The purpose of this review is first to provide an overview of the current knowledge about the biomolecules produced on bacterial surface and the composition of the dairy matter. In order to understand how bacteria interact with dairy molecules, adhesion mechanisms are subsequently reviewed with a special focus on the environmental conditions affecting bacterial adhesion. Methods dedicated to investigate the bacterial surface and to decipher interactions between bacteria and abiotic dairy components are also detailed. Finally, relevant industrial implications of these interactions are presented and discussed.
Collapse
|