1
|
Zhao L, Zheng J, Yan W, Qian J, Zhang J, Wang J, Sheng X, Raghavan V, Yang X, Han Y, Cao T, Chen Y. Combined high voltage atmospheric cold plasma and ultraviolet-cold plasma inhibited Aspergillus flavus growth and improved physicochemical properties of protein in peanuts. Food Chem 2025; 464:141607. [PMID: 39413599 DOI: 10.1016/j.foodchem.2024.141607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
To improve the application value of peanuts, the fungicidal effect and physicochemical properties of the protein in peanuts were investigated by combining high voltage atmospheric cold plasma (HVCP) and ultraviolet-cold plasma (UVCP) in this study. Compared to the single HVCP or UVCP treatment, the combined treatments exhibited a higher fungicidal efficiency of A. flavus spores in peanuts, decreasing by 0.79-2.97 log10 cfu/g after 8-min treatment. The A. flavus growth and aflatoxin production in peanuts during storage were also lower than the single plasma groups. Moreover, cold plasma treatments could modify the molecular structures of protein in peanuts by changing secondary and tertiary structures, decreasing particle size and increasing zeta potential, which contributed to improve the solubility and emulsification of protein. Overall, this research provides a unique strategy for the combined application of cold plasma in grain decontamination and protein modification.
Collapse
Affiliation(s)
- Luling Zhao
- Sanya Institute of Nanjing Agricultural University, Sanya 572000, China; National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiarong Zheng
- Sanya Institute of Nanjing Agricultural University, Sanya 572000, China; National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Yan
- Sanya Institute of Nanjing Agricultural University, Sanya 572000, China; National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Qian
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jianhao Zhang
- Sanya Institute of Nanjing Agricultural University, Sanya 572000, China; National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Xiaowei Sheng
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, H9X3V9, QC, Canada
| | - Xiaohan Yang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuxuan Han
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Taotao Cao
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yating Chen
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Li T, Kong X, Shao Z, Zhang Y, Yang C, Liu K, Xin Y, Chen F, Dong Y. Characteristic and stability changes of peanut oil body emulsion during the process of demulsification using heptanoic acid. Food Chem 2024; 460:140301. [PMID: 39067429 DOI: 10.1016/j.foodchem.2024.140301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
In this paper, the changes in oil body emulsion (OBE) during heptanoic acid demulsification (HD) were investigated from the macro and microscopic points of view. Specifically, the OBE particle size increased from 3.04 to 8.41 µm, while the zeta potential absolute decreased to 2.89 mV. The interfacial tension and apparent viscosity of OBE were reduced significantly. Heptanoic acid could contribute to oil droplets aggregation. The findings indicated that high-molecular proteins, including lipoxygenase (97.58 kDa) and arachin (70.28 kDa), detached from the OBs' interface. HD caused alterations in the secondary structure of protein and the environment around proteins changed. The HD mechanism was speculated that the addition of heptanoic acid resulted in the reduction in pH and changes of environment surrounding OBE, which triggered polymerization and the phase transformation of the oil droplets. Overall, this study is vital for solving the problem of demulsification during aqueous enzymatic extraction (AEE).
Collapse
Affiliation(s)
- Tianci Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Xiangrui Kong
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihua Shao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiyang Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chenxian Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Xin
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yifan Dong
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
3
|
Briceño-Islas G, Mojica L, Urías-Silvas JE. Functional chia (Salvia hispanica L.) co-product protein hydrolysate: An analysis of biochemical, antidiabetic, antioxidant potential and physicochemical properties. Food Chem 2024; 460:140406. [PMID: 39047480 DOI: 10.1016/j.foodchem.2024.140406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/22/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Protein hydrolysates with antioxidant potential have been reported to act as adjuvants in preventing and treating type-2 diabetes (T2D). This work investigated the biochemical, antidiabetic, antioxidant potential, and physicochemical properties of chia meal protein hydrolysate (CMPH). Bands smaller than 14 kDa were observed in the electrophoretic profile. The predominant amino acids were hydrophobic and aromatic. CMPH had the potential to inhibit α-amylase (IC50: 1.76 ± 0.13 mg/mL), α-glucosidase (IC50: 0.42 ± 0.13 mg/mL), and DPP-IV (IC50: 0.46 ± 0.14 mg/mL). Antioxidant activity for ABTS (IC50: 0.236 mg/mL), DPPH (8.83 ± 0.52%), and ORAC (IC25: 0.115 mg/mL). Against chia meal protein isolate (CMPI), CMPH has a broad solubility (pH 2-12.46). Particle size (624.5 ± 247.3 nm), low PDI (0.22 ± 0.06), ζ-potential (-31.1 ± 2.5 mV), and surface hydrophobicity (11,183.33 ± 2024.11) and the intrinsic fluorescence peak of CMPH was lower than that of CMPI. CMPH represents an alternative to add value to the agri-food co-product of the chia seed oil industry, generating food ingredients with outstanding antidiabetic and antioxidant potential.
Collapse
Affiliation(s)
- Gislane Briceño-Islas
- Food Technology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Camino Arenero 1227, El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico
| | - Luis Mojica
- Food Technology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Camino Arenero 1227, El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico
| | - Judith E Urías-Silvas
- Food Technology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Camino Arenero 1227, El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
4
|
Ozgolet M, Cakmak ZHT, Bozkurt F, Sagdic O, Karasu S. Response surface optimization of protein extraction from cold-pressed terebinth (Pistacia terebinthus L.) oil byproducts: Physicochemical and functional characteristics. J Food Sci 2024; 89:7380-7396. [PMID: 39394045 DOI: 10.1111/1750-3841.17441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
The current study focused on optimizing the extraction parameters of terebinth seed proteins from cold-pressed terebinth oil byproducts to maximize protein purity and protein yield. The isolated proteins were characterized to evaluate their properties; thus revealing the valorization potential of these byproducts. Response surface methodology was used to detect the effect of three extraction parameters (pH, temperature, and time). The protein isolates were studied for their physicochemical and functional characteristics. The results indicated that an extraction pH of 8, a temperature of 50°C, and an extraction period of 60 min are optimum conditions for obtaining protein isolates with the highest purity. On the other hand, it was demonstrated that an extraction pH of 12, a temperature of 46.4°C, and an extraction duration of 102.4 min were optimum conditions for the maximum protein yield. The proteins produced under these two sets of conditions, referred to as TRP (terebinth protein with maximum purity) and TRY (terebinth protein with maximum yield), respectively, exhibited comparable oil absorption capacity (OAC), foaming, emulsifying capabilities, and stability. Both proteins showed the highest solubility at pH 11, and their zeta potentials approached zero at pH 4, indicating proximity to their isoelectric points. However, FRAP and DPPH assays showed that TRP and TRY offered low antioxidative capacity. The high β-sheet content in TRP and TRY suggests enhanced thermal stability but reduced digestibility of these proteins. Therefore, in addition to protein enrichment, TRP and TRY protein isolates can be utilized in muffins and other food applications thanks to their favorable oil absorption, foaming and emulsifying capacities, and thermal stabilities.
Collapse
Affiliation(s)
- Muhammed Ozgolet
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, Turkey
| | - Zeynep Hazal Tekin Cakmak
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, Turkey
| | - Fatih Bozkurt
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, Turkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, Turkey
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, Turkey
| |
Collapse
|
5
|
Xuan J, Xia Q, Li Y, Wang Z, Liu Y, Xia W, Barrow CJ, Liu S, Wang B. Enzymatically produced acylglycerol and glycerin monostearate additives improved the characteristics of gelatin-stabilized omega-3 emulsions and microcapsules. Food Chem 2024; 448:139135. [PMID: 38569405 DOI: 10.1016/j.foodchem.2024.139135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
The impacts of enzymatically produced acylglycerol and glycerin monostearate on the characteristics of gelatin-stabilized omega-3 emulsions and microcapsules were investigated. Tuna oil was enzymatically produced and the resulting acylglycerol was mixed with tuna oil at 12.5% (w/w) to prepare a novel oil phase. This oil phase was stabilized by gelatin to prepare oil-in-water emulsions and subsequent microcapsules via complex coacervation. The tuna oil with glycerin monostearate (GMS) at 1 and 2% (w/w) were used as controls. Results showed that both acylglycerol and GMS significantly reduced the emulsion droplet size and zeta potential, while increasing the viscoelasticity and stability. The diacylglycerol/monoacylglycerol were involved in the oil/water interfacial layer formation by lowering interfacial tension and increasing droplet surface hydrophobicity. Overall, the changed emulsion properties promoted the complex coacervation and contributed to the formation of microcapsules with improved oxidative stability. Therefore, enzymatically produced acylglycerol can develop high-quality stable omega-3 microencapsulated novel food ingredients.
Collapse
Affiliation(s)
- Junyong Xuan
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong, 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong, 524088, China; Guangdong Laboratory of Southern Marine Science and Engineering (Zhanjiang), Zhanjiang, Guangdong, 524088, China.
| | - Yanyang Li
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong, 524088, China
| | - Zefu Wang
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong, 524088, China
| | - Yang Liu
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong, 524088, China
| | - Wen Xia
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong, 524088, China
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Shucheng Liu
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong, 524088, China; Guangdong Laboratory of Southern Marine Science and Engineering (Zhanjiang), Zhanjiang, Guangdong, 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| | - Bo Wang
- School of Behavioural and Health Sciences, Australian Catholic University, Sydney, 2060, Australia
| |
Collapse
|
6
|
Ren HB, Feng BL, Liu HY, Wang YT, Zhang HT, Li ZL, Meng L, Zhang JJ, Bai XS, Gao F, Wang ZP, Luo BW, Chen XL, Song HJ, Yan XX, Zhao JY, Zhang YH. A novel approach has been developed to produce pure plant-based gel soy yogurt by combining soy proteins (7S/11S), high pressure homogenization, and glycation reaction. Food Chem X 2024; 22:101259. [PMID: 38444556 PMCID: PMC10914550 DOI: 10.1016/j.fochx.2024.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
This research sought to examine how the physicochemical characteristics of soy globulins and different processing techniques influence the gel properties of soy yogurt. The goal was to improve these gel properties and rectify any texture issues in soy yogurt, ultimately aiming to produce premium-quality plant-based soy yogurt. In this research study, the investigation focused on examining the impact of 7S/11S, homogenization pressure, and glycation modified with glucose on the gel properties of soy yogurt. A plant-based soy yogurt with superior gel and texture properties was successfully developed using a 7S/11S globulin-glucose conjugate at a 1:3 ratio and a homogenization pressure of 110 MPa. Compared to soy yogurt supplemented with pectin or gelatin, this yogurt demonstrated enhanced characteristics. These findings provide valuable insights into advancing plant protein gels and serve as a reference for cultivating new soybean varieties by soybean breeding experts.
Collapse
Affiliation(s)
- Hai-Bin Ren
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Bao-Long Feng
- Center for Education Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Yao Liu
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yu-Tang Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Hong-Tai Zhang
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Zhi-Lu Li
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150030, China
| | - Jing-Jian Zhang
- CangZhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Xiao-Sen Bai
- CangZhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Fei Gao
- Center for Education Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhi-Peng Wang
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Bo-Wen Luo
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Xiao-Lin Chen
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Hong-Jie Song
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Xu Yan
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Yong Zhao
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Ying-Hua Zhang
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Chen L, Zhang SB, Zhang SY. Effects of pH-shifting and ultrasound on the structural and emulsifying properties of peanut globulin fractions. Food Chem X 2024; 22:101390. [PMID: 38665630 PMCID: PMC11043870 DOI: 10.1016/j.fochx.2024.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This work investigated and compared the structural and emulsifying properties of peanut globulin fractions (conarachin and arachin) after ultrasonication (US) and pH2.5-shifting treatments, singly and in combination. Results showed that pH2.5-shifting was more effective in degrading peanut protein subunits and unfolding their structures than US treatment. Conarachin tended to aggregate during US and pH2.5-shifting treatments possibly due to higher free sulfhydryl content, while high molecular weight arachin tended to disaggregate during these treatments. pH2.5-shifting or US+pH2.5-shifting treatments significantly increased the surface hydrophobicity of conarachin (from 72 to 314) and arachin (from 336 to 888), which may be responsible for the enhancement of protein emulsifying activity. All treatments significantly improved the physical stability of arachin-stabilized emulsions with higher absolute potentials but lowered that of conarachin-stabilized emulsions. However, pH2.5-shifting or US+pH2.5-shifting treatments could improve the stability of conarachin-stabilized emulsions in the presence of salts.
Collapse
Affiliation(s)
- Lin Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Shao-Bing Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Shu-Yan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
8
|
Ozgolet M, Cakmak ZHT, Bozkurt F, Sagdic O, Karasu S. Optimization of extraction parameters of protein isolate from milk thistle seed: Physicochemical and functional characteristics. Food Sci Nutr 2024; 12:3346-3359. [PMID: 38726413 PMCID: PMC11077193 DOI: 10.1002/fsn3.4001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 05/12/2024] Open
Abstract
In the current study, optimization of milk thistle protein extraction parameters was carried out in terms of purity and yield. In addition, the characterization of proteins isolated from milk thistle seeds was conducted. The optimal conditions for achieving the highest purity of protein (MTP) from milk thistle seeds were identified as extraction pH 9.47, temperature 30°C, and extraction time 180 min. Conversely, optimal values for overall protein yield (MTY) were determined at extraction pH 12, temperature 50°C, and extraction time 167 min. The proteins obtained under these two sets of conditions (MTP and MTY) demonstrated comparable oil absorption capacity (OAC), foaming, and emulsifying capabilities, as well as stability, aligning with findings from previous studies on seed protein. Both proteins had the highest protein solubilities at pH 11. Both proteins' zeta potentials were closest to zero at pH 4, demonstrating their closeness to the isoelectric point. MTP and MTY had poorer antioxidant capabilities than the other protein isolates/concentrates. MTP and MTY contain high β sheet concentrations that might enhance thermal stability and lower the digestibility of proteins. In conclusion, the protein extraction process demonstrated a high potential for achieving both substantial yield and remarkable purity with some decent technological and functional properties, thus holding promise for various applications in diverse fields.
Collapse
Affiliation(s)
- Muhammed Ozgolet
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Zeynep Hazal Tekin Cakmak
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Fatih Bozkurt
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| |
Collapse
|
9
|
Dong SY, Li YQ, Sun X, Sun GJ, Wang CY, Liang Y, Hua DL, Chen L, Mo HZ. Structure, physicochemical properties, and biological activities of protein hydrolysates from Zanthoxylum seed. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3329-3340. [PMID: 38082555 DOI: 10.1002/jsfa.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Zanthoxylum seed, as a low-cost and easily accessible plant protein resource, has good potential in the food industry. But protein and its hydrolysates from Zanthoxylum seed are underutilized due to the dearth of studies on them. This study aimed to investigate the structure and physicochemical and biological activities of Zanthoxylum seed protein (ZSP) hydrolysates prepared using Protamex®, Alcalase®, Neutrase®, trypsin, or pepsin. RESULTS Hydrolysis using each of the five enzymes diminished average particle size and molecular weight of ZSP but increased random coil content. ZSP hydrolysate prepared using pepsin had the highest degree of hydrolysis (24.07%) and the smallest molecular weight (<13 kDa) and average particle size (129.80 nm) with the highest solubility (98.9%). In contrast, ZSP hydrolysate prepared using Alcalase had the highest surface hydrophobicity and foaming capacity (88.89%), as well as the lowest foam stability (45.00%). Moreover, ZSP hydrolysate prepared using Alcalase exhibited the best hydroxyl-radical scavenging (half maximal inhibitory concentration (IC50 ) 1.94 mg mL-1 ) and ferrous-ion chelating (IC50 0.61 mg mL-1 ) activities. Additionally, ZSP hydrolysate prepared using pepsin displayed the highest angiotensin-converting enzyme inhibition activity (IC50 0.54 mg mL-1 ). CONCLUSION These data showed that enzyme hydrolysis improved the physicochemical properties of ZSP, and enzymatic hydrolysates of ZSP exhibited significant biological activity. These results provided validation for application of ZSP enzymatic hydrolysates as antioxidants and antihypertensive agents in the food or medicinal industries. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Si-Yu Dong
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xin Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Gui-Jin Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chen-Ying Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yan Liang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dong-Liang Hua
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lei Chen
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hai-Zhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
10
|
Zhang Y, Chen Y, Liu C, Chen F, Yin L. Effects of Roasting Temperatures on Peanut Oil and Protein Yield Extracted via Aqueous Enzymatic Extraction and Stability of the Oil Body Emulsion. Foods 2023; 12:4183. [PMID: 38002240 PMCID: PMC10670177 DOI: 10.3390/foods12224183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Oil body emulsions (OBEs) affect the final oil yield as an intermediate in the concurrent peanut oil and protein extraction process using an aqueous enzyme extraction (AEE) method. Roasting temperature promotes peanut cell structure breakdown, affecting OBE composition and stability and improving peanut oil and protein extraction rates. Therefore, this study aimed to investigate the effects of pretreatment at different roasting temperatures on peanut oil and protein yield extracted through AEE. The results showed that peanut oil and protein extraction rates peaked at 90 °C, 92.21%, and 77.02%, respectively. The roasting temperature did not change OBE composition but affected its stability. The OBE average particle size increased significantly with increasing temperature, while at 90 °C, the zeta potential peaked, and the interfacial protein concentration hit its lowest, indicating OBE stability was the lowest. Optical microscopy and confocal laser scanning microscopy confirmed the average particle size findings. The oil quality obtained after roasting treatment at 90 °C did not differ significantly from that at 50 °C. The protein composition remained unaffected by the roasting temperature. Conclusively, the 90 °C roasting treatment effectively improved the yield of peanut oil extracted using AEE, providing a theoretical basis for choosing a suitable pretreatment roasting temperature.
Collapse
Affiliation(s)
- Yajing Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.); (Y.C.); (C.L.); (L.Y.)
| | - Yu Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.); (Y.C.); (C.L.); (L.Y.)
| | - Chen Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.); (Y.C.); (C.L.); (L.Y.)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.); (Y.C.); (C.L.); (L.Y.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Lijun Yin
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.); (Y.C.); (C.L.); (L.Y.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
11
|
Lyu S, Chen M, Wang Y, Zhang D, Zhao S, Liu J, Pan F, Zhang T. Foaming properties of egg white proteins improved by enzymatic hydrolysis: The changes in structure and physicochemical properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
12
|
Zhao Y, Chen F, Wang Y. Demulsification of peanut emulsion by aqueous enzymatic extraction using a combination of oleic and citric acids. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Hariharan S, Patti A, Arora A. Functional Proteins from Biovalorization of Peanut Meal: Advances in Process Technology and Applications. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:13-24. [PMID: 36650319 DOI: 10.1007/s11130-022-01040-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Environmental costs associated with meat production have necessitated researchers and food manufacturers to explore alternative sources of high-quality protein, especially from plant origin. Proteins from peanuts and peanut-by products are high-quality, matching industrial standards and nutritional requirements. This review contributes to recent developments in the production of proteins from peanut and peanut meal. Conventional processing techniques such as hot-pressing kernels, use of solvents in oil removal, and employing harsh acids and alkalis denature the protein and damage its functional properties, limiting its use in food formulations. Controlled hydrolysis (degree of hydrolysis between 1 and 10%) using neutral and alkaline proteases can extract proteins and improve peanut proteins' functional properties, including solubility, emulsification, and foaming activity. Peanut proteins can potentially be incorporated into meat analogues, bread, soups, confectionery, frozen desserts, and cakes. Recently, pretreatment techniques (microwave, ultrasound, high pressure, and atmospheric cold plasma) have been explored to enhance protein extraction and improve protein functionalities. However, most of the literature on physicochemical pretreatment techniques has been limited to the lab scale and has not been analysed at the pilot scale. Peanut-derived peptides also exhibit antioxidant, anti-hypertensive, and anti-thrombotic properties. There exists a potential to incorporate these peptides into high-fat foods to retard oxidation. These peptides can also be consumed as dietary supplements for regulating blood pressure. Further research is required to analyse the sensory attributes and shelf lives of these novel products. In addition, animal models or clinical trials need to be conducted to validate these results on a larger scale.
Collapse
Affiliation(s)
- Subramoni Hariharan
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Bioprocessing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Antonio Patti
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Amit Arora
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
- Bioprocessing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
14
|
Cui X, Huang Q, Zhang W. Pumpkin seed coat pigments affected aqueous enzymatic extraction processing through interaction with its interfacial protein. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
FENG HX, ZHENG SW, CHANG YH, MA LZ, JIANG LZ, SUN MY. Effect of enzyme types on emulsifying properties of walnut emulsion. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.120322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hong-xia FENG
- Guiyang University, China; Guizhou Fruit Processing Engineering Technology Research Center, China
| | | | - Yun-he CHANG
- Guiyang University, China; Guizhou Fruit Processing Engineering Technology Research Center, China
| | | | | | | |
Collapse
|
16
|
Thermal, structural, and emulsifying properties of pumpkin seed protein isolate subjected to pH-shifting treatment. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Gao Y, Zheng Y, Yao F, Chen F. Effects of pH and temperature on the stability of peanut oil bodies: New insights for embedding active ingredients. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Liu FF, Li YQ, Wang CY, Liang Y, Zhao XZ, He JX, Mo HZ. Physicochemical, functional and antioxidant properties of mung bean protein enzymatic hydrolysates. Food Chem 2022; 393:133397. [DOI: 10.1016/j.foodchem.2022.133397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 01/22/2023]
|
19
|
Sun L, Wu Q, Mao X. Effects of Oxidation Modification by Malondialdehyde on the Structure and Functional Properties of Walnut Protein. Foods 2022; 11:foods11162432. [PMID: 36010432 PMCID: PMC9407503 DOI: 10.3390/foods11162432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 01/01/2023] Open
Abstract
(1) Background: The effects of protein oxidization induced by malondialdehyde (MDA), which was selected as a representative of lipid peroxidation products, on the structure and functional properties of walnut protein were investigated. (2) Methods: Walnut protein isolate was produced by alkali-soluble acid precipitation. The modification of walnut protein isolate was conducted by MDA solutions (0, 0.01, 0.1, 1, and 10 Mm), which were incubated in the dark for 24 h. (3) Results: Increased carbonyl content and the degradation of sulfhydryl groups indicated MDA-induced protein oxidization. The circular dichroism spectra revealed disruption of the ordered protein secondary structure. The change in the tertiary conformation of the MDA-treated protein was observed through intrinsic fluorescence. Small polypeptide chain scission was observed at low MDA concentrations (≤0.1 mM) and protein aggregation was observed at high MDA concentrations (>0.1 mM) using high-performance size exclusion chromatography. Oxidized protein solubility was reduced. Furthermore, the emulsification stability index, foam capacity, and foam stability of walnut proteins were increased after treatment with 0.1 mM of MDA. An excessive concentration of MDA (>0.1 mM) decreased emulsification and foaming properties. (4) Conclusions: These results show that MDA oxidation modified the structure of walnut protein and further affected its function, which should be taken into account in processing walnut protein products.
Collapse
|
20
|
Zhang L, Song C, Chang J, Wang Z, Meng X. Optimization of protein hydrolysates production from defatted peanut meal based on physicochemical characteristics and sensory analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Emulsifying and emulsion stabilizing properties of hydrolysates of high-density lipoprotein from egg yolk. Food Chem 2022; 369:130891. [PMID: 34507089 DOI: 10.1016/j.foodchem.2021.130891] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 12/13/2022]
Abstract
High-density lipoprotein (HDL) was extracted from hen eggs and enzymatic hydrolysates were formed by neutral protease, trypsin and alkaline protease, which were named as EHN, EHT and EHA, respectively. The solubility of hydrolysates was significantly higher than that of HDL, especially that of EHA significantly increased from 7.69% to 27.54% when it was hydrolyzed for 1.5 h. The emulsifying properties of EHT, EHA and EHN exhibited an increase trend as a function of hydrolysis time and reached the peak values at 3.5, 1.5 and 3.5 h, respectively. This improvement was attributed to the generation of soluble peptides fragments and the exposure of ionizable residues. At different pH, temperatures and ionic strengths, the stability of emulsions stabilized by hydrolysates was higher than that of HDL, especially for emulsions prepared by EHT. These findings might indicate feasible guidance to broaden the application of HDL and enzymatic hydrolysates in emulsions.
Collapse
|
22
|
Zhang S, Jiang Y, Zhang S, Chen L. Physical Properties of Peanut and Soy Protein-Based Emulsion Gels Induced by Various Coagulants. Gels 2022; 8:79. [PMID: 35200460 PMCID: PMC8871780 DOI: 10.3390/gels8020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/07/2022] Open
Abstract
Emulsions of peanut and soy proteins, including their major components (arachin, conarachin, glycinin and β-conglycinin), were prepared by ultrasonication (300 W, 20 min) at a constant protein concentration (4%, w/v) and oil fraction (30%, v/v). These emulsions were then induced by CaCl2, transglutaminase (TGase) and glucono-δ-lactone (GDL) to form emulsion gels. The optimum coagulant concentrations were obtained for peanut and soy protein-stabilized emulsion gels, such as CaCl2 (0.15 and 0.25 g/dL, respectively), TGase (25 U/mL) and GDL (0.3% and 0.5%, w/v, respectively). For the CaCl2-induced emulsion gels, the hardness of the β-conglycinin gel was the highest, whereas that of the conarachin gel was the lowest. However, when TGase and GDL were used as coagulants, the strength of the conarachin emulsion gel was the best. For the GDL-induced emulsion gels, microstructural analysis indicated that the conarachin gel showed more homogeneous and compact structures. The gelation kinetics showed that the storage modulus (G') of all the GDL-induced emulsions increased sharply except for the arachin-stabilized emulsion. The interactive force nature varied between conarachin and arachin emulsion gels. This work reveals that peanut conarachin could be used as a good protein source to produce emulsion gels when suitable coagulants are selected.
Collapse
Affiliation(s)
- Shaobing Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.J.); (S.Z.); (L.C.)
| | | | | | | |
Collapse
|
23
|
Zhao W, Zang J, Qing M, Wang H, Chi Y, Chi Y. Mechanistic insights into the improved properties of mayonnaise from the changes in protein structures of enzymatic modification-treated egg yolk. RSC Adv 2022; 12:27213-27224. [PMID: 36276000 PMCID: PMC9511691 DOI: 10.1039/d2ra04244d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Heat treatment is an important step in mayonnaise production but can affect the quality of mayonnaise because thermal treatment can accelerate oil droplet coalescence. To resolve this issue, in this study, enzymatically modified egg yolks were applied to produce mayonnaise. Egg yolk hydrolyzed with 0.2% neutral protease could effectively produce mayonnaise with superior heat stability, and this effect was attributed to enzymatic modifications that increased the degree of amino acid ionization, the overall hydrophilicity and the ability to adsorb proteins. Moreover, electrophoresis and FT-IR results showed that the enzymatically modified egg yolk proteins had a smaller molecular weight and more flexible structure, which could also favor the improved properties. The study elucidated why mayonnaise prepared by enzymatic modification-treated egg yolk has better thermal stability. Heat treatment is an important step in mayonnaise production but can affect the quality of mayonnaise because thermal treatment can accelerate oil droplet coalescence.![]()
Collapse
Affiliation(s)
- Wenfei Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jingnan Zang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Mingmin Qing
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Huiyong Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
24
|
Wu M, Li Z, Wei R, Luan Y, Hu J, Wang Q, Liu R, Ge Q, Yu H. Role of Disulfide Bonds and Sulfhydryl Blocked by N-Ethylmaleimide on the Properties of Different Protein-Stabilized Emulsions. Foods 2021; 10:3079. [PMID: 34945628 PMCID: PMC8701375 DOI: 10.3390/foods10123079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
To investigate the role of sulfhydryl groups and disulfide bonds in different protein-stabilized emulsions, N-ethylmaleimide (NEM) was used as a sulfhydryl-blocking agent added in the emulsion. The addition of NEM to block the sulfhydryl groups resulted in a reduction in disulfide bond formation, which enabled the internal structure of the protein molecule to be destroyed, and then decreased the restriction of protein membrane on the oil droplets. Furthermore, with the NEM content increasing in the emulsion, a reduction in the protein emulsifying activity and emulsion stability also occurred. At the same time, the intermolecular interaction of the protein on the oil droplet interface membrane was destroyed, and the emulsion droplet size increased with the NEM content in the emulsion. Although NEM blocking sulfhydryl groups from forming disulfide bonds has similar effects on three types of protein emulsion, the degree of myofibrillar protein (MP), egg-white protein isolate (EPI), and soybean protein isolate (SPI) used as emulsifiers had a subtle difference.
Collapse
Affiliation(s)
- Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.L.); (R.W.); (Y.L.); (J.H.); (Q.W.); (R.L.); (Q.G.); (H.Y.)
- Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou University, Yangzhou 225127, China
| | - Zhikun Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.L.); (R.W.); (Y.L.); (J.H.); (Q.W.); (R.L.); (Q.G.); (H.Y.)
| | - Ranran Wei
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.L.); (R.W.); (Y.L.); (J.H.); (Q.W.); (R.L.); (Q.G.); (H.Y.)
| | - Yi Luan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.L.); (R.W.); (Y.L.); (J.H.); (Q.W.); (R.L.); (Q.G.); (H.Y.)
| | - Juan Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.L.); (R.W.); (Y.L.); (J.H.); (Q.W.); (R.L.); (Q.G.); (H.Y.)
| | - Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.L.); (R.W.); (Y.L.); (J.H.); (Q.W.); (R.L.); (Q.G.); (H.Y.)
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.L.); (R.W.); (Y.L.); (J.H.); (Q.W.); (R.L.); (Q.G.); (H.Y.)
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.L.); (R.W.); (Y.L.); (J.H.); (Q.W.); (R.L.); (Q.G.); (H.Y.)
- Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou University, Yangzhou 225127, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.L.); (R.W.); (Y.L.); (J.H.); (Q.W.); (R.L.); (Q.G.); (H.Y.)
- Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
25
|
Liu Z, Guo Z, Wu D, Fei X, Ei-Seedi HR, Wang C. High-pressure homogenization influences the functional properties of protein from oyster (Crassostrea gigas). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Gao Y, Liu C, Yao F, Chen F. Aqueous enzymatic extraction of peanut oil body and protein and evaluation of its physicochemical and functional properties. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
Aqueous enzymatic extraction (AEE) is a new technology for extracting vegetable oil body which has the advantages of low energy consumption, product safety, mild reaction conditions, and simultaneous separation of oil and protein. Among the enzymes tested in the present work, Viscozyme L (compound plant hydrolase) exhibited the highest extraction activity during peanut oil extraction. Extraction was optimized using response surface methodology, and optimal conditions were enzymatic temperature 51.5 °C, material-to-liquid ratio 1:3.5, enzymatic concentration 1.5%, and enzymatic time 90 min, yielding total oil body and protein of 93.67 ± 0.59% and 76.84 ± 0.68%, respectively. The fatty acid composition and content, and various quality indicators were not significantly different from those of cold-pressed oil, hence peanut oil produced by AEE met the same standards as cold-pressed first-grade peanut oil. Additionally, the functional properties of peanut protein produced by AEE were superior to those of commercially available peanut protein.
Collapse
Affiliation(s)
- Yuhang Gao
- College of Food Science and Technology, Henan University of Technology , No. 100 Lian Hua Rd. , Zhengzhou 450001 , Henan , China
| | - Chen Liu
- College of Food Science and Technology, Henan University of Technology , No. 100 Lian Hua Rd. , Zhengzhou 450001 , Henan , China
| | - Fei Yao
- College of Food Science and Technology, Henan University of Technology , No. 100 Lian Hua Rd. , Zhengzhou 450001 , Henan , China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology , No. 100 Lian Hua Rd. , Zhengzhou 450001 , Henan , China
| |
Collapse
|
27
|
Tong X, Cao J, Sun M, Liao P, Dai S, Cui W, Cheng X, Li Y, Jiang L, Wang H. Physical and oxidative stability of oil-in-water (O/W) emulsions in the presence of protein (peptide): Characteristics analysis and bioinformatics prediction. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Bozkurt F, Bekiroglu H, Dogan K, Karasu S, Sagdic O. Technological and bioactive properties of wheat glutenin hydrolysates prepared with various commercial proteases. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Jiang YS, Zhang SB, Zhang SY, Peng YX. Comparative study of high‐intensity ultrasound and high‐pressure homogenization on physicochemical properties of peanut protein‐stabilized emulsions and emulsion gels. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yu Shan Jiang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| | - Shao Bing Zhang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| | - Shu Yan Zhang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| | - Yun Xuan Peng
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| |
Collapse
|
30
|
Zhang SB, Yan DQ, Jiang YS, Ding CH. Competitive displacement of interfacial soy proteins by Tween 20 and its effect on the physical stability of emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Jiang Y, Zhou X, Zheng Y, Wang D, Deng Y, Zhao Y. Impact of ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction on rheological, structural, and functional properties of Akebia trifoliata (Thunb.) Koidz. seed protein isolates. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Characterization and Demulsification of the Oil-Rich Emulsion from the Aqueous Extraction Process of Almond Flour. Processes (Basel) 2020. [DOI: 10.3390/pr8101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aqueous extraction process (AEP) allows the concurrent extraction of oil and protein from almond flour without the use of harsh solvents. However, the majority of the oil extracted in the AEP is present in an emulsion that needs to be demulsified for subsequent industrial utilization. The effects of scaling-up the AEP of almond flour from 0.7 to 7 L and the efficiency of enzymatic and chemical approaches to demulsify the cream were evaluated. The AEP was carried out at pH 9.0, solids-to-liquid ratio of 1:10, and constant stirring of 120 rpm at 50 °C. Oil extraction yields of 61.9% and protein extraction yields of 66.6% were achieved. At optimum conditions, enzymatic and chemical demulsification strategies led to a sevenfold increase (from 8 to 66%) in the oil recovery compared with the control. However, enzymatic demulsification resulted in significant changes in the physicochemical properties of the cream protein and faster demulsification (29% reduction in the incubation time and a small reduction in the demulsification temperature from 55 to 50 °C) compared with the chemical approach. Reduced cream stability after enzymatic demulsification could be attributed to the hydrolysis of the amandin α-unit and reduced protein hydrophobicity. Moreover, the fatty acid composition of the AEP oil obtained from both demulsification strategies was similar to the hexane extracted oil.
Collapse
|
33
|
Liu C, Xia Y, Hua M, Li Z, Zhang L, Li S, Gong R, Liu S, Wang Z, Sun Y. Functional properties and antioxidant activity of gelatine and hydrolysate from deer antler base. Food Sci Nutr 2020; 8:3402-3412. [PMID: 32724604 PMCID: PMC7382106 DOI: 10.1002/fsn3.1621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 11/17/2022] Open
Abstract
Gelatine was extracted from deer antler base by the hot water method and hydrolyzed with trypsin. A comparison of the properties of gelatine before and after enzymatic hydrolysis showed a decline in the surface hydrophobicity, enhanced thermal stability, broadening of the particle size distribution, a zeta potential shift to a lower pH, reduced foaming and emulsifying properties, and enhanced antioxidant activity. Hydrolysis increased the gelatine antioxidant activity in DPPH and FRAP assays. These results indicate that the functional properties of deer antler base gelatine may be affected by trypsin modification.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Yunshi Xia
- Jilin Agricultural University Changchun, Jilin People's Republic of China
| | - Mei Hua
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Zhiman Li
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Lei Zhang
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Shanshan Li
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Ruize Gong
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Songxin Liu
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Zeshuai Wang
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| | - Yinshi Sun
- Institute of Special Animal and Plant Sciences CAAS Changchun, Jilin People's Republic of China
| |
Collapse
|
34
|
Li Y, Sun Y, Zhong M, Xie F, Wang H, Li L, Qi B, Zhang S. Digestibility, textural and sensory characteristics of cookies made from residues of enzyme-assisted aqueous extraction of soybeans. Sci Rep 2020; 10:4222. [PMID: 32144389 PMCID: PMC7060251 DOI: 10.1038/s41598-020-61179-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 02/19/2020] [Indexed: 11/08/2022] Open
Abstract
Enzyme-assisted aqueous extraction residue (REAE) has a lower utilization rate as it is the "waste" produced after the enzyme-assisted aqueous extraction (EAE), but its nutritional value is high. To improve the development and utilization of REAE, in this study, cookies were made by adding REAE (0%, 10%, 20%, 30%, 40%, 50%) as a food additive to a small amount of flour. The AOAC method was used to identify the basic components of REAE, analyze its physical and chemical properties, and characterize the cookie structure change in terms of texture, disulfide bond, and thiol content. An in vitro simulation system and sensory evaluation mechanism were established to analyze the bioavailability and impact of quality. The results show that REAE is a potential food additive. With an increase in the REAE content, the cookies become lighter in color, the sweetness and fat content are reduced, the hardness is increased, and the digestibility and glycerin index are reduced. The change in texture is caused by the reduction of disulfide bonds in the dough. The cookies were 'well accepted' with up to 30% REAE. Therefore, the use of the appropriate amount of REAE as a new food additive will reduce the amount of starch added.
Collapse
Affiliation(s)
- Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- National Research Center of Soybean Engineering and Technology, Harbin, 150030, China
- Harbin Institute of Food Industry, Harbin, 150030, China
| | - Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Harbin Institute of Food Industry, Harbin, 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- National Research Center of Soybean Engineering and Technology, Harbin, 150030, China.
- Harbin Institute of Food Industry, Harbin, 150030, China.
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
35
|
Zheng Z, Wang M, Li J, Li J, Liu Y. Comparative assessment of physicochemical and antioxidative properties of mung bean protein hydrolysates. RSC Adv 2020; 10:2634-2645. [PMID: 35496122 PMCID: PMC9048705 DOI: 10.1039/c9ra06468k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/06/2020] [Indexed: 11/24/2022] Open
Abstract
Two commercial plant proteases namely ficin and bromelain, were acquired to hydrolyze mung bean protein over 300 min hydrolysis, and the physicochemical and antioxidative properties of the obtained hydrolysates were investigated. Bromelain-treated mung bean protein hydrolysates presented a higher degree of hydrolysis in comparison with ficin-treated hydrolysates, further modifying their physicochemical and emulsifying properties. All mung bean protein hydrolysates exhibited 50% scavenging of DPPH radical (IC50) in the concentration range from 8.67 to 16.22 μg mL-1. Our results also showed that strong metal ion-chelating activity was found in the ficin- (higher activity) and bromelain-treated protein hydrolysates. In addition, oxidative stability of linoleic acid was significantly enhanced by two selected protein hydrolysates, particularly the bromelain-treated hydrolysate with the highest inhibition effect of linoleic acid oxidation (94.55 ± 0.10%). Interestingly, both of these two hydrolysates could effectively retard lipid oxidation of sunflower oil and sunflower oil-in-water emulsion, while the ficin-treated hydrolysate showed slightly better performance. Therefore, mung bean protein hydrolysates showed potential to inhibit lipid oxidation, which could be advantageous in the food industry for producing fortified food.
Collapse
Affiliation(s)
- Zhaojun Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University 1800 Lihu Road Wuxi 214122 Jiangsu People's Republic of China +86-510-85876799 +86-510-85876799
| | - Man Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University 1800 Lihu Road Wuxi 214122 Jiangsu People's Republic of China +86-510-85876799 +86-510-85876799
| | - Jiaxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University 1800 Lihu Road Wuxi 214122 Jiangsu People's Republic of China +86-510-85876799 +86-510-85876799
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University 1800 Lihu Road Wuxi 214122 Jiangsu People's Republic of China +86-510-85876799 +86-510-85876799
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University 1800 Lihu Road Wuxi 214122 Jiangsu People's Republic of China +86-510-85876799 +86-510-85876799
| |
Collapse
|
36
|
Zhang SB, Wang XH, Li X, Yan DQ. Effects of Tween 20 and Transglutaminase Modifications on the Functional Properties of Peanut Proteins. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shao Bing Zhang
- Department of Food ScienceSchool of Food Science and Technology, Henan University of Technology, Lianhua Road Zhengzhou Henan Province 450001 People's Republic of China
| | - Xiao Hua Wang
- Department of Food ScienceSchool of Food Science and Technology, Henan University of Technology, Lianhua Road Zhengzhou Henan Province 450001 People's Republic of China
| | - Xia Li
- Department of Food ScienceSchool of Food Science and Technology, Henan University of Technology, Lianhua Road Zhengzhou Henan Province 450001 People's Republic of China
| | - Dong Qiong Yan
- Department of Food ScienceSchool of Food Science and Technology, Henan University of Technology, Lianhua Road Zhengzhou Henan Province 450001 People's Republic of China
| |
Collapse
|
37
|
Zaaboul F, Raza H, Cao C, Yuanfa L. The impact of roasting, high pressure homogenization and sterilization on peanut milk and its oil bodies. Food Chem 2019; 280:270-277. [DOI: 10.1016/j.foodchem.2018.12.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 11/27/2022]
|
38
|
Li Y, Jin H, Sun X, Sun J, Liu C, Liu C, Xu J. Physicochemical Properties and Storage Stability of Food Protein-Stabilized Nanoemulsions. NANOMATERIALS 2018; 9:nano9010025. [PMID: 30585224 PMCID: PMC6359652 DOI: 10.3390/nano9010025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023]
Abstract
This study investigated the preparation and properties of corn oil nanoemulsions stabilized by peanut protein isolate (PPI), rice bran protein isolate (RBPI), soybean protein isolate (SPI), and whey protein isolate (WPI). The mean droplet diameter of four protein-stabilized nanoemulsions prepared via ultrasound method was less than 245 nm. PPI-stabilized nanoemulsions showed better stability for 4 weeks, while the mean droplet diameter of RBPI-stabilized nanoemulsions had exceeded 1000 nm during the third week of storage. Fourier transform infrared and interfacial tension (IT) analysis showed that the higher level of disordered structure and lower IT of proteins made the stability of nanoemulsions better. Moreover, bivariate correlation analysis discovered that α-helix (p < 0.01) and β-turn (p < 0.05) of proteins were related to the mean droplet diameter of nanoemulsions, the random coil (p < 0.05) was related to the zeta potential of nanoemulsions. This study provided new idea for the relationship between the structure of protein and properties of protein-stabilized nanoemulsions.
Collapse
Affiliation(s)
- Yangyang Li
- College of Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Hua Jin
- College of Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Xiaotong Sun
- College of Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Jingying Sun
- College of Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Chang Liu
- College of Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Chunhong Liu
- College of Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Jing Xu
- College of Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
39
|
Li P, Zhang W, Han X, Liu J, Liu Y, Gasmalla MAA, Yang R. Demulsification of oil-rich emulsion and characterization of protein hydrolysates from peanut cream emulsion of aqueous extraction processing. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Ma T, Zhu H, Wang J, Wang Q, Yu L(L, Sun B. Influence of extraction and solubilizing treatments on the molecular structure and functional properties of peanut protein. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Xia L, Zhang H, Wei Z, Jiang Y, Zhang L, Zhao J, Zhang J, Dong L, Li E, Ruhlmann L, Zhang Q. Catalytic Emulsion Based on Janus Nanosheets for Ultra-Deep Desulfurization. Chemistry 2017; 23:1920-1929. [DOI: 10.1002/chem.201604737] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Lixin Xia
- College of Chemistry; Liaoning University; Shenyang 110036 P.R. China
| | - Hairan Zhang
- College of Chemistry; Liaoning University; Shenyang 110036 P.R. China
| | - Zhichao Wei
- College of Chemistry; Liaoning University; Shenyang 110036 P.R. China
| | - Yi Jiang
- College of Chemistry; Liaoning University; Shenyang 110036 P.R. China
| | - Ling Zhang
- College of Chemistry and Life Science; Shenyang Normal University; Shenyang 110034 P.R. China
| | - Jie Zhao
- College of Chemistry; Liaoning University; Shenyang 110036 P.R. China
| | - Junhui Zhang
- College of Chemistry; Liaoning University; Shenyang 110036 P.R. China
| | - Li Dong
- College of Chemistry; Liaoning University; Shenyang 110036 P.R. China
| | - Erni Li
- College of Chemistry; Liaoning University; Shenyang 110036 P.R. China
| | - Laurent Ruhlmann
- Université de Strasbourg; Institut de Chimie, UMR CNRS 7177, Laboratoire O'Electrochimie et de Chimie Physique du Corps Solide; 4 rue Blaise Pascal, CS 90032 67081 Strasbourg cedex France
| | - Qian Zhang
- College of Chemistry; Liaoning University; Shenyang 110036 P.R. China
| |
Collapse
|
42
|
Xiong Z, Zhang M, Ma M. Emulsifying properties of ovalbumin: Improvement and mechanism by phosphorylation in the presence of sodium tripolyphosphate. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Li P, Gasmalla MAA, Liu J, Zhang W, Yang R, Aboagarib EAA. Characterization and demusification of cream emulsion from aqueous extraction of peanut. J FOOD ENG 2016. [DOI: 10.1016/j.jfoodeng.2016.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Jayawardane D, Pan F, Lu JR, Zhao X. Interfacial Adsorption of Silk Fibroin Peptides and Their Interaction with Surfactants at the Solid-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8202-8211. [PMID: 27465840 DOI: 10.1021/acs.langmuir.6b02068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Regenerated silk fibroin (RSF) is a Food and Drug Administration-approved material and has been widely used in many biomedical and cosmetic applications. Because of the amphiphilic nature of the primary repeat amino acid sequence (e.g., AGAGAS), RSF peptides can significantly reduce the water surface tension and therefore have the potential to be used as a surface active component for many applications, particularly in the biomedical, cosmetic, pharmaceutical, and food industries. In this paper, the adsorption of RSF peptides separated into molecular fractions of 5-30, 30-300, and >300 kDa has been studied at the solid-water interface by neutron reflection and spectroscopic ellipsometry to assess its surface active behavior. A stable layer of RSF was found to be irreversibly adsorbed at the hydrophilic SiO2-water interface. Changes in solution concentration, pH, and ionic strength all had an impact on the final adsorbed amount found at the interface. There were no significant differences between the final adsorbed amounts or layer structure among the three RSF molecular fractions studied; however, >300 kDa RSF was more stable to changes in solution ionic strength. Adsorption of conventional anionic and cationic surfactants, sodium dodecyl sulfate (SDS) and dodecyl trimethylammonium bromide (C12TAB), to the preadsorbed 5-30 kDa RSF revealed penetration of the surfactant into the RSF layer, at concentrations below the critical micellar concentration (CMC). SDS was found in the preadsorbed RSF layer and gradually removed RSF from the surface with an increase in SDS concentration. At concentrations above the CMC, there is near complete removal of RSF by SDS at the interface. C12TAB adsorbed into the preadsorbed RSF layer with considerably less removal of RSF from the interface compared to SDS. At concentrations above the CMC, both C12Tab and RSF were found to coexist at the interface, forming a less thick layer but with a considerable amount of RSF still present.
Collapse
Affiliation(s)
- Dharana Jayawardane
- Department of Chemical and Biological Engineering, University of Sheffield , Sheffield S1 3JD, U.K
| | - Fang Pan
- Biological Physics Group, University of Manchester , Schuster Building, Manchester M13 9PL, U.K
| | - Jian R Lu
- Biological Physics Group, University of Manchester , Schuster Building, Manchester M13 9PL, U.K
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield , Sheffield S1 3JD, U.K
| |
Collapse
|
45
|
Zhao J, Dong F, Li Y, Kong B, Liu Q. Effect of freeze–thaw cycles on the emulsion activity and structural characteristics of soy protein isolate. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|