1
|
Yang X, Tan Z, Zhao W, Zheng Y, Ling S, Guo X, Dong X. Molecular interactions and gel network modulation in ionic polysaccharide-gelatin hydrogels for improved texture of skipjack tuna products. Food Chem 2025; 482:144002. [PMID: 40184742 DOI: 10.1016/j.foodchem.2025.144002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/09/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
The present study investigates the enhancement of skipjack tuna (Katsuwonus pelamis) texture by incorporating ionic polysaccharide-bovine bone gelatin (BBG) hydrogels. Three ionic polysaccharides, namely carboxymethyl chitosan (CMCS), konjac glucomannan (KGM), and oat β-glucan (OBG), were utilized in BBG-based hydrogels. And their effects on the rheological, structural, and protein properties of the composite gels were explored. Results showed that charge density influenced pore size, wall thickness, and cross-linking density in hydrogels. Structural analyses revealed that all polysaccharides promoted ordered rearrangements in protein secondary structure, increasing surface hydrophobicity and β-sheet content, with OBG having the pronounced effect by mediating gelation through enhanced hydrophobic interactions and hydrogen bonding. The incorporation of BBG + OBG-20 % hydrogels significantly enhanced water-holding capacity, and texture while reducing oral processing energy (p < 0.05). These findings provide insights for improving the texture of skipjack tuna products and demonstrate the potential application of polysaccharide-BBG hydrogels in enhancing the quality of fish products.
Collapse
Affiliation(s)
- Xiaoqing Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Weiping Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yunfang Zheng
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siqi Ling
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiaoming Guo
- Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Wu K, Zeng Y, Wu W, Sun W, Yan X, Liu Y, Qian H, Gunarathne A, Chen K, Qiao D, Jiang F. Enhancing physical properties of konjac glucomannan/ethyl cellulose/zein blend films by optimizing molecular assembly with varying drying temperatures. Int J Biol Macromol 2025; 307:142083. [PMID: 40086545 DOI: 10.1016/j.ijbiomac.2025.142083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
Appropriate selection of the drying temperature is of great importance to achieve desirable film preparation. The present study investigated the impact of drying temperature (40-80 °C) on the physical properties and molecular assembly process of konjac glucomannan/ethyl cellulose/zein blend films through the casting method. Microstructural observations indicated that the drying temperature impacted the particle aggregation in the films, and at the drying temperature of 60 °C, a most even component distribution was suggested with the strongest hydrogen bond interaction according to the FTIR and micro-FTIR analysis. Moreover, at this drying temperature, the blend film reached optimum performance for most physical properties including mechanical properties, surface hydrophobicity, moisture barrier, and water resistance properties. To explain this phenomenon, the molecular assembly process during the KGM/EC/zein film formation was proposed. This contributed to a deepened understanding of the molecular assembly process of complex macromolecules under different drying conditions.
Collapse
Affiliation(s)
- Kao Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Yang Zeng
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Wanting Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Wen Sun
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xu Yan
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yi Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Hong Qian
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Anil Gunarathne
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Kai Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Fatang Jiang
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Architecture and Built Environment, Faculty of Engineering, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
3
|
Li J, Zhao Y, Zhang Y, Nardin C. Core-shell gelatin-chitosan nanoparticles with lysozyme responsiveness formed via pH-drive and transglutaminase cross-linking. Int J Biol Macromol 2025; 292:138802. [PMID: 39689799 DOI: 10.1016/j.ijbiomac.2024.138802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/16/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Lysozyme-responsive nanoparticles were fabricated using a hydrophilic protein (gelatin type A) as the core and a hydrophobic polysaccharide (chitosan) as the shell. In this study, curcumin was used as a model molecule for encapsulation and promoted the aggregation of gelatin nanoparticles. Transglutaminase catalyzed both intra-molecular cross-linking within gelatin and inter-molecular cross-linking between gelatin and chitosan. The formation mechanism of gelatin nanoparticles was investigated by molecular docking simulations, circular dichroism spectroscopy, UV-vis spectroscopy, turbidity analysis, and dynamic light scattering. Results indicated that pH-driven processes can induce molecular conformational changes of gelatin. However, these alone are insufficient to induce nanoparticle formation. Hydrogen bonding, Pi-alkyl interactions, Pi-Pi interactions, and van der Waals forces between gelatin and curcumin are crucial for the core formation. The coating mechanism of chitosan involved covalent bonds catalyzed by transglutaminase and electrostatic interactions, verified by dynamic light scattering and Fourier transform infrared spectroscopy. Physicochemical properties characterization revealed that the core-shell nanoparticles exhibited a maximum encapsulation efficiency of 97.2 ± 0.3 % and an average particle size of 120 ± 21 nm. The core-shell nanoparticles exhibited high thermal and pH stability, with curcumin retention rates exceeding 80 % under acidic, neutral, and weakly alkaline conditions, and detained thermal degradation up to 90 °C. Additionally, lysozyme responsiveness was evaluated by controlled curcumin release with varying lysozyme concentrations, through which enzymatic hydrolysis of chitosan by lysozyme triggered an increased release rate. In summary, core-shell nanoparticles synthesized from gelatin and chitosan may be effective target delivery systems for curcumin.
Collapse
Affiliation(s)
- Jilong Li
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64000, France
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Corinne Nardin
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64000, France.
| |
Collapse
|
4
|
Wang Y, Wu C, Yang W, Gong Y, Zhang X, Li J, Wu D. Dual cross-linking with tannic acid and transglutaminase improves microcapsule stability and encapsulates lemon essential oil for food preservation. Food Chem 2025; 465:142173. [PMID: 39581080 DOI: 10.1016/j.foodchem.2024.142173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The microencapsulation of essential oils by complex coacervation technology has attracted considerable attention. This paper deals with the preparation of gelatin-chitosan microcapsules through dual cross-linking using transglutaminase (TGase) and tannic acid (TA). Lemon essential oil (LEO) was successfully encapsulated with 82.5 % encapsulation efficiency. Compared to single cross-linking microcapsules (TG), dual cross-linking microcapsules (TG-TA) exhibit superior thermal stability and swell stability. In vitro release studies demonstrated that TG-TA exhibited better controlled-release behavior with a longer duration of action. Meanwhile, the lipid oxidation of TG-TA was 1.45 mg MDA/kg that of control group was 2.23 mg MDA/kg which showed their excellent antioxidant effects. Moreover TG-TA have higher antibacterial rate, more inhibition zone diameters and better effect for preventing the growth of total viable count than TG and LEO. This study has theoretical implications for the use of TG-TA ideal carriers for protecting various active substances, thus facilitating their applications in food preservation.
Collapse
Affiliation(s)
- Yansong Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Chao Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Wei Yang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yuxi Gong
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.
| |
Collapse
|
5
|
Kolour AK, Shahrousvand M, Mohammadi-Rovshandeh J, Puppi D, Farzaneh D. Absorbable and biodegradable enzyme-crosslinked gelatin/alginate semi-IPN hydrogel wound dressings containing curcumin. Int J Biol Macromol 2024; 279:134938. [PMID: 39187095 DOI: 10.1016/j.ijbiomac.2024.134938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Effective wound management presents a substantial financial and time-related obstacle for healthcare institutions. Enhancing healthcare involves implementing innovative wound treatment methods to minimize healing time and expenses. This study is centered on the development of a non-toxic wound dressing using only two natural polymers and an enzyme. By adding 10 % wt microbial transglutaminase, the mechanical properties of the dressing were improved. This formulation increased the swelling rate by 70 %, deswelling rate by 15 %, conversion rate by 9 %, and networking rate by 20 %. Additionally, the non-toxic dressing showed a cell viability rate of 106 %. In drug delivery tests, explosive release behavior was observed, which is advantageous for open wounds. Cell staining experiments were also carried out to evaluate wound behavior in terms of collagen formation, granulation, and inflammation. The results suggest that the optimized hydrogel has great potential as a wound dressing. Its excellent absorption, antioxidant, and biocompatibility characteristics enhance tissue granulation rate and reduce wound treatment time by half compared to conventional methods, while also minimizing scarring risk. This innovative treatment, which eliminates the need for frequent changes, is beneficial for both secondary intentions and severe open wounds requiring bottom-up healing.
Collapse
Affiliation(s)
- Alireza Kheradvar Kolour
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran.
| | - Jamshid Mohammadi-Rovshandeh
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran.
| | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
| | - Dorsa Farzaneh
- Biomaterials Engineering Department, Faculty of Medical Sciences and Technology, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Wang H, Wang M, Wu J, Zhu S, Ye Y, Liu Y, Li K, Li R, Zhang Y, Wei M, Yang X, Meng L. Nature-Inspired Gelatin-Based Adhesive Hydrogel: A Rapid and User-Friendly Solution for Hemostatic Applications. Adv Healthc Mater 2024; 13:e2304444. [PMID: 38538084 DOI: 10.1002/adhm.202304444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/18/2024] [Indexed: 07/27/2024]
Abstract
Conventional hemostatic agents face challenges in achieving rapid hemostasis and effective tissue repair due to limited hemostatic scenarios, suboptimal efficacy, and inadequate adhesion to wet tissues. Drawing inspiration from nature-sourced materials, a gelatin-based adhesive hydrogel (AOT) is designed, easily prepared and quick to form, driven by Schiff base and multiple hydrogen bonds for applications in arterial and liver bleeding models. AOT exhibits exceptional adhesion to wet tissues (48.67 ± 0.16 kPa) and displays superior hemostatic properties with reduced blood loss and hemostatic time compared to other hydrogels and conventional hemostatic materials. Moreover, AOT exhibits good biocompatibility and biodegradability. In summary, this easily prepared adhesive hydrogel has the potential to supplant traditional hemostatic agents, offering a novel approach to achieve swift sealing of hemostasis and facilitate wound healing and repair in broader application scenarios, owing to its unique advantages.
Collapse
Affiliation(s)
- Haihua Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
| | - Mengxi Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
| | - Jingheng Wu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Shilei Zhu
- College of Physics, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanan Ye
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024, China
| | - Yushan Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Ruyue Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yuhang Zhang
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Meng Wei
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
| | - Xin Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
| | - Leixin Meng
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
| |
Collapse
|
7
|
El Moujahed S, Errachidi F, Morosanu AM, Abou Oualid H, Avramescu SM, Dragoi Cudalbeanu M, Ouazzani Chahdi F, Kandri Rodi Y, Dinica RM. Sustainable Collagen Film Preparation with Tannins Extracted from Moroccan Pomegranate Byproduct Varieties: Thermal, Structural, and Nanoscaled Studies. ACS OMEGA 2024; 9:27428-27437. [PMID: 38947794 PMCID: PMC11209680 DOI: 10.1021/acsomega.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
Recently, obtaining collagen films using a cross-linking technique has been a successful strategy. The current investigation used six cross-linker extracts (CE) from six different pomegranate varieties' byproducts to make and characterize collagen-tannin films using acid-soluble collagen (SC). The polymeric film has a yellow hue after CE incorporation. Fourier transform infrared spectroscopy assessed the impact of CE and its successful interaction within the matrix. The shifts verify different interactions between extracts and collagen functional groups, where they likely form new hydrogen bonds, retaining their helix structure without damaging the matrix. Scanning electron microscopy was used to analyze the morphology and fiber size. The average diameter of the fibers was found to be about 3.64 μm. Thermal behaviors (denaturation and degradation) were investigated by thermogravimetric analysis. The weight losses of cross-linked films increased by around 20% compared to non-cross-linked ones. This phenomenon was explained by the absence of telopeptide sections in the collagen helical structure, typically reinforced by lysine and hydroxylysine covalent linkages. Nanoscaled observations were also accomplished using transmission electron microscopy (TEM) on SC and SC-CE. The TEM analysis confirmed the CE polymerization degree effect on the cross-linking density via the overlap sequences, ranging up to 32.38 ± 2.37 nm on the fibril. The prepared biodegradable collagen-tannin film showed higher cross-linking density, which is expected to improve the biomaterial applications of collagen films while exploiting the underrated pomegranate byproducts.
Collapse
Affiliation(s)
- Sara El Moujahed
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Faouzi Errachidi
- Laboratory
of Functional Ecology and Engineering Environment, Faculty of Sciences
and Technologies, Sidi Mohamed Ben Abdellah
University, Fez 30050, Morocco
| | - Ana-Maria Morosanu
- Institute
of Biology Bucharest, Romanian Academy, Bucharest 060031, Romania
| | | | - Sorin Marius Avramescu
- Department
of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest 050663, Romania
| | - Mihaela Dragoi Cudalbeanu
- Faculty of
Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest 011464, Romania
| | - Fouad Ouazzani Chahdi
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Youssef Kandri Rodi
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Rodica-Mihaela Dinica
- Laboratory
of Organic Chemistry, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, Galati 800008, Romania
| |
Collapse
|
8
|
Al-Hassan A. Development and characterization of camel gelatin films: Influence of camel bone age and glycerol or sorbitol on film properties. Heliyon 2024; 10:e30338. [PMID: 38720712 PMCID: PMC11076969 DOI: 10.1016/j.heliyon.2024.e30338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
This study developed and evaluated camel bone gelatin films (CBGFs) with glycerol or sorbitol as plasticizers. Gelatin extracted from the bones of camels (Camelus dromedarius) at ages ranging from 2.5 to 7 years was used. A comprehensive analysis was conducted, evaluating a range of properties including thickness, moisture sorption capacity, water vapor permeability (WVP), infrared spectral characteristics, light absorption behavior, solubility, as well as mechanical and thermal attributes. This thorough examination allowed for a nuanced understanding of the diverse characteristics exhibited by the camel gelatin samples across different age groups. The results indicated that camel age, glycerol, and sorbitol had a significant impact on the properties of the film (P < 0.05). Tensile strength ranged from 0.32 MPa to 3.99 MPa, while the percentage of elongation at break varied from 89.42 % to 2.68 %. Film color (lightness, L) ranged from 21.39 to 41.33. Glycerol and sorbitol plasticized films were 100 % water soluble. Moisture sorption increased with temperature (25 °C, 35 °C, and 45 °C), with sorbitol films retaining less water. WVP was low in films from old camel bones and high in glycerol-plasticized CBGF-2.5Y and CBGF-4.5Y. Thermal analysis showed a melting temperature between 158.60 °C and 174.10 °C, depending on bone age and plasticizer. These films demonstrate promise for use in food packaging, coatings, and pharmaceutical applications.
Collapse
Affiliation(s)
- A.A. Al-Hassan
- Department of Food Science and Human Nutrition, College of Agriculture & Food, Qassim University, 51452, Burydah, Saudi Arabia
| |
Collapse
|
9
|
Li M, Li J, Liu K, Zhang H. Artificial structural proteins: Synthesis, assembly and material applications. Bioorg Chem 2024; 144:107162. [PMID: 38308999 DOI: 10.1016/j.bioorg.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Structural proteins have evolved over billions of years and offer outstanding mechanical properties, such as resilience, toughness and stiffness. Advances in modular protein engineering, polypeptide modification, and synthetic biology have led to the development of novel biomimetic structural proteins to perform in biomedical and military fields. However, the development of customized structural proteins and assemblies with superior performance remains a major challenge, due to the inherent limitations of biosynthesis, difficulty in mimicking the complexed macroscale assembly, etc. This review summarizes the approaches for the design and production of biomimetic structural proteins, and their chemical modifications for multiscale assembly. Furthermore, we discuss the function tailoring and current applications of biomimetic structural protein assemblies. A perspective of future research is to reveal how the mechanical properties are encoded in the sequences and conformations. This review, therefore, provides an important reference for the development of structural proteins-mimetics from replication of nature to even outperforming nature.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Li Y, Zhang H, Zhao Y, Lv H, Liu K. Encapsulation and Characterization of Proanthocyanidin Microcapsules by Sodium Alginate and Carboxymethyl Cellulose. Foods 2024; 13:740. [PMID: 38472853 DOI: 10.3390/foods13050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Proanthocyanidins are important compounds known for their antioxidant and radical scavenging properties, but they are highly sensitive to light, heat, oxygen, and pH. In our study, proanthocyanidin was encapsulated using sodium alginate and carboxymethyl cellulose to enhance controlled release, pH stability, metal ion tolerance, temperature resistance, time release, the microencapsulation of food additives stability, antioxidant capacity analysis, and the storage period tolerance of proanthocyanidin. Fourier transforms infrared (FTIR) analysis and full-wavelength UV scanning indicated the successful immobilization of proanthocyanidins into the polymeric microcapsules. The flowability and mechanical properties of the microcapsules were enhanced. Moreover, proanthocyanidin microcapsules exhibited higher thermal, pH, metal ion, time, and microencapsulation food additive stability. In addition, due to their high antioxidant properties, the proanthocyanidin microcapsules retained a greater amount of proanthocyanidin content during the gastric phase, and the proanthocyanidin was subsequently released in the intestinal phase for absorption. Thus, the study provided a systematic understanding of the antioxidant capabilities and stability of proanthocyanidin microcapsules, which is beneficial for developing preservation methods for food additives.
Collapse
Affiliation(s)
- Yanfei Li
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Huan Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yan Zhao
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Haoxin Lv
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
11
|
Xiang F, Liu Z, Hu H, Mitra P, Ma X, Zhu J, Shi A, Wang Q. Advances of blend films based on natural food soft matter: Multi-scale structural analysis. Int J Biol Macromol 2024; 258:128770. [PMID: 38104689 DOI: 10.1016/j.ijbiomac.2023.128770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The blend films made of food soft matter are of growing interest to the food packaging industries as a pro-environment packaging option. The blend films have become a novel pattern to replace traditional plastics gradually due to their characteristics of biodegradability, sustainability, and environmental friendliness. This review discussed the whole process of the manufacturing of food soft matter blend films from the raw material to the application due to multi-scale structural analysis. There are 3 stages and 12 critical analysis points of the entire process. The raw material, molecular self-assembly, film-forming mechanism and performance test of blend films are investigated. In addition, 11 kinds of blend films with different functional properties by casting are also preliminarily described. The industrialization progress of blend films can be extended or facilitated by analysis of the 12 critical analysis points and classification of the food soft matter blend films which has a great potential in protecting environment by developing sustainable packaging solutions.
Collapse
Affiliation(s)
- Fei Xiang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Pranabendu Mitra
- Department of Kinesiology, Health, Food, and Nutritional Sciences, University of Wisconsin-Stout, Menomonie, WI 54751, USA
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinjin Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
12
|
Ahmad MI, Li Y, Pan J, Liu F, Dai H, Fu Y, Huang T, Farooq S, Zhang H. Collagen and gelatin: Structure, properties, and applications in food industry. Int J Biol Macromol 2024; 254:128037. [PMID: 37963506 DOI: 10.1016/j.ijbiomac.2023.128037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
Food-producing animals have the highest concentration of collagen in their extracellular matrix. Collagen and gelatin are widely used in food industry due to their specific structural, physicochemical, and biochemical properties, which enable them to improve health and nutritional value as well as to increase the stability, consistency, and elasticity of food products. This paper reviews the structural and functional properties including inherent self-assembly, gel forming, water-retaining, emulsifying, foaming, and thickening properties of collagen and gelatin. Then the colloid structures formed by collagen such as emulsions, films or coatings, and fibers are summarized. Finally, the potential applications of collagen and gelatin in muscle foods, dairy products, confectionary and dessert, and beverage products are also reviewed. The objective of this review is to provide the current market value, progress as well as applications of collagen and its derivatives in food industry.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Jinfeng Pan
- National Engineering Research Centre for Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Centre for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, Jiangnan University, School of Food Science and Technology, International Joint Laboratory on Food Safety, Wuxi 214122, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Zhang W, Hedayati S, Tarahi M, Can Karaca A, Hadidi M, Assadpour E, Jafari SM. Advances in transglutaminase cross-linked protein-based food packaging films; a review. Int J Biol Macromol 2023; 253:127399. [PMID: 37827415 DOI: 10.1016/j.ijbiomac.2023.127399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Pushed by the environmental pollution and health hazards of plastic packaging, the development of biodegradable food packaging films (FPFs) is a necessary and sustainable trend for social development. Most protein molecules have excellent film-forming properties as natural polymer matrices, and the assembled films have excellent barrier properties, but show defects such as low water resistance and poor mechanical properties. In order to improve the performance of protein-based films, transglutaminase (TG) is used as a safe and green cross-linking (CL) agent. This work covers recent developments on TG cross-linked protein-based FPFs, mainly comprising proteins of animal and plant origin, including gelatin, whey protein, zein, soy proteins, bitter vetch protein, etc. The chemical properties and reaction mechanism of TG are briefly introduced, focusing on the effects of TG CL on the physicochemical properties of different protein-based FPFs, including barrier properties, water resistance, mechanical properties and thermal stability. It is concluded that the addition of TG can significantly improve the physical and mechanical properties of protein-based films, mainly improving their water resistance, barrier, mechanical and thermal properties. It is worth noting that the effect of TG on the properties of protein-based films is not only related to the concentration of TG added, but also related to CL temperature and other factors. Moreover, TG can also be used in combination with other strategies to improve the properties of protein-based films.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Milad Hadidi
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
14
|
Chen J, Liu Z, Ma S, Chen X, Li L, Liu W, Ren G, Duan X, Cao W, Xu Y, Xie Q. Effects of Transglutaminase Concentration and Drying Method on Encapsulation of Lactobacillus plantarum in Gelatin-Based Hydrogel. Molecules 2023; 28:8070. [PMID: 38138559 PMCID: PMC10745822 DOI: 10.3390/molecules28248070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Lactobacillus plantarum is a kind of probiotic that benefits the host by regulating the gut microbiota, but it is easily damaged when passing through the gastrointestinal tract, hindering its ability to reach the destination and reducing its utilization value. Encapsulation is a promising strategy for solving this problem. In this study, transglutaminase (TGase)-crosslinked gelatin (GE)/sodium hexametaphosphate (SHMP) hydrogels were used to encapsulate L. plantarum. The effects of TGase concentration and drying method on the physiochemical properties of the hydrogels were determined. The results showed that at a TGase concentration of 9 U/gGE, the hardness, chewiness, energy storage modulus, and apparent viscosity of the hydrogel encapsulation system were maximized. This concentration produced more high-energy isopeptide bonds, strengthening the interactions between molecules, forming a more stable three-dimensional network structure. The survival rate under the simulated gastrointestinal conditions and storage stability of L. plantarum were improved at this concentration. The thermal stability of the encapsulation system dried via microwave vacuum freeze drying (MFD) was slightly higher than that when dried via freeze drying (FD). The gel structure was more stable, and the activity of L. plantarum decreased more slowly during the storage period when dried using MFD. This research provides a theoretical basis for the development of encapsulation technology of probiotics.
Collapse
Affiliation(s)
- Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (L.L.); (W.L.); (G.R.); (X.D.); (W.C.)
| | - Zhiqin Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (L.L.); (W.L.); (G.R.); (X.D.); (W.C.)
| | - Shuhua Ma
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (L.L.); (W.L.); (G.R.); (X.D.); (W.C.)
| | - Xin Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (L.L.); (W.L.); (G.R.); (X.D.); (W.C.)
| | - Linlin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (L.L.); (W.L.); (G.R.); (X.D.); (W.C.)
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (L.L.); (W.L.); (G.R.); (X.D.); (W.C.)
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (L.L.); (W.L.); (G.R.); (X.D.); (W.C.)
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (L.L.); (W.L.); (G.R.); (X.D.); (W.C.)
| | - Weiwei Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (L.L.); (W.L.); (G.R.); (X.D.); (W.C.)
| | - Yunfeng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (L.L.); (W.L.); (G.R.); (X.D.); (W.C.)
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China
| |
Collapse
|
15
|
Kian-Pour N. Effect of Biopolymer Dip-Coating Pretreatments as a Non-Thermal Green Technology on Physicochemical Characteristics, Drying, and Rehydration Kinetics of Santa Maria Pears. Foods 2023; 12:2466. [PMID: 37444204 DOI: 10.3390/foods12132466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This research was conducted to determine the influences of biopolymer dip-coating pretreatments as a non-thermal green technology on the drying behavior, retention of bioactive compounds, and quality properties of pears. The fresh pears were washed, peeled, and diced into cubes of 5 × 5 mm with a 2 mm thickness and were dipped into 0.3% (w/v) solutions of sodium alginate (SA), pectin (PC), xanthan gum (XG), Arabic gum (AG), and gelatin (GE) before hot air drying (70 °C, 2.0 m/s). The weight loss of samples during drying was recorded online, and the moisture ratio (MR) and drying rate were plotted against drying time. Biopolymers significantly decreased the drying time (maximum 33.33% by SA) compared with uncoated samples except for XG. Moisture diffusion coefficients were determined according to Fick's second law of diffusion by plotting LnMR against drying time, and a linear regression analysis was applied to the data for the determination of moisture diffusion coefficients which ranged from 2.332 to 3.256 × 10-9 m2/s. The molecular transport of momentum, heat, and mass were determined from Newton's law of viscosity, Fourier's law, and Fick's law, respectively. The results indicated that the friction drag force, convective heat, and mass transfer coefficients were 6.104 × 10-6 N, 76.55 W/m2·K, and 0.0636 m/s, respectively. Mathematical modeling showed the suitability of the Midilli and Kucuk and the Peleg models for the prediction of drying and rehydration processes, respectively. Thermal conductivity, specific heat, and density of coated samples ranged from 0.559-0.579 (W/m·K), 3735-3859 (J/kg·K), and 850.90-883.26 (Kg/m3), respectively. The porosity was reduced due to the penetration of biopolymers into the cellular matrix of samples. The highest total polyphenol content and antioxidant activity belonged to the AG samples. The biopolymers covering the surface of samples produced a protection layer against the loss of bioactive compounds. Biopolymers can be successfully used as a non-thermal green process for improving the drying and quality characteristics of pears at the industrial level.
Collapse
Affiliation(s)
- Nasim Kian-Pour
- Gastronomy and Culinary Arts Department, Faculty of Fine Arts, Istanbul Aydin University, 34295 Istanbul, Turkey
| |
Collapse
|
16
|
Wang Y, Jiang S, Chen Y, Qiu D, Weng Y. Synthesis and Characterization of a Novel Composite Edible Film Based on Hydroxypropyl Methyl Cellulose Grafted with Gelatin. Gels 2023; 9:gels9040332. [PMID: 37102944 PMCID: PMC10137909 DOI: 10.3390/gels9040332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
A novel composite edible film was synthesized by grafting gelatin chain onto hydroxypropyl methyl cellulose (HPMC) in the presence of glycerol (used as a plasticizer) using a solution polymerization technique. The reaction was carried out in homogeneous aqueous medium. Thermal properties, chemical structure, crystallinity, surface morphology, and mechanical and hydrophilic performance changes of HPMC caused by the addition of gelatin were investigated by differential scanning calorimetry, thermogravimetric, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, universal testing machine and water contact angle. The results shows that HPMC and gelatin are miscible and the hydrophobic property of the blending film can be enhanced with the introduction of the gelatin. Moreover, the HPMC/gelatin blend films are flexible, and exhibit excellent compatibility, good mechanical properties and also thermal stability, and could be promising candidates for food packaging materials.
Collapse
Affiliation(s)
- Yajuan Wang
- School of Material and Chemical, Ningbo University of Technology, Ningbo 315211, China
- Zhejiang Institute of Tianjin University, Ningbo 315201, China
| | - Shuting Jiang
- School of Material and Chemical, Ningbo University of Technology, Ningbo 315211, China
| | - Yue Chen
- School of Material and Chemical, Ningbo University of Technology, Ningbo 315211, China
| | - Dan Qiu
- School of Material and Chemical, Ningbo University of Technology, Ningbo 315211, China
- Zhejiang Institute of Tianjin University, Ningbo 315201, China
| | - Yunxuan Weng
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
17
|
Graça A, Rufino I, Martins AM, Raposo S, Ribeiro HM, Marto J. Prevention of skin lesions caused by the use of protective face masks by an innovative gelatin-based hydrogel patch: design and in vitro studies. Int J Pharm 2023; 638:122941. [PMID: 37044229 PMCID: PMC10084707 DOI: 10.1016/j.ijpharm.2023.122941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
The recent Covid-19 pandemics led to the increased use of facial masks, which can cause skin lesions due to continuous pressure, tension and friction forces on the skin. A preventive approach is the inclusion of dressings between the face and the mask. However, there are still uncertainties about the protective effect of dressings and whether their use compromises the efficiency of masks. The current study aimed to develop and test the efficacy of a gelatin-based hydrogel patch to be placed between the mask and the facial area. Design of Experiment with a Quality by Design approach tools were used in the patch development and in vitro characterization was performed through rheological evaluation, ATR-FTIR and molecular docking studies. Furthermore, tribology studies were performed to test the patch performance. The results showed that the addition of excipients enhanced gelation temperature, elasticity and adhesiveness parameters. The interactions between excipients were confirmed by ATR-FTIR and molecular docking. The tribology assay revealed similar friction values at room and physiological temperature, and when testing different skin types. In conclusion, the physical properties and the performance evaluation reported in this study indicate that this innovative film-forming system can be used to prevent skin lesions caused by the continuous use of protective masks.
Collapse
Affiliation(s)
- Angélica Graça
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ismael Rufino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Martins
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Raposo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Helena M Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
18
|
Yu N, Luo Z, Ma F, Li J, Yang P, Li G, Li J. Cationic Gelatin Cross-Linked with Transglutaminase and Its Electrospinning in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3668-3677. [PMID: 36854143 DOI: 10.1021/acs.langmuir.2c03152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Gelatin (GE) is a renewable biopolymer with abundant active groups that are beneficial for manufacturing functional biomaterials via GE modification. An antibacterial fibrous GE film was prepared by electrospinning the modified GE in an aqueous solution. The original GE was modified by reacting it with N,N-dimethyl epoxypropyl octadecyl ammonium chloride (QAS), and then it was cross-linked with transglutaminase (TGase). FTIR analysis illustrated that QAS was grafted onto GE through the epoxy ring-opening reaction, and the modification did not influence the main GE skeleton structure. The investigation of the solution properties showed that the grafted cationic QAS group was the main factor that decreased the surface tension of the solution, increased the electrical conductivity of the solution, and endowed GE with antibacterial activity. TGase cross-linking clearly influenced the rheological properties such that the flow pattern of the spinning solution varied from Newton-type to shear thinning, and the aqueous solution of GE-QAS-TGs transformed from liquid-like to solid-like and even induced gelatinization with increasing TGase content. A satisfactory fibrous morphology of 200-500 nm diameter was obtained using a homemade instrument under the optimized electrospinning conditions of a temperature of 35 °C, a distance between electrodes of 12 cm, and a voltage of 15 kV. The study of film properties showed that the antibacterial activity of the fibrous GE film depended only on the grafted quaternary ammonium, whereas the thermostability, wettability, and permeability were greatly influenced by both the TGase cross-linking and film-forming methods. Cytotoxicity was tested using the CCK-8 and live/dead kit staining methods in vitro, which showed that the modified GE had good biocompatibility.
Collapse
Affiliation(s)
- Ning Yu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shan Dong Academy of Sciences), Jinan 250353, China
| | - Zhenhui Luo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shan Dong Academy of Sciences), Jinan 250353, China
| | - Feng Ma
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shan Dong Academy of Sciences), Jinan 250353, China
| | - Junying Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shan Dong Academy of Sciences), Jinan 250353, China
| | - Pengfei Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shan Dong Academy of Sciences), Jinan 250353, China
| | - Guixin Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shan Dong Academy of Sciences), Jinan 250353, China
| | - Jiawei Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shan Dong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
19
|
Incorporation of κ-carrageenan improves the practical features of agar/konjac glucomannan/κ-carrageenan ternary system. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Wang H, Cheng Y, Zhu J, Ouyang Z, Tang M, Ma L, Zhang Y. High temperature induced stable gelatin-gardenia blue system with hyperchromic effect and its food application in 2D writing/printing and 3D printing. Food Chem 2023; 401:134119. [DOI: 10.1016/j.foodchem.2022.134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
|
21
|
Züger F, Berner N, Gullo MR. Towards a Novel Cost-Effective and Versatile Bioink for 3D-Bioprinting in Tissue Engineering. Biomimetics (Basel) 2023; 8:biomimetics8010027. [PMID: 36648813 PMCID: PMC9844313 DOI: 10.3390/biomimetics8010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
3D-bioprinting for tissue regeneration relies on, among other things, hydrogels with favorable rheological properties. These include shear thinning for cell-friendly extrusion, post-printing structural stability as well as physiologically relevant elastic moduli needed for optimal cell attachment, proliferation, differentiation and tissue maturation. This work introduces a cost-efficient gelatin-methylcellulose based hydrogel whose rheological properties can be independently optimized for optimal printability and tissue engineering. Hydrogel viscosities were designed to present three different temperature regimes: low viscosity for eased cell suspension and printing with minimal shear stress, form fidelity directly after printing and long term structural stability during incubation. Enzymatically crosslinked hydrogel scaffolds with stiffnesses ranging from 5 to 50 kPa were produced, enabling the hydrogel to biomimic cell environments for different types of tissues. The bioink showed high intrinsic cytocompatibility and tissues fabricated by embedding and bioprinting NIH 3T3 fibroblasts showed satisfactory viability. This novel hydrogel uses robust and inexpensive technology, which can be adjusted for implementation in tissue regeneration, e.g., in myocardial or neural tissue engineering.
Collapse
Affiliation(s)
- Fabian Züger
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, CH-4312 Muttenz, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Natascha Berner
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, CH-4312 Muttenz, Switzerland
| | - Maurizio R. Gullo
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, CH-4312 Muttenz, Switzerland
- Correspondence: ; Tel.: +41-61-228-53-31
| |
Collapse
|
22
|
Shu M, Fan L, Zhang J, Li J. Research progress of water-in-oil emulsion gelated with internal aqueous phase: gel factors, gel mechanism, application fields, and future direction of development. Crit Rev Food Sci Nutr 2023; 64:6055-6072. [PMID: 36591896 DOI: 10.1080/10408398.2022.2161994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The W/O emulsion is a promising system. Its special structure can keep the sensory properties of fat while reducing the fat content. Improving the stability and physical properties of W/O emulsions is generally oriented toward outer oil-phase modified oil gels and inner water-phase modified inner hydrogels. In this paper, the research progress of internal aqueous gel was reviewed, and some gel factors suitable for internal aqueous gel and the gel mechanism of main gel factors were discussed. The advantages of this internal aqueous gel emulsion system allow its use in the field of fat substitutes and encapsulating substances. Finally, some shortcomings and possible research directions in the future were proposed, which would provide a theoretical basis for the further development of internal water-phase gelled W/O emulsion in the future.
Collapse
Affiliation(s)
- Mingjun Shu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Jinan, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
23
|
Qiao D, Shi W, Luo M, Hu W, Huang Y, Jiang F, Xie F, Zhang B. Increasing xanthan gum content could enhance the performance of agar/konjac glucomannan-based system. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Dai H, Peng L, Wang H, Feng X, Ma L, Chen H, Yu Y, Zhu H, Zhang Y. Improved properties of gelatin films involving transglutaminase cross-linking and ethanol dehydration: The self-assembly role of chitosan and montmorillonite. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Zein inclusion changes the rheological, hydrophobic and mechanical properties of agar/konjac glucomannan based system. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Brooks AK, Wulff HE, Broitman JM, Zhang N, Yadavalli VK. Stretchable and Electroactive Crosslinked Gelatin for Biodevice and Cell Culture Applications. ACS APPLIED BIO MATERIALS 2022; 5:4922-4931. [PMID: 36179055 DOI: 10.1021/acsabm.2c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomimetic substrates that incorporate functionality such as electroactivity and mechanical flexibility, find utility in a variety of biomedical applications. Toward these uses, nature-derived materials such as gelatin offer inherent biocompatibility and sustainable sourcing. However, issues such as high swelling, poor mechanical properties, and lack of stability at biological temperatures limit their use. The enzymatic crosslinking of gelatin via microbial transglutaminase (mTG) yields flexible and robust large area substrates that are stable under physiological conditions. Here, we demonstrate the fabrication and characterization of strong, stretchable, conductive mTG crosslinked gelatin thin films. Incorporation of the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate in the gel matrix with a bioinspired polydopamine surface coating is used to enable conductivity with enhanced mechanical properties such as extensibility and flexibility, in comparison to plain gelatin or crosslinked gelatin films. The electroconductive substrates are conducive to cell growth, supporting myoblast cell adhesion, viability, and proliferation and could find use in creating active cell culture systems incorporating electrical stimulation. The substrates are responsive to motion such as stretching and bending while being extremely handleable and elastic, making them useful for applications such as electronic skin and flexible bioelectronics. Overall, this work presents facile, yet effective development of bioinspired conductive composites as substrates for bio-integrated devices and functional tissue engineering.
Collapse
Affiliation(s)
- Anne K Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Halle E Wulff
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Jacob M Broitman
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Ning Zhang
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
27
|
Sharifi S, Maleki Dizaj S, Ahmadian E, Karimpour A, Maleki A, Memar MY, Ghavimi MA, Dalir Abdolahinia E, Goh KW. A Biodegradable Flexible Micro/Nano-Structured Porous Hemostatic Dental Sponge. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3436. [PMID: 36234564 PMCID: PMC9565827 DOI: 10.3390/nano12193436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A biodegradable micro/nano-structured porous hemostatic gelatin-based sponge as a dentistry surgery foam was prepared using a freeze-drying method. In vitro function evaluation tests were performed to ensure its hemostatic effect. Biocompatibility tests were also performed to show the compatibility of the sponge on human fetal foreskin fibroblasts (HFFF2) cells and red blood cells (RBCs). Then, 10 patients who required the extraction of two teeth were selected, and after teeth extraction, for dressing, the produced sponge was placed in one of the extracavities while a commercial sponge was placed in the cavity in the other tooth as a control. The total weight of the absorbed blood in each group was compared. The results showed a porous structure with micrometric and nanometric pores, flexibility, a two-week range for degradation, and an ability to absorb blood 35 times its weight in vitro. The prepared sponge showed lower blood clotting times (BCTs) (243.33 ± 2.35 s) and a lower blood clotting index (BCI) (10.67 ± 0.004%) compared to two commercial sponges that displayed its ability for faster coagulation and good hemostatic function. It also had no toxic effects on the HFFF2 cells and RBCs. The clinical assessment showed a better ability of blood absorption for the produced sponge (p-value = 0.0015). The sponge is recommended for use in dental surgeries because of its outstanding abilities.
Collapse
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Alireza Karimpour
- Kimia Pajuhesh Nanofarnam Compony, Tabriz Medical Equipment Technology Incubator Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Abdollah Maleki
- Non-Destructive Testing Lab, Department of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran 15914, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Khang Wen Goh
- Faculty of Data Sciences and Information Technology, INTI International University, Nilai 78100, Malaysia
| |
Collapse
|
28
|
Gallic Acid Crosslinked Gelatin and Casein Based Composite Films for Food Packaging Applications. Polymers (Basel) 2022; 14:polym14194065. [PMID: 36236013 PMCID: PMC9572812 DOI: 10.3390/polym14194065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
In the current work, we fabricated gelatin–casein-based edible films (GC-EFs) crosslinked with gallic acid (GA). We analyzed the physiochemical characteristics, crystallinity, thermal stability, and surface properties of the EFs using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). It was found that the edible films possessed a semi-crystalline structure. Addition of GA enhanced the thermal stability of the edible films as well as the surface properties of the films. It was found that a higher concentration of GA (4–5% w/v) significantly improved the surface properties, observed in the surface and cross-sectional examination of SEM micrographs. EFs containing higher amounts of GA showed more compact and denser structures with smoother and more homogeneous surfaces than the control samples. In addition, swelling degree (SD), thickness, water solubility (WS), moisture content (MC), and water vapor permeability (WVP) were found to be low in EFs containing more GA concentration. Mechanical parameters revealed that the Young modulus (Ym) and tensile strength (TS) increased with a rise in GA concentration, and elongation at break (EB) reduced with a rise in GA concentration. In transparency and color analysis, it was observed that GA positively affected the transparency of the edible films.
Collapse
|
29
|
Ionogels Derived from Fluorinated Ionic Liquids to Enhance Aqueous Drug Solubility for Local Drug Administration. Gels 2022; 8:gels8090594. [PMID: 36135306 PMCID: PMC9498591 DOI: 10.3390/gels8090594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/05/2022] Open
Abstract
Gelatin is a popular biopolymer for biomedical applications due to its harmless impact with a negligible inflammatory response in the host organism. Gelatin interacts with soluble molecules in aqueous media as ionic counterparts such as ionic liquids (ILs) to be used as cosolvents to generate the so-called Ionogels. The perfluorinated IL (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate, has been selected as co-hydrosolvent for fish gelatin due to its low cytotoxicity and hydrophobicity aprotic polar structure to improve the drug aqueous solubility. A series of FIL/water emulsions with different FIL content and their corresponding shark gelatin/FIL Ionogel has been designed to enhance the drug solubility whilst retaining the mechanical structure and their nanostructure was probed by simultaneous SAXS/WAXS, FTIR and Raman spectroscopy, DSC and rheological experiments. Likewise, the FIL assisted the solubility of the antitumoural Doxorubicin whilst retaining the performing mechanical properties of the drug delivery system network for the drug storage as well as the local administration by a syringe. In addition, the different controlled release mechanisms of two different antitumoral such as Doxorubicin and Mithramycin from two different Ionogels formulations were compared to previous gelatin hydrogels which proved the key structure correlation required to attain specific therapeutic dosages.
Collapse
|
30
|
Al-Harrasi A, Bhatia S, Al-Azri MS, Ullah S, Najmi A, Albratty M, Meraya AM, Mohan S, Aldawsari MF. Effect of Drying Temperature on Physical, Chemical, and Antioxidant Properties of Ginger Oil Loaded Gelatin-Sodium Alginate Edible Films. MEMBRANES 2022; 12:862. [PMID: 36135881 PMCID: PMC9500894 DOI: 10.3390/membranes12090862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
The drying temperature is one of the crucial parameters that impacts the physical, chemical, and biological properties of edible films (EFs). This parameter determines the degree of crystallinity, which can further impact the film's mechanical, barrier, and optical properties. The present work is designed to investigate the effect of different drying temperature conditions (25 °C and 45 °C) on ginger essential oil (GEO) loaded Gelatin-sodium alginate composite films over their physical, chemical, and antioxidant properties. Results indicated that drying of films at 25 °C had a positive effect on certain properties of the EFs, such as the moisture content (MC), water solubility (S), swelling degree (SD), water vapor permeability (WVP), and mechanical and optical properties. SEM analysis showed that films dried at 25 °C presented more uniform surface properties with fewer cracks and pores compared to films dried at 45 °C. TGA analysis demonstrated the higher thermal stability of the films when dried at 25 °C. Findings obtained from X-ray diffraction (XRD) and fourier-transform infrared spectroscopy (FTIR) showed film crystallinity and electrostatic interactions between GE, SA, and GEO. Results obtained from antioxidant assays revealed that films dried at 25 °C showed comparable antioxidant capacity to that of butylated hydroxytoluene (BHT). Furthermore, it was found that the addition of SA and GEO to the blank GE films improved their physical, chemical, and antioxidant properties. The present work suggests that GEO loaded GE-SA based films showed better physical, chemical, and antioxidant potential when dried at a lower temperature. These novel materials can be utilized as potential packaging materials in the food industry.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun 248007, India
| | - Mohammed Said Al-Azri
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Sana Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45124, Saudi Arabia
| | - Syam Mohan
- School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun 248007, India
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed F. Aldawsari
- College of Pharmacy, Prince Sattam Bin Abdul Aziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
31
|
Development and characterization of gelatin films derived from camel skin: effects of camel age and plasticizes. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
32
|
Xiang N, Yao Y, Yuen JSK, Stout AJ, Fennelly C, Sylvia R, Schnitzler A, Wong S, Kaplan DL. Edible films for cultivated meat production. Biomaterials 2022; 287:121659. [PMID: 35839585 DOI: 10.1016/j.biomaterials.2022.121659] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Biomaterial scaffolds are critical components in cultivated meat production for enabling cell adhesion, proliferation, differentiation and orientation. Currently, there is limited information on the fabrication of edible/biodegradable scaffolds for cultivated meat applications. In the present work, several abundant, naturally derived biomaterials (gelatin, soy, glutenin, zein, cellulose, alginate, konjac, chitosan) were fabricated into films without toxic cross-linking or stabilizing agents. These films were investigated for support of the adhesion, proliferation and differentiation of murine and bovine myoblasts. These biomaterials supported cell viability, and the protein-based films showed better cell adhesion than the polysaccharide-based films. Surface patterns induced cell alignment and guided myoblast differentiation and organization on the glutenin and zein films. The mechanical properties of the protein films were also assessed and suggested that a range of properties can be achieved to meet food-related goals. Overall, based on adherence, proliferation, differentiation, mechanics, and material availability, protein-based films, particularly glutenin and zein, showed the most promise for cultivated meat applications. Ultimately, this work presents a comparison of suitable biomaterials for cultivated meat applications and suggests future efforts to optimize scaffolds for efficacy and cost.
Collapse
Affiliation(s)
- Ning Xiang
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155
| | - Ya Yao
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155
| | - John S K Yuen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155
| | - Andrew J Stout
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155
| | - Colin Fennelly
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, MA, USA, 1803
| | - Ryan Sylvia
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, MA, USA, 1803
| | | | - Shou Wong
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, MA, USA, 1803
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155.
| |
Collapse
|
33
|
Murić BD, Pantelić DV, Radmilović MD, Savić-Šević SN, Vasović VO. Characterization and Optimization of Real-Time Photoresponsive Gelatin for Direct Laser Writing. Polymers (Basel) 2022; 14:polym14122350. [PMID: 35745926 PMCID: PMC9229905 DOI: 10.3390/polym14122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
There is an abundance of plastic materials used in the widest range of applications, such as packaging, machine parts, biomedical devices and components, etc. However, most materials used today are non-decomposable in the environment, producing a huge burden on ecosystems. The search for better, safer alternatives is still on. Here we present a detailed analysis of a simple, cheap, non-toxic, even edible, eco-friendly material, which can be easily manufactured, laser patterned and used for the fabrication of complex structures. The base substance is gelatin which is made photoresponsive by adding plasticizers and sensitizers. The resulting films were analyzed with respect to their optical, thermal and mechanical properties, which can be modified by a slight variation of chemical composition. The material is optimized for rapid laser-manufacturing of elastic microstructures (lenses, gratings, cantilevers, etc.) without any waste or residues. Overall, the material properties were tailored to increase photothermal responsivity, improve the surface quality and achieve material homogeneity, transparency and long-term stability (as verified using electron microscopy, infrared spectroscopy and differential scanning calorimetry).
Collapse
Affiliation(s)
- Branka D. Murić
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (D.V.P.); (M.D.R.); (S.N.S.-Š.)
- Correspondence:
| | - Dejan V. Pantelić
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (D.V.P.); (M.D.R.); (S.N.S.-Š.)
| | - Mihajlo D. Radmilović
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (D.V.P.); (M.D.R.); (S.N.S.-Š.)
| | - Svetlana N. Savić-Šević
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (D.V.P.); (M.D.R.); (S.N.S.-Š.)
| | - Vesna O. Vasović
- Western Serbia Academy of Applied Studies, Užice Department, Trg Svetog Save 34, 31000 Užice, Serbia;
| |
Collapse
|
34
|
Transglutaminase modified type A gelatin gel: the influence of intra-molecular and inter-molecular cross-linking on structure-properties. Food Chem 2022; 395:133578. [DOI: 10.1016/j.foodchem.2022.133578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
|
35
|
Zheng F, Yang X, Li J, Tian Z, Xiao B, Yi S, Duan L. Coordination with zirconium: A facile approach to improve the mechanical properties and thermostability of gelatin hydrogel. Int J Biol Macromol 2022; 205:595-603. [PMID: 35217081 DOI: 10.1016/j.ijbiomac.2022.02.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022]
Abstract
The poor mechanical property and thermostability restricted applications of gelatin hydrogel. Herein, a facile and inexpensive approach of immerging cooling induced gelatin hydrogels into Zr(SO4)2 dilute solution was applied to overcome these shortages. After this treatment, the micropores in hydrogel decreased to tens of microns while the water content slightly decreased. XPS results revealed that the coordination bonds formed between amino or carboxyl groups of gelatins and Zr4+. After immerging in 0.06 M Zr4+ solution, mechanical tests showed that the elastic modulus, compressive modulus and compressive strength of hydrogel were about 400, 1192 and 476 kPa, respectively, which were approximate 100, 11 and 5 times larger than those of pure gelatin. The DSC data indicated that the thermoreversible temperature of triple helix structure in gelatin was improved from about 30 °C to 55 °C. More importantly, the rheological temperature sweep test revealed that hydrogels with 0.06 M Zr4+ treatment can maintain the hydrogel state without melting even at 80 °C. CCK-8 tests and Calcein-AM/PI double-stain experiments demonstrated Zr4+ coordination was non-cytotoxic. These promising data indicated this nontoxic method was efficient and had potential to fabricate gelatin related materials for further application.
Collapse
Affiliation(s)
- Fan Zheng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Jiao Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China
| | - Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Shixiong Yi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
36
|
Hermida-Merino C, Cabaleiro D, Lugo L, Valcarcel J, Vázquez JA, Bravo I, Longo A, Salloum-Abou-Jaoude G, Solano E, Gracia-Fernández C, Piñeiro MM, Hermida-Merino D. Characterization of Tuna Gelatin-Based Hydrogels as a Matrix for Drug Delivery. Gels 2022; 8:gels8040237. [PMID: 35448138 PMCID: PMC9026235 DOI: 10.3390/gels8040237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
Abstract
The skin of yellowfin tuna is one of the fishery industry solid residues with the greatest potential to add extra value to its circular economy that remains yet unexploited. Particularly, the high collagen content of fish skin allows generating gelatin by hydrolysis, which is ideal for forming hydrogels due to its biocompatibility and gelling capability. Hydrogels have been used as drug carriers for local administration due to their mechanical properties and drug loading capacity. Herein, novel tuna gelatin hydrogels were designed as drug vehicles with two structurally different antitumoral model compounds such as Doxorubicin and Crocin to be administrated locally in tissues with complex human anatomies after surgical resection. The characterization by gel permeation chromatography (GPC) of purified gelatin confirmed their heterogeneity composition, exhibiting three major bands that correspond to the β and α chains along with high molecular weight species. In addition, the Fourier Transform Infrared (FT-IR) spectra of gelatin probed the secondary structure of the gelatin showing the simultaneous existence of α helix, β sheet, and random coil structures. Morphological studies at different length scales were performed by a multi-technique approach using SAXS/WAXS, AFM and cryo-SEM that revealed the porous network formed by the interaction of gelatin planar aggregates. In addition, the sol-gel transition, as well as the gelation point and the hydrogel strength, were studied using dynamic rheology and differential scanning calorimetry. Likewise, the loading and release profiles followed by UV-visible spectroscopy indicated that the novel gelatin hydrogels improve the drug release of Doxorubicin and Crocin in a sustained fashion, indicating the structure-function importance in the material composition.
Collapse
Affiliation(s)
- Carolina Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
- Correspondence: (C.H.-M.); (D.H.-M.)
| | - David Cabaleiro
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Luis Lugo
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Jose Antonio Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Ivan Bravo
- Departamento de Química Física, Facultad de Farmacia, UCLM, 02071 Albacete, Spain;
| | - Alessandro Longo
- ID20, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France;
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Georges Salloum-Abou-Jaoude
- Constellium C-TEC Technology Center, Parc Economique Centr’alp, 725 rue Aristide Bergès, 38341 Voreppe, France;
| | - Eduardo Solano
- ALBA Synchrotron Light Source, NCD-SWEET Beamline, 08290 Cerdanyola del Valles, Spain;
| | | | - Manuel M. Piñeiro
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Daniel Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
- Netherlands Organisation for Scientific Research (NWO), c/o ESRF BP 220, DUBBLE CRG/ESRF, CEDEX, 38043 Grenoble, France
- Correspondence: (C.H.-M.); (D.H.-M.)
| |
Collapse
|
37
|
Tang C, Zhou K, Zhu Y, Zhang W, Xie Y, Wang Z, Zhou H, Yang T, Zhang Q, Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Improved functionality of cinnamon oil emulsion-based gelatin films as potential edible packaging film for wax apple. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Qiao D, Shi W, Luo M, Jiang F, Zhang B. Polyvinyl alcohol inclusion can optimize the sol-gel, mechanical and hydrophobic features of agar/konjac glucomannan system. Carbohydr Polym 2022; 277:118879. [PMID: 34893282 DOI: 10.1016/j.carbpol.2021.118879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The practical features (e.g., sol-gel, mechanical and hydrophobic) of biopolymer systems are crucial for their materials applications. This work reveals how polyvinyl alcohol (PVA) inclusion affects the practical features of agar/konjac glucomannan (KGM) system. From rheological analysis, incorporating PVA (especially 6%) enhanced the chain entanglements of resulted ternary solution (A70K24P6) with stabilized sol-gel transition point. Such effect not only increased the zero-shear viscosity (ca. 1.5 times that of agar/KGM counterpart) and structural recovery degree of A70K24P6 solution, but also caused reduced crystallites and simultaneously increased tensile strength, elongation at break and hydrophobicity for A70K24P6 film from solution dehydration. This ternary film exhibited a tensile strength of ca. 105 MPa, an elongation at break of ca. 20%, and a water contact angle of ca. 97.6°. Additionally, incorporating PVA almost unaffected the morphology of film fracture surface. These results are valuable for the design of agar/KGM systems with improved practical features.
Collapse
Affiliation(s)
- Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wenjuan Shi
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Man Luo
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
40
|
Effect of hydroxychloroquine sulfate on the gelation behavior, water mobility and structure of gelatin. Colloids Surf A Physicochem Eng Asp 2022; 633:127849. [PMID: 34744314 PMCID: PMC8565095 DOI: 10.1016/j.colsurfa.2021.127849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/03/2022]
Abstract
Hydroxychloroquine sulfate (HCQ) is a well-established antimalarial drug that has received considerable attention during the COVID-19 associated pneumonia epidemic. Gelatin is a multifunctional biomacromolecule with pharmaceutical applications and can be used to deliver HCQ. The effect of HCQ on the gelation behaviors, water mobility, and structure of gelatin was investigated to understand the interaction between the drug and its delivery carrier. The gel strength, hardness, gelling (Tg) and melting (Tm) temperatures, gelation rate (kgel), and water mobility of gelatin decreased with increasing amounts of HCQ. The addition of HCQ led to hydrogen bonding that interfered with triple helix formation in gelatin. Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD) analysis further confirmed that the interaction between HCQ and gelatin is primarily through hydrogen bonding. Atomic force microscopy (AFM) revealed that higher content of HCQ resulted in more and larger aggregates in gelatin. These results provide not only an important understanding of gelatin for drug delivery design but also a basis for the studying interactions between a drug and its delivery carrier.
Collapse
|
41
|
Yang W, Wang J, Han Y, Luo X, Tang W, Yue T, Li Z. Robust MOF film of self-rearranged UiO-66-NO2 anchored on gelatin hydrogel via simple thermal-treatment for efficient Pb(II) removal in water and apple juice. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Boeira CP, Alves JDS, Flores DCB, Moura MR, Melo PTS, Rosa CS. Antioxidant and antimicrobial effect of an innovative active film containing corn stigma residue extract for refrigerated meat conservation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caroline Pagnossim Boeira
- Department of Food Science and Technology Universidade Federal de Santa Maria (UFSM) Santa Maria Brazil
| | - Jamila dos Santos Alves
- Department of Food Science and Technology Universidade Federal de Santa Maria (UFSM) Santa Maria Brazil
| | | | - Márcia Regina Moura
- Department of Physics and Chemistry Universidade Estadual Paulista (UNESP) Ilha Solteira Brazil
| | - Pamela Thais Sousa Melo
- Department of Physics and Chemistry Universidade Estadual Paulista (UNESP) Ilha Solteira Brazil
| | - Claudia Severo Rosa
- Department of Food Science and Technology Universidade Federal de Santa Maria (UFSM) Santa Maria Brazil
| |
Collapse
|
43
|
Ahammed S, Liu F, Wu J, Khin MN, Yokoyama WH, Zhong F. Effect of transglutaminase crosslinking on solubility property and mechanical strength of gelatin-zein composite films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106649] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Lisitsyn A, Semenova A, Nasonova V, Polishchuk E, Revutskaya N, Kozyrev I, Kotenkova E. Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers (Basel) 2021; 13:1592. [PMID: 34063360 PMCID: PMC8156411 DOI: 10.3390/polym13101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Natural biopolymers are an interesting resource for edible films production, as they are environmentally friendly packaging materials. The possibilities of the application of main animal proteins and natural polysaccharides are considered in the review, including the sources, structure, and limitations of usage. The main ways for overcoming the limitations caused by the physico-chemical properties of biopolymers are also discussed, including composites approaches, plasticizers, and the addition of crosslinking agents. Approaches for the production of biopolymer-based films and coatings are classified according to wet and dried processes and considered depending on biopolymer types. The methods for mechanical, physico-chemical, hydration, and uniformity estimation of edible films are reviewed.
Collapse
Affiliation(s)
- Andrey Lisitsyn
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Anastasia Semenova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Viktoria Nasonova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| | - Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| |
Collapse
|
45
|
|
46
|
Liu K, Xu X, Liu H, Liu Z, Zhao K, Ma Y, Zhang K. Mechanical properties and water sensitivity of soybean protein isolate film improved by incorporation of sodium caseinate and transglutaminase. PROGRESS IN ORGANIC COATINGS 2021; 153:106154. [DOI: 10.1016/j.porgcoat.2021.106154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
|
47
|
Qazanfarzadeh Z, Kadivar M, Shekarchizadeh H, Porta R. Secalin films acylated with capric acid chloride. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Preparation and characterization of gelatin films by transglutaminase cross-linking combined with ethanol precipitation or Hofmeister effect. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Pourmohammadi K, Abedi E. Enzymatic modifications of gluten protein: Oxidative enzymes. Food Chem 2021; 356:129679. [PMID: 33827045 DOI: 10.1016/j.foodchem.2021.129679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Oxidative enzymes treat weak flours in order to restore the gluten network of damaged wheat flour and reduce the economic and technological losses. The present review concentrates on oxidative exogenous enzymes (transglutaminase, laccase, glucose oxidase, hexose oxidase) and oxidative endogenous enzymes (tyrosinase, peroxidase, catalase, sulfhydryl oxidase, lipoxygenase, lipase, protein disulfide isomerase, NAD(P)H-dependent dehydrogenase, thioredoxin reductase and glutathione reductase) and their effects on the rheological, functional, and conformational features of gluten and its subunits. Overall, transglutaminase is used in wheat-based foods through introducing isopeptide bonds (ε-γ glutamyl-lysine). Glucose oxidase, hexose oxidase, peroxidase, sulfhydryl oxidase, lipase, and lipoxygenase form disulfide and nondisulfide bonds through producing hydrogen peroxide. Laccase, tyrosinase, and protein disulfide isomerase form cross-links between tyrosine and cysteine residues by generating radicals. Thioredoxin reductase and glutathione reductase create new inter disulfide bonds. The effect of oxidative enzymes on the formation of covalent cross-linkages were substantially more than non-covalent bonds in gluten structure.
Collapse
Affiliation(s)
- Kiana Pourmohammadi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran.
| | - Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran.
| |
Collapse
|
50
|
Sommer A, Dederko-Kantowicz P, Staroszczyk H, Sommer S, Michalec M. Enzymatic and Chemical Cross-Linking of Bacterial Cellulose/Fish Collagen Composites-A Comparative Study. Int J Mol Sci 2021; 22:ijms22073346. [PMID: 33805875 PMCID: PMC8037045 DOI: 10.3390/ijms22073346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/21/2023] Open
Abstract
This article compares the properties of bacterial cellulose/fish collagen composites (BC/Col) after enzymatic and chemical cross-linking. In our methodology, two transglutaminases are used for enzymatic cross-linking—one recommended for the meat and the other proposed for the fish industry—and pre-oxidated BC (oxBC) is used for chemical cross-linking. The structure of the obtained composites is characterized by scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy, and their functional properties by mechanical and water barrier tests. While polymer chains in uncross-linked BC/Col are intertwined by H-bonds, new covalent bonds in enzymatically cross-linked ones are formed—resulting in increased thermal stability and crystallinity of the material. The C2–C3 bonds cleavage in D-glucose units, due to BC oxidation, cause secondary alcohol groups to vanish in favor of the carbonyl groups’ formation, thus reducing the number of H-bonded OHs. Thermal stability and crystallinity of oxBC/Col remain lower than those of BC/Col. The BC/Col formation did not affect tensile strength and water vapor permeability of BC, but enzymatic cross-linking with TGGS improved them significantly.
Collapse
Affiliation(s)
- Agata Sommer
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (A.S.); (P.D.-K.)
| | - Paulina Dederko-Kantowicz
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (A.S.); (P.D.-K.)
- Laboratory of Molecular Diagnostics and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, Bonin Research Center, Bonin 3, 76-009 Bonin, Poland
| | - Hanna Staroszczyk
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (A.S.); (P.D.-K.)
- Correspondence:
| | - Sławomir Sommer
- Department of Automotive Engineering, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland;
| | - Marek Michalec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| |
Collapse
|