1
|
Zhao J, Yang F, Fang X, Liu M, Sun Y, Gu L. Preparation, characterization of algae polyphenol-polysaccharide composite films and application in chilled porcine longissimus lumborum packaging. Meat Sci 2025; 225:109801. [PMID: 40088747 DOI: 10.1016/j.meatsci.2025.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/10/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
The objective of this study was to assess the efficacy of pullulan (PUL) based films incorporated with algae polyphenol extracts (APE) in preserving the freshness of porcine longissimus lumborum (PLL) during refrigerated storage at 4 °C for 7 d. Among 3 types of polysaccharides (tested konjac gum, soluble soybean polysaccharide, and PUL), the PUL-APE composite film demonstrated superior film performance. The effects of APE concentrations at 1, 2, 3, 4, and 5 % (w/v) on the barrier, mechanical, physical, and optical properties of the developed films were evaluated while exploring intermolecular interactions between APE and polysaccharides. Results revealed that increasing APE concentration significantly enhanced the thickness, moisture content, and water solubility of PUL-APE composite films while decreasing brightness and opacity rate (P < 0.05). Compared to other groups, the composite film containing 3 % APE exhibited superior barrier and mechanical properties with a minimum water vapor permeability value of 2.35 ± 0.05 g/m2 and maximum tensile strength value of 55.82 ± 0.42 MPa. Additionally, the packaging effect of PUL-APE composite film on chilled PLL samples was investigated. The film effectively delayed microbial growth and minimized oxidative rancidity, texture changes, and cooking loss during refrigerated storage of PLL samples. Therefore, these PUL-APE composite films hold great potential as edible materials for meat packaging applications.
Collapse
Affiliation(s)
- Juyang Zhao
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China; Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150076, China
| | - Feiran Yang
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xuwei Fang
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Ming Liu
- College of Vocation and Education, Harbin University of Commerce, Harbin, Heilongjiang 150076, China
| | - Ying Sun
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| | - Liya Gu
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China; Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
2
|
Braz EMA, Silva SCCC, Alves MMM, Carvalho FAA, Magalhães R, Osajima JA, Silva DA, Oliveira AL, Muniz EC, Silva-Filho EC. Chitosan/collagen biomembrane loaded with 2,3-dihydrobenzofuran for the treatment of cutaneous Leishmaniasis. Int J Biol Macromol 2024; 280:135995. [PMID: 39326592 DOI: 10.1016/j.ijbiomac.2024.135995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this work, chitosan/collagen-based membranes loaded with 2,3-dihydrobenzofuran (2,3-DHB) were developed through a simple solvent-casting procedure for use in the treatment of cutaneous Leishmaniasis. The obtained membranes were characterized by elemental analysis, FTIR, TG, DSC, and XRD. Porosity, swelling, mechanical properties, hydrophilicity, and antioxidant activity were analyzed. In addition, assessment to the biocompatibility, through fibroblasts/keratinocytes and in vitro wound healing essays were performed. The obtained results show that the new 2,3-DHB loaded chitosan/collagen membrane presented high porosity and swelling capacity as well as maximum strength, hydrophilicity, and antioxidant activity higher in relation to the control. The tests of antileishmanial activity and the AFM images demonstrate great efficacy of inhibition growth of the parasite, superior to those from the standard therapeutic agent that is currently used: Amphotericin B. The new membranes are biocompatible and stimulated the proliferation of keratinocytes. SEM images clearly demonstrate that fibroblasts were able to adhere, maintained their characteristic morphology. The healing test evidenced that the membranes have adequate environment for promoting cell proliferation and growth. As the conventional treatments often use drugs with high toxicity, the as-developed new membranes proved to be excellent candidate to treat cutaneous Leishmaniasis and can be clearly indicated for further advanced studies in vivo.
Collapse
Affiliation(s)
- Elton Marks Araujo Braz
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Solranny Carla Cavalcante Costa Silva
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil; Universidade Estadual do Piauí, Campus Professor Ariston Dias Lima, São Raimundo Nonato, PI 64770-000, Brazil
| | - Michel Muálem Moraes Alves
- Núcleo de Pesquisa em Plantas Medicinais-NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil; Departamento de Morfofisiologia Veterinária, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Fernando Aécio Amorim Carvalho
- Núcleo de Pesquisa em Plantas Medicinais-NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal
| | - Josy Anteveli Osajima
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Durcilene Alves Silva
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Ana Leite Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal
| | - Edvani Curti Muniz
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil; Universidade Estadual de Maringá, Departamento de Química, Maringá, PR 87020-970, Brazil
| | - Edson Cavalcanti Silva-Filho
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil.
| |
Collapse
|
3
|
Jacobs E, Chambin O, Debeaufort F, Benbettaieb N. Synergic versus Antagonist Effects of Rutin on Gallic Acid or Coumarin Incorporated into Chitosan Active Films: Impacts on Their Release Kinetics and Antioxidant Activity. Antioxidants (Basel) 2023; 12:1934. [PMID: 38001787 PMCID: PMC10669362 DOI: 10.3390/antiox12111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
This work deals with the study of the release and antioxidant activity kinetics of three natural antioxidants associated as binary mixture (coumarin, and/or gallic acid and rutin) from chitosan films. Antioxidants were incorporated into film alone or in binary mixture. The aim was to determine the influence of rutin on the phenolic acid and benzopyrone. The UV-visible light transmission spectra of the films were also investigated. Neat chitosan films and chitosan incorporated coumarin exhibited high transmittance in the UV-visible light range, while GA-added chitosan films showed excellent UV light barrier properties. The molecular interactions between chitosan network and antioxidants were confirmed by FTIR where spectra displayed a shift of the amide-III peak. Rutin has a complex structure that can undergo ionization. The chitosan network structure induced change was found to influence the release behavior. The film containing rutin showed the highest antioxidant activity (65.58 ± 0.26%), followed by gallic acid (44.82 ± 3.73%), while coumarin displayed the lowest activity (27.27 ± 4.04%). The kinetic rate against DPPH-free radical of rutin is three times higher than coumarin. The kinetic rates were influenced by the structure and interactions of the antioxidants with chitosan. Rutin exhibited a slow release due to its molecular interactions with chitosan, while coumarin and gallic acid showed faster release. The diffusion coefficient of coumarin is 900 times higher than that of rutin. The rutin presence significantly delayed the release of the gallic acid and coumarin, suggesting an antagonistic effect. However, their presence weakly affects the release behavior of rutin.
Collapse
Affiliation(s)
- Elizabeth Jacobs
- Bioscience Department, Munster Technological University-Cork Campus, T12 P928 Cork, Ireland
| | - Odile Chambin
- Food and Wine Physico-Chemistry Unit, Institut Agro Dijon-Joint Unit Food Processing and Microbiology UMR PAM, Université de Bourgogne, 21000 Dijon, France; (O.C.); (N.B.)
- Department of Pharmaceutical Technology, UFR des Sciences de Santé, Université de Bourgogne, 21079 Dijon, France
| | - Frédéric Debeaufort
- Food and Wine Physico-Chemistry Unit, Institut Agro Dijon-Joint Unit Food Processing and Microbiology UMR PAM, Université de Bourgogne, 21000 Dijon, France; (O.C.); (N.B.)
- Department of BioEngineering, IUT-Dijon-Auxerre, Université de Bourgogne, 20178 Dijon, France
| | - Nasreddine Benbettaieb
- Food and Wine Physico-Chemistry Unit, Institut Agro Dijon-Joint Unit Food Processing and Microbiology UMR PAM, Université de Bourgogne, 21000 Dijon, France; (O.C.); (N.B.)
- Department of BioEngineering, IUT-Dijon-Auxerre, Université de Bourgogne, 20178 Dijon, France
| |
Collapse
|
4
|
Malekjani N, Karimi R, Assadpour E, Jafari SM. Control of release in active packaging/coating for food products; approaches, mechanisms, profiles, and modeling. Crit Rev Food Sci Nutr 2023; 64:10789-10811. [PMID: 37401796 DOI: 10.1080/10408398.2023.2228413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Antimicrobial or antioxidant active packaging (AP) is an emerging technology in which a bioactive antimicrobial or antioxidant agent is incorporated into the packaging material to protect the contained product during its shelf life from deterioration. The important issue in AP is making a balance between the deterioration rate of the food product and the controlled release of the bioactive agent. So, the AP fabrication should be designed in such a way that fulfills this goal. Modeling the controlled release is an effective way to avoid trial and error and time-consuming experimental runs and predict the release behavior of bioactive agents in different polymeric matrices and food/food simulants. To review the release of bioactive compounds from AP, in the first part of this review we present an introductory explanation regarding the release controlling approaches in AP. Then the release mechanisms are explained which are very important in defining the appropriate modeling approach and also the interpretation of the modeling results. Different release profiles that might be observed in different packaging systems are also introduced. Finally, different modeling approaches including empirical and mechanistic techniques are covered and the recent literature regarding the utilization of such approaches to help design new AP is thoroughly studied.
Collapse
Affiliation(s)
- Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
5
|
Ebrahimnejad P, Rezaeiroshan A, Babaei A, Khanali A, Aghajanshakeri S, Farmoudeh A, Nokhodchi A. Hyaluronic Acid-Coated Chitosan/Gelatin Nanoparticles as a New Strategy for Topical Delivery of Metformin in Melanoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3304105. [PMID: 37313551 PMCID: PMC10260318 DOI: 10.1155/2023/3304105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/14/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Metformin is a multipotential compound for treating diabetes II and controlling hormonal acne and skin cancer. This study was designed to enhance metformin skin penetration in melanoma using nanoparticles containing biocompatible polymers. Formulations with various concentrations of chitosan, hyaluronic acid, and sodium tripolyphosphate were fabricated using an ionic gelation technique tailored by the Box-Behnken design. The optimal formulation was selected based on the smallest particle size and the highest entrapment efficiency (EE%) and used in ex vivo skin penetration study. In vitro antiproliferation activity and apoptotic effects of formulations were evaluated using MTT and flow cytometric assays, respectively. The optimized formulation had an average size, zeta potential, EE%, and polydispersity index of 329 ± 6.30 nm, 21.94 ± 0.05 mV, 64.71 ± 6.12%, and 0.272 ± 0.010, respectively. The release profile of the optimized formulation displayed a biphasic trend, characterized by an early burst release, continued by a slow and sustained release compared to free metformin. The ex vivo skin absorption exhibited 1142.5 ± 156.3 μg/cm2 of metformin deposited in the skin layers for the optimized formulation compared to 603.2 ± 93.1 μg/cm2 for the free metformin. Differential scanning calorimetry confirmed the deformation of the drug from the crystal structure to an amorphous state. The attenuated total reflection Fourier transform infrared results approved no chemical interaction between the drug and other ingredients of the formulations. According to the MTT assay, metformin in nanoformulation exhibited a higher cytotoxic effect against melanoma cancer cells than free metformin (IC50: 3.94 ± 0.57 mM vs. 7.63 ± 0.26 mM, respectively, P < 0.001). The results proved that the optimized formulation of metformin could efficiently decrease cell proliferation by promoting apoptosis, thus providing a promising strategy for melanoma therapy.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azin Khanali
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shaghayegh Aghajanshakeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Farmoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
- Lupin Research Center, Coral Springs, FL, USA
| |
Collapse
|
6
|
Gabrić D, Kurek M, Ščetar M, Brnčić M, Galić K. Characterization of Synthetic Polymer Coated with Biopolymer Layer with Natural Orange Peel Extract Aimed for Food Packaging. Polymers (Basel) 2023; 15:polym15112569. [PMID: 37299367 DOI: 10.3390/polym15112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
This research was aimed to make biolayer coatings enriched with orange peel essential oil (OPEO) on synthetic laminate, oriented poly(ethylene-terephthalate)/polypropylene (PET-O/PP). Coating materials were taken from biobased and renewable waste sources, and the developed formulation was targeted for food packaging. The developed materials were characterized for their barrier (O2, CO2, and water vapour), optical (colour, opacity), surface (inventory of peaks by FTIR), and antimicrobial activity. Furthermore, the overall migration from a base layer (PET-O/PP) in an acetic acid (3% HAc) and ethanol aqueous solution (20% EtOH) were measured. The antimicrobial activity of chitosan (Chi)-coated films was assessed against Escherichia coli. Permeation of the uncoated samples (base layer, PET-O/PP) increased with the temperature increase (from 20 °C to 40 °C and 60 °C). Films with Chi-coatings were a better barrier to gases than the control (PET-O/PP) measured at 20 °C. The addition of 1% (w/v) OPEO to the Chi-coating layer showed a permeance decrease of 67% for CO2 and 48% for O2. The overall migrations from PET-O/PP in 3% HAc and 20% EtOH were 1.8 and 2.3 mg/dm2, respectively. Analysis of spectral bands did not indicate any surface structural changes after exposure to food simulants. Water vapour transmission rate values were increased for Chi-coated samples compared to the control. The total colour difference showed a slight colour change for all coated samples (ΔE > 2). No significant changes in light transmission at 600 nm for samples containing 1% and 2% OLEO were observed. The addition of 4% (w/v) OPEO was not enough to obtain a bacteriostatic effect, so future research is needed.
Collapse
Affiliation(s)
- Domagoj Gabrić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Mia Kurek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Mario Ščetar
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Kata Galić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
7
|
Echegaray N, Goksen G, Kumar M, Sharma R, Hassoun A, Lorenzo JM, Dar BN. A critical review on protein-based smart packaging systems: Understanding the development, characteristics, innovations, and potential applications. Crit Rev Food Sci Nutr 2023; 64:8633-8648. [PMID: 37114905 DOI: 10.1080/10408398.2023.2202256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The use of packaging in the food industry is essential to protect food and improve its shelf life. However, traditional packaging, based on petroleum derivatives, presents some problems because it is non-biodegradable and is obtained from nonrenewable sources. In contrast, protein-based smart packaging is presented as an environmentally friendly strategy that also permits obtaining packaging with excellent characteristics for the formation of smart films and coatings. This review aims to summarize recent developments in smart packaging, focusing on edible films/coatings materials, originating from animal and plant protein sources. Various characteristics like mechanical, barrier, functional, sensory, and sustainability of packaging systems are discussed, and the processes used for their development are also described. Moreover, relevant examples of the application of these smart packaging technologies in muscle foods and some innovations in this area are presented. Protein-based films and coatings from plant and animal origins have great potential to enhance food safety and quality, and reduce environmental issues (e.g., plastic pollution and food waste). Some characteristics of the packages can be improved by incorporating polysaccharides, lipids, and other components as antioxidants, antimicrobials, and nanoparticles in protein-based composites. Promising results have been shown in many muscle foods, such as meat, fish, and other seafood. These innovative smart packaging systems are characterized by their renewable and biodegradable nature, and sustainability, among other features that go beyond typical protection barriers (namely, active, functional, and intelligent features). Nonetheless, the utilization of protein-based responsive films and coatings at industrial level still need optimization to be technologically and economically valid and viable.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avda, Galicia n◦ 4, Parque Tecnológico de Galicia, Ourense, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Rajan Sharma
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda, Galicia n◦ 4, Parque Tecnológico de Galicia, Ourense, Spain
- Facultad de Ciencias de Ourense, University of Vigo, Area de Tecnología de los Alimentos, Ourense, Spain
| | - B N Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| |
Collapse
|
8
|
Gholizadeh M, Tahvildari K, Nozari M. Physical, Rheological and Antibacterial Properties of New Edible Packaging Films Based on the Sturgeon Fish Waste Gelatin and its Compounds with Chitosan. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2132842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mehrnaz Gholizadeh
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| | - Kambiz Tahvildari
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| | - Maryam Nozari
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Gabrić D, Kurek M, Ščetar M, Brnčić M, Galić K. Effect of Non-Thermal Food Processing Techniques on Selected Packaging Materials. Polymers (Basel) 2022; 14:polym14235069. [PMID: 36501462 PMCID: PMC9741052 DOI: 10.3390/polym14235069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
In the last decade both scientific and industrial community focuses on food with the highest nutritional and organoleptic quality, together with appropriate safety. Accordingly, strong efforts have been made in finding appropriate emerging technologies for food processing and packaging. Parallel to this, an enormous effort is also made to decrease the negative impact of synthetic polymers not only on food products (migration issues) but on the entire environment (pollution). The science of packaging is also subjected to changes, resulting in development of novel biomaterials, biodegradable or not, with active, smart, edible and intelligent properties. Combining non-thermal processing with new materials opens completely new interdisciplinary area of interest for both food and material scientists. The aim of this review article is to give an insight in the latest research data about synergies between non-thermal processing technologies and selected packaging materials/concepts.
Collapse
|
10
|
Singh AK, Kim JY, Lee YS. Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules 2022; 27:7513. [PMID: 36364340 PMCID: PMC9655785 DOI: 10.3390/molecules27217513] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/01/2023] Open
Abstract
In recent years, changing lifestyles and food consumption patterns have driven demands for high-quality, ready-to-eat food products that are fresh, clean, minimally processed, and have extended shelf lives. This demand sparked research into the creation of novel tools and ingredients for modern packaging systems. The use of phenolic-compound-based active-packaging and edible films/coatings with antimicrobial and antioxidant activities is an innovative approach that has gained widespread attention worldwide. As phenolic compounds are natural bioactive molecules that are present in a wide range of foods, such as fruits, vegetables, herbs, oils, spices, tea, chocolate, and wine, as well as agricultural waste and industrial byproducts, their utilization in the development of packaging materials can lead to improvements in the oxidative status and antimicrobial properties of food products. This paper reviews recent trends in the use of phenolic compounds as potential ingredients in food packaging, particularly for the development of phenolic compounds-based active packaging and edible films. Moreover, the applications and modes-of-action of phenolic compounds as well as their advantages, limitations, and challenges are discussed to highlight their novelty and efficacy in enhancing the quality and shelf life of food products.
Collapse
|
11
|
Shi XD, Huang JJ, Wu JL, Cai XX, Tian YQ, Rao PF, Huang JL, Wang SY. Fabrication, interaction mechanism, functional properties, and applications of fish gelatin-polysaccharide composites: a review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Mayer S, Tallawi M, De Luca I, Calarco A, Reinhardt N, Gray LA, Drechsler K, Moeini A, Germann N. Antimicrobial and physicochemical characterization of 2,3-dialdehyde cellulose-based wound dressings systems. Carbohydr Polym 2021; 272:118506. [PMID: 34420752 DOI: 10.1016/j.carbpol.2021.118506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023]
Abstract
Biobased and biodegradable films were prepared by physically mixing 2,3-dialdehyde cellulose (DAC) with two other biopolymers, zein and gelatin, in three different proportions. The antimicrobial activities of the composite blends against Gram-positive and Gram-negative bacteria increase with the increase of DAC content. Cell viability tests on mammalian cells showed that the materials were not cytotoxic. In addition, DAC and gelatin were able to promote thermal degradation of the blends. However, DAC increased the stiffness and decreased the glass transition temperature of the blends, while gelatin was able to decrease the stiffness of the film. Morphological analysis showed the effect of DAC on the surface smoothness of the blends. The contact angle confirmed that all blends were within the range of hydrophilic materials. Although all the blends showed impressive performance for wound dressing application, the blend with gelatin might be more suitable for this purpose due to its better mechanical performance and antibacterial activity.
Collapse
Affiliation(s)
- Sophie Mayer
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Marwa Tallawi
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ilenia De Luca
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nikita Reinhardt
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85478 Garching, Germany
| | - Luciano Avila Gray
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85478 Garching, Germany
| | - Klaus Drechsler
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85478 Garching, Germany
| | - Arash Moeini
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Natalie Germann
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
13
|
Santos TA, Cabral BR, de Oliveira ACS, Dias MV, de Oliveira CR, Borges SV. Release of papain incorporated in chitosan films reinforced with cellulose nanofibers. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Moeini A, Germann N, Malinconico M, Santagata G. Formulation of secondary compounds as additives of biopolymer-based food packaging: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
The synergistic effect of high pressure processing and pectin on the physicochemical stability and antioxidant properties of biopolymer complexes composed of soy protein and coumarin. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Chen W, Ma S, Wang Q, McClements DJ, Liu X, Ngai T, Liu F. Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Crit Rev Food Sci Nutr 2021; 62:5029-5055. [PMID: 33554629 DOI: 10.1080/10408398.2021.1881435] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biodegradable films constructed from food ingredients are being developed for food coating and packaging applications to create more sustainable and environmentally friendly alternatives to plastics and other synthetic film-forming materials. In particular, there is a focus on the creation of active packaging materials from natural ingredients, especially plant-based ones. The film matrix is typically constructed from film-forming food components, such as proteins, polysaccharides and lipids. These matrices can be fortified with active ingredients, such as antioxidants and antimicrobials, so as to enhance their functional properties. Edible active films must be carefully designed to have the required optical, mechanical, barrier, and preservative properties needed for commercial applications. This review focuses on the fabrication, properties, and functional performance of edible films constructed from natural active ingredients. It provides an overview of the type of active ingredients that can be used, how they interact with the film matrix, how they migrate through the films, and how they are released. It also discusses the potential application of these active films for food preservation. Finally, future trends are highlighted and areas where further research are required are discussed.
Collapse
Affiliation(s)
- Wenzhang Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shaobo Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
17
|
Antifungal edible coatings containing Argentinian propolis extract and their application in raspberries. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105973] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Lou D, Tong L, Kang X, Yu Y, Zhang J, Lou Q, Huang T. Preparation and characterization of kafirin‐quercetin film for packaging cod during cold storage. J Texture Stud 2020; 52:71-80. [DOI: 10.1111/jtxs.12560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Danlu Lou
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang China
| | - Lu Tong
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang China
| | - Xinzi Kang
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang China
| | - Yimin Yu
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang China
| | - Qiaoming Lou
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang China
| |
Collapse
|
19
|
Benbettaïeb N, Mahfoudh R, Moundanga S, Brachais CH, Chambin O, Debeaufort F. Modeling of the release kinetics of phenolic acids embedded in gelatin/chitosan bioactive-packaging films: Influence of both water activity and viscosity of the food simulant on the film structure and antioxidant activity. Int J Biol Macromol 2020; 160:780-794. [DOI: 10.1016/j.ijbiomac.2020.05.199] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 05/24/2020] [Indexed: 11/29/2022]
|
20
|
Huang T, Fang Z, Zhao H, Xu D, Yang W, Yu W, Zhang J. Physical properties and release kinetics of electron beam irradiated fish gelatin films with antioxidants of bamboo leaves. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100597] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Almasi H, Jahanbakhsh Oskouie M, Saleh A. A review on techniques utilized for design of controlled release food active packaging. Crit Rev Food Sci Nutr 2020; 61:2601-2621. [PMID: 32588646 DOI: 10.1080/10408398.2020.1783199] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Active packaging (AP) is a new class of innovative food packaging, containing bioactive compounds, is able to maintain the quality of food and extend its shelf life by releasing active agent during storage. The main challenge in designing the AP system is slowing the release rate of active compounds for its prolonged activity. Controlled-release active packaging (CRP) is an innovative technology that provides control in the release of active compounds during storage. Various approaches have been proposed to design CRP. The purpose of this review was to gather and present the strategies utilized for release controlling of active compounds from food AP systems. The chemical modification of polymers, the preparation of multilayer films and the use of cross-linking agents are some methods tried in the last decades. Other approaches use molecular complexes and irradiation treatments. Micro- or nano-encapsulation of active compounds and using nano-structured materials in the AP film matrix are the newest techniques used for the preparation of CRP systems. The action mechanism for each technique was described and an effort was made to highlight representative published papers about each release controlling approach. This review will benefit future prospects of exploring other innovative release controlling methods in food CRP.
Collapse
Affiliation(s)
- Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Ayda Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
22
|
Kchaou H, Jridi M, Benbettaieb N, Debeaufort F, Nasri M. Bioactive films based on cuttlefish (Sepia officinalis) skin gelatin incorporated with cuttlefish protein hydrolysates: Physicochemical characterization and antioxidant properties. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100477] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Tonyali B, McDaniel A, Amamcharla J, Trinetta V, Yucel U. Release kinetics of cinnamaldehyde, eugenol, and thymol from sustainable and biodegradable active packaging films. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100484] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Preparation and characterization of irradiated kafirin-quercetin film for packaging cod (Gadus morhua) during cold storage at 4 °C. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02409-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Hubner P, Donati N, Quines LKDM, Tessaro IC, Marcilio NR. Gelatin-based films containing clinoptilolite-Ag for application as wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110215. [DOI: 10.1016/j.msec.2019.110215] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/24/2022]
|
26
|
Munteanu SB, Vasile C. Vegetable Additives in Food Packaging Polymeric Materials. Polymers (Basel) 2019; 12:E28. [PMID: 31877858 PMCID: PMC7023556 DOI: 10.3390/polym12010028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Plants are the most abundant bioresources, providing valuable materials that can be used as additives in polymeric materials, such as lignocellulosic fibers, nano-cellulose, or lignin, as well as plant extracts containing bioactive phenolic and flavonoid compounds used in the healthcare, pharmaceutical, cosmetic, and nutraceutical industries. The incorporation of additives into polymeric materials improves their properties to make them suitable for multiple applications. Efforts are made to incorporate into the raw polymers various natural biobased and biodegradable additives with a low environmental fingerprint, such as by-products, biomass, plant extracts, etc. In this review we will illustrate in the first part recent examples of lignocellulosic materials, lignin, and nano-cellulose as reinforcements or fillers in various polymer matrices and in the second part various applications of plant extracts as active ingredients in food packaging materials based on polysaccharide matrices (chitosan/starch/alginate).
Collapse
Affiliation(s)
| | - Cornelia Vasile
- “P. Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania;
| |
Collapse
|
27
|
Chen H, Wang J, Cheng Y, Wang C, Liu H, Bian H, Pan Y, Sun J, Han W. Application of Protein-Based Films and Coatings for Food Packaging: A Review. Polymers (Basel) 2019; 11:E2039. [PMID: 31835317 PMCID: PMC6960667 DOI: 10.3390/polym11122039] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022] Open
Abstract
As the IV generation of packaging, biopolymers, with the advantages of biodegradability, process ability, combination possibilities and no pollution to food, have become the leading food packaging materials. Biopolymers can be directly extracted from biomass, synthesized from bioderived monomers and produced directly by microorganisms which are all abundant and renewable. The raw materials used to produce biopolymers are low-cost, some even coming from agrion dustrial waste. This review summarized the advances in protein-based films and coatings for food packaging. The materials studied to develop protein-based packaging films and coatings can be divided into two classes: plant proteins and animal proteins. Parts of proteins are referred in this review, including plant proteins i.e., gluten, soy proteins and zein, and animal proteins i.e., casein, whey and gelatin. Films and coatings based on these proteins have excellent gas barrier properties and satisfactory mechanical properties. However, the hydrophilicity of proteins makes the protein-based films present poor water barrier characteristics. The application of plasticizers and the corresponding post-treatments can make the properties of the protein-based films and coatings improved. The addition of active compounds into protein-based films can effectively inhibit or delay the growth of microorganisms and the oxidation of lipids. The review also summarized the research about the storage requirements of various foods that can provide corresponding guidance for the preparation of food packaging materials. Numerous application examples of protein-based films and coatings in food packaging also confirm their important role in food packaging materials.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (H.C.); (J.W.); (Y.C.); (C.W.); (H.B.); (Y.P.)
| | - Jingjing Wang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (H.C.); (J.W.); (Y.C.); (C.W.); (H.B.); (Y.P.)
| | - Yaohua Cheng
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (H.C.); (J.W.); (Y.C.); (C.W.); (H.B.); (Y.P.)
| | - Chuansheng Wang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (H.C.); (J.W.); (Y.C.); (C.W.); (H.B.); (Y.P.)
- Shandong Provincial Key Laboratory of Polymer Material Advanced Manufactorings Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Haichao Liu
- Academic Division of Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (H.L.)
| | - Huiguang Bian
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (H.C.); (J.W.); (Y.C.); (C.W.); (H.B.); (Y.P.)
| | - Yiren Pan
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (H.C.); (J.W.); (Y.C.); (C.W.); (H.B.); (Y.P.)
| | - Jingyao Sun
- Academic Division of Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (H.L.)
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenwen Han
- Academic Division of Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (H.L.)
- National Engineering Laboratory for Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
28
|
Abousalman-Rezvani Z, Eskandari P, Roghani-Mamaqani H, Salami-Kalajahi M. Synthesis of coumarin-containing multi-responsive CNC-grafted and free copolymers with application in nitrate ion removal from aqueous solutions. Carbohydr Polym 2019; 225:115247. [DOI: 10.1016/j.carbpol.2019.115247] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
|
29
|
Yeamsuksawat T, Liang J. Characterization and release kinetic of crosslinked chitosan film incorporated with α-tocopherol. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Condict L, Paramita VD, Kasapis S. Dairy protein–ligand interactions upon thermal processing and targeted delivery for the design of functional foods. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Kurek M, Hlupić L, Elez Garofulić I, Descours E, Ščetar M, Galić K. Comparison of protective supports and antioxidative capacity of two bio-based films with revalorised fruit pomaces extracted from blueberry and red grape skin. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100315] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Protein-Based Films: Advances in the Development of Biomaterials Applicable to Food Packaging. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09189-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Boschetti TK, de Oliveira EG, Rigo LA, Coradini K, Ruver Beck RC. Simultaneous Assay of ρ-Coumaric Acid and Coumarin Co-encapsulated in Lipid-core Nanocapsules: Validation of an LC Analytical Method. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412913666171027163451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Lipid-Core Nanocapsules (LNC) containing co-encapsulated-coumaric acid
and coumarin are under development. However, there is a lack of analytical methods to assay these
bioactives in nanoformulations.
Objective:
The aim of this study was to validate an LC analytical method for the simultaneous determination
of ρ-coumaric acid and coumarin in lipid-core nanocapsules.
Methods:
The mobile phase was composed of acetonitrile:water (40:60 v/v) adjusted to pH 4 and a C-
18 reversed-phase column was used. Both bioactives were detected at 275 nm. Specificity, linearity,
range, precision and accuracy of the method were assessed, according to the official requirements.
Results:
Nanocapsules containing ρ-coumaric and coumarin had monomodal particle size distribution,
spherical-shape and Z-average size of 207 ± 2 nm. LC method was specific, linear (5 to 30 µg.mL-1),
precise (RSD < 5%) and accurate (97 - 103%). It was applied to assay the content and encapsulation
efficiency of the bioactive substances in LNC, which were close to 0.5 mg.mL-1 and 72%, respectively.
Conclusion:
The proposed analytical method is reliable for the simultaneous assay of ρ-coumaric acid
and coumarin in nanocapsules and can be further used in their development.
Collapse
Affiliation(s)
- Ticiane Krapf Boschetti
- Departamento de Producao e Controle de Medicamentos, Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Edilene Gadelha de Oliveira
- Departamento de Producao e Controle de Medicamentos, Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas Almeida Rigo
- Departamento de Producao e Controle de Medicamentos, Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Karine Coradini
- Departamento de Producao e Controle de Medicamentos, Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ruy Carlos Ruver Beck
- Departamento de Producao e Controle de Medicamentos, Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
34
|
Uranga J, Puertas A, Etxabide A, Dueñas M, Guerrero P, de la Caba K. Citric acid-incorporated fish gelatin/chitosan composite films. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.02.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Bonilla J, Sobral PJA. Gelatin‐chitosan edible film activated with Boldo extract for improving microbiological and antioxidant stability of sliced Prato cheese. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeannine Bonilla
- School of Animal Science and Food Engineering University of São Paulo Duque de Caxias Norte Avenue, 225 13635‐900 Pirassununga Brazil
| | - Paulo J. A. Sobral
- School of Animal Science and Food Engineering University of São Paulo Duque de Caxias Norte Avenue, 225 13635‐900 Pirassununga Brazil
| |
Collapse
|
36
|
Taghizadeh M, Mohammadifar MA, Sadeghi E, Rouhi M, Mohammadi R, Askari F, Mortazavian AM, Kariminejad M. Photosensitizer-induced cross-linking: A novel approach for improvement of physicochemical and structural properties of gelatin edible films. Food Res Int 2018; 112:90-97. [DOI: 10.1016/j.foodres.2018.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 05/18/2018] [Accepted: 06/02/2018] [Indexed: 12/20/2022]
|
37
|
Benbettaieb N, Nyagaya J, Seuvre AM, Debeaufort F. Antioxidant Activity and Release Kinetics of Caffeic and p-Coumaric Acids from Hydrocolloid-Based Active Films for Healthy Packaged Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6906-6916. [PMID: 29852064 DOI: 10.1021/acs.jafc.8b01846] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sustainable hydrocolloid-based films containing natural antioxidants, caffeic and p-coumaric acids at different concentrations of 0.5%, 1%, 5%, and 10% w/w of polymers, were designed for packing fatty foods. Antioxidant activities and kinetics for all film formulations were assessed using radical scavenging activity (DPPH), reducing power, and iron chelating ability. Release kinetics of the antioxidants from the films into a food simulant (96% ethanol) were analyzed. The intermolecular interactions between antioxidants and polymers chains were assessed by Fourier transform infrared attenuated total reflectance (FTIR-ATR) and related to the film properties. Antioxidant activity of pure compounds (powder), showed that caffeic acid (IC50 = 4 μg/mL) had higher activity than p-coumaric acid (IC50 = 33 μg/mL). Films containing caffeic acid exhibited higher antioxidant activity, reducing power, and iron chelating ability than p-coumaric acid films. The antioxidant activity is concentration dependent. However, the percentage of release (PR) in ethanol (96%) is not influenced by the initial concentration. PR is 88% ± 9% and 82% ± 5%, respectively, for caffeic and p-coumaric acids. Determination of the partition ( Kp) and the apparent diffusion ( D) coefficients allowed better characterization of the release kinetic mechanisms. The partition coefficients of caffeic acid ( Kp = 454) and p-coumaric acid ( Kp = 480) are not influenced by the initial concentration. The diffusion coefficients ( D) of caffeic and p-coumaric acids were of same order, but they slightly increased with the antioxidant concentration and probably related to antioxidant activity. FTIR displayed that amide B and amide-III are involved in the interactions occurring between polymer chains and antioxidants. However, interactions are of only low energy and unable to significantly affect the structure of films and consequently the release kinetics.
Collapse
Affiliation(s)
- Nasreddine Benbettaieb
- Université Bourgogne Franche-Comté , AgroSup Dijon, PAM UMR A 02.102 , F-21000 Dijon , France
- Department of BioEngineering , IUT-Dijon-Auxerre , 7 Blvd. Docteur Petitjean , 20178 Cedex Dijon , France
| | - James Nyagaya
- Department of Biosciences , Cork Institute of Technology , Rossa Av. , Bishopstown , Cork T12 P928 , Ireland
| | - Anne-Marie Seuvre
- Université Bourgogne Franche-Comté , AgroSup Dijon, PAM UMR A 02.102 , F-21000 Dijon , France
- Department of BioEngineering , IUT-Dijon-Auxerre , 7 Blvd. Docteur Petitjean , 20178 Cedex Dijon , France
| | - Frédéric Debeaufort
- Université Bourgogne Franche-Comté , AgroSup Dijon, PAM UMR A 02.102 , F-21000 Dijon , France
- Department of BioEngineering , IUT-Dijon-Auxerre , 7 Blvd. Docteur Petitjean , 20178 Cedex Dijon , France
| |
Collapse
|
38
|
|
39
|
Luzi F, Puglia D, Dominici F, Fortunati E, Giovanale G, Balestra G, Torre L. Effect of gallic acid and umbelliferone on thermal, mechanical, antioxidant and antimicrobial properties of poly (vinyl alcohol-co-ethylene) films. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
|
41
|
Impact of functional properties and release kinetics on antioxidant activity of biopolymer active films and coatings. Food Chem 2018; 242:369-377. [DOI: 10.1016/j.foodchem.2017.09.065] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 11/23/2022]
|
42
|
Baroudi A, García-Payo C, Khayet M. Structural, Mechanical, and Transport Properties of Electron Beam-Irradiated Chitosan Membranes at Different Doses. Polymers (Basel) 2018; 10:E117. [PMID: 30966153 PMCID: PMC6415169 DOI: 10.3390/polym10020117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/28/2022] Open
Abstract
Chitosan powder irradiated by electron beam at different doses, up to 250 kGy, was used to prepare membranes for drug release applications. The irradiation effect on the molecular weight of powder chitosan, the characteristics of the prepared membranes, and their transport of sulfamerazine sodium salt (SULF) were investigated. The effect of the addition of glutaraldehyde (GLA) as a crosslinking agent in the chitosan solution used for the preparation of the membranes was also studied. A decrease in the chitosan molecular weight with the increase in the irradiation dose was observed, while the membranes prepared with the irradiated chitosan at higher dose exhibited lower swelling. However, an opposite behavior was detected when the membranes were prepared with GLA-crosslinked chitosan. A GLA crosslinking agent reduced the crystallinity of the chitosan membranes and the swelling, whereas the water contact angle and SULF transport increased with the increase in the irradiation dose.
Collapse
Affiliation(s)
- Alia Baroudi
- Department of Applied Physics I, Faculty of Physics, University Complutense of Madrid, Avda. Complutense, s/n, 28040 Madrid, Spain.
| | - Carmen García-Payo
- Department of Applied Physics I, Faculty of Physics, University Complutense of Madrid, Avda. Complutense, s/n, 28040 Madrid, Spain.
| | - Mohamed Khayet
- Department of Applied Physics I, Faculty of Physics, University Complutense of Madrid, Avda. Complutense, s/n, 28040 Madrid, Spain.
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com n° 2, Alcalá de Henares, 28805 Madrid, Spain.
| |
Collapse
|
43
|
Benbettaïeb N, Karbowiak T, Debeaufort F. Bioactive edible films for food applications:Influence of the bioactive compounds on film structure and properties. Crit Rev Food Sci Nutr 2017; 59:1137-1153. [DOI: 10.1080/10408398.2017.1393384] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nasreddine Benbettaïeb
- IUT Dijon-Auxerre, Dpt Bio Engineering, BP 17867, F-21078, Dijon, France
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A02.102. F-21000 Dijon, France
| | - Thomas Karbowiak
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A02.102. F-21000 Dijon, France
| | - Frédéric Debeaufort
- IUT Dijon-Auxerre, Dpt Bio Engineering, BP 17867, F-21078, Dijon, France
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A02.102. F-21000 Dijon, France
| |
Collapse
|
44
|
Etxabide A, Uranga J, Guerrero P, de la Caba K. Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Abstract
This review discusses the latest advances in the composition of gelatin-based edible films and coatings, including nanoparticle addition, and their properties are reviewed along their potential for application in the food packaging industry. Gelatin is an important biopolymer derived from collagen and is extensively used by various industries because of its technological and functional properties. Nowadays, a very wide range of components are available to be included as additives to improve its properties, as well as its applications and future potential. Antimicrobials, antioxidants and other agents are detailed due to the fact that an increasing awareness among consumers regarding healthy lifestyle has promoted research into novel techniques and additives to prolong the shelf life of food products. Thanks to its ability to improve global food quality, gelatin has been particularly considered in food preservation of meat and fish products, among others.
Collapse
|