1
|
Li F, Zhang F, Chen R, Ma Z, Wu H, Zhang Z, Yin S, Zhou M. Effects of High-Pressure Homogenization Treatment on the Development of Antioxidant Zanthoxylum bungeanum Leaf Powder Films for Preservation of Fresh-Cut Apple. Foods 2023; 13:22. [PMID: 38201049 PMCID: PMC10778247 DOI: 10.3390/foods13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
This study determined that Zanthoxylum bungeanum leaves (ZBLs) are rich in functional components such as cellulose, protein, flavone, and polyphenols. Therefore, they were used as the main raw material, with sodium alginate as a thickener and glycerol as a plasticizer, to investigate the preparation of active films from ZBL powder through high-pressure homogenization (HPH). The physical, optical, mechanical, and antioxidant properties of the films were evaluated, and their application in preserving fresh-cut apples was examined. The results showed that the optimal concentration of ZBL powder was 1.5% under a 30 MPa HPH treatment. The resulting HPH-treated films exhibited a denser microstructure and improved water vapor barrier properties and mechanical strength. Compared to the films without HPH treatment, the tensile strength increased from 4.61 MPa to 12.13 MPa, the elongation at break increased from 21.25% to 42.86%, the water vapor permeability decreased from 9.9 × 10-9 g/m·s·Pa to 8.0 × 10-9 g/m·s·Pa, and the transparency increased from 25.36% to 38.5%. Compared to the control group, the fresh-cut apples packaged with the HPH-treated ZBL active films exhibited effective preservation of apple quality during a five-day period at 4 °C and 70% humidity, showing better preservation effects than the other groups. In conclusion, the use of HPH treatment in developing novel biopolymer active films from ZBL powders with enhanced properties holds potential for various applications.
Collapse
Affiliation(s)
- Fuli Li
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Ya’an 625014, China (R.C.); (Z.Z.)
| | - Fan Zhang
- Institute of Modern Agricultural Industry, China Agricultural University, Chengdu 611430, China (Z.M.)
| | - Ruixian Chen
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Ya’an 625014, China (R.C.); (Z.Z.)
| | - Zexiang Ma
- Institute of Modern Agricultural Industry, China Agricultural University, Chengdu 611430, China (Z.M.)
| | - Hejun Wu
- College of Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Ya’an 625014, China;
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Ya’an 625014, China (R.C.); (Z.Z.)
| | - Shutao Yin
- Institute of Modern Agricultural Industry, China Agricultural University, Chengdu 611430, China (Z.M.)
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Ya’an 625014, China (R.C.); (Z.Z.)
| |
Collapse
|
2
|
Shi R, Mu Z, Hu J, Jiang Z, Hou J. Non-thermal techniques as an approach to modify the structure of milk proteins and improve their functionalities: a review of novel preparation. Crit Rev Food Sci Nutr 2023; 65:1-29. [PMID: 37811663 DOI: 10.1080/10408398.2023.2263571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Milk proteins (MPs) have been widely used in the food industry due to their excellent functionalities. However, MPs are thermal-unstable substances and their functional properties are easily affected by heat treatment. Emerging non-thermal approaches (i.e., high-pressure homogenization (HPH), ultrasound (US), pulsed electric field (PEF)) have been increasingly popular. A detailed understanding of these approaches' impacts on the structure and functionalities of MPs can provide theoretical guidance for further development to accelerate their industrialization. SCOPE AND APPROACH This review assesses the mechanisms of HPH, US and PEF technologies on the structure and functionalities of MPs from molecular, mesoscopic and macroscopic levels, elucidates the modifications of MPs by these theologies combined with other methods, and further discusses their existing issues and the development in the food filed. KEY FINDINGS AND CONCLUSIONS The structure of MPs changed after HPH, US and PEF treatment, affecting their functionalities. The changes in these properties of MPs are related to treated-parameters of used-technologies, the concentration of MPs, as well as molecular properties. Additionally, these technologies combined with other methods could obtain some outstanding functional properties for MPs. If properly managed, these theologies can be tailored for manufacturing superior functional MPs for various processing fields.
Collapse
Affiliation(s)
- Ruijie Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng, PR China
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot, PR China
| | - Zhishen Mu
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot, PR China
| | - Jialun Hu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
3
|
Impact of high pressure homogenization on the properties of potato flour film-forming dispersions and the resulting films. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Aloe barbadensis Based Bioactive Edible Film Improved Lipid Stability and Microbial Quality of the Cheese. Foods 2023; 12:foods12020229. [PMID: 36673321 PMCID: PMC9858480 DOI: 10.3390/foods12020229] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
An attempt was made to develop a bioactive edible film using carrageenan and A. vera gel for enhancing the storage quality of cheese using kalari, a popular Himalayan cheese, as a food-model system. The film was evaluated for various physicomechanical and oxidative properties (ABTS (2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonate)) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activities, total flavonoid and phenolic contents). Based on preliminary trials, 1% A. vera gel was found to be optimum. The addition of the gel resulted in a significant decrease in moisture content, transparency, solubility, and water-vapor transmission rate and increased the thickness and density of the film. The film showed antimicrobial properties against E. coli and significantly (p < 0.05) decreased the lipid-oxidation (thiobarbituric acid reactive substances, free-fatty acids, and peroxide values) and increased microbial-quality (total-plate, psychrophilic, and yeast/molds) of the samples during 4-week refrigerated storage (4 ± 1 °C). The film also exhibited a significant positive impact on the sensory quality of the cheese, indicating the potential for commercial applications for quality control of cheese during storage.
Collapse
|
5
|
Mendes JF, Norcino LB, Manrich A, de Oliveira TJP, Mendes RF, Mattoso LHC. Pectin-based color indicator films incorporated with spray-dried Hibiscus extract microparticles. Food Res Int 2022; 162:111914. [PMID: 36461183 DOI: 10.1016/j.foodres.2022.111914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/18/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Colorimetric films incorporated with anthocyanins as an indicator for freshness monitoring have aroused growing interest recently. The pH-sensing colorimetric film were developed based on pectin (HM), containing aqueous hibiscus extract microparticles (HAE). HAE microparticles were obtained by spray drying with different wall materials (Inulin -IN, maltodextrin- MD and their combination). The films were obtained on large scale by continuous casting. These films were characterized for physicochemical analysis, morphological structure, thermal and barrier properties, antioxidant activity, and color change at different pH. The addition of HAE microparticles caused relevant changes to HM-based films, such as in mechanical behavior and improved barrier property (11-22% WVTR reduction) depending on the type of wall material used and the concentration added. It was verified with the thermal stability of films, with a slight increase being observed. The color variation of smart films was entirely pH-dependent. Overall, the proposed color indicator films showed unique features and functionalities and could be used as an alternative natural pH indicator in smart packaging systems.
Collapse
Affiliation(s)
- Juliana Farinassi Mendes
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, SP, Brazil.
| | - Laís Bruno Norcino
- Graduate Program in Biomaterials Engineering, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Anny Manrich
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, SP, Brazil
| | | | | | | |
Collapse
|
6
|
Han X, Liang Z, Tian S, Liu L, Wang S. Modification of whey−soybean mixed protein by sequential high-pressure homogenization and transglutaminase treatment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Improvement in properties of edible film through non-thermal treatments and nanocomposite materials: A review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Structural characteristics of pea protein isolate (PPI) modified by high-pressure homogenization and its relation to the packaging properties of PPI edible film. Food Chem 2022; 388:132974. [PMID: 35447590 DOI: 10.1016/j.foodchem.2022.132974] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
Abstract
This study modified pea protein isolate (PPI) structure by high-pressure homogenization (HPH) and investigated PPI structural relation to the packaging properties of PPI film. HPH decreased PPI particle size, reduced surface charge, increased surface hydrophobicity, and increased free sulfhydryl, providing greater potential for covalent bonding during film formation. HPH decreased opacity of PPI films from 7.39 to 4.82 at pressure of 240 MPa with more homogeneous surface. The tensile strength and elongation at break were increased from 0.76 MPa to 1.33 MPa and from 96% to 197%, respectively, after treatment at 240 MPa. This improvement was due to the enhanced protein-protein and protein-glycerol hydrogen bonding as evidenced by FTIR. Increased β-sheet and decreased α-helix by HPH was also observed, and β-sheet was highly correlated to film tensile strength (Pearson coefficient of 0.973, P < 0.01). Principle component analysis visualized the influence of HPH treatment, and confirmed the association between structural characteristics and film properties.
Collapse
|
9
|
Fu W, Chen X, Cheng H, Liang L. Tailoring protein intrinsic charge by enzymatic deamidation for solubilizing chicken breast myofibrillar protein in water. Food Chem 2022; 385:132512. [PMID: 35299018 DOI: 10.1016/j.foodchem.2022.132512] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/01/2022] [Accepted: 02/16/2022] [Indexed: 01/26/2023]
Abstract
Inspired by the salt-in effect, the potential use of protein-glutaminase (PG) to increase the intrinsic charges of chicken breast myofibrillar proteins (CMPs) for enhanced water solubility was tested. The degree of deamidation (DD) and solubility of CMPs increased with PG reaction time. Over 60% of CMPs were soluble in water under a DD of 6.5% due to specific conversion of glutamine to glutamic acid. PG deamidation could remarkably increase the net charge of CMPs with a merit in maintaining most of the amino acid and protein subunit compositions. Such a high electrostatic repulsion exerted a transformation of β-sheet into α-helix, unfolded the structure to expose hydrophobic residues, and allowed the dissociation of myofibril and release of subunits (myosin, actin or their oligomers), leading to a stable colloidal state. This work may foster the engineering advances of protein micro-modification in the tailor manufacture of muscle protein-based beverages.
Collapse
Affiliation(s)
- Wenyan Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Zhu H, Cheng JH, Han Z, Han Z. Cold plasma enhanced natural edible materials for future food packaging: structure and property of polysaccharides and proteins-based films. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34766864 DOI: 10.1080/10408398.2021.2002258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Natural edible films have recently gained a lot of interests in future food packaging. Polysaccharides and proteins in edible materials are not toxic and widely available, which have been confirmed as sustainable and green materials used for packaging films due to their good film-forming abilities. However, polysaccharides and proteins are hydrophilic in nature, they exhibit some undesirable material properties. Cold plasma (CP), as an innovative and highly efficient technology, has been introduced to improve the performance of polysaccharides and proteins-based films. This review mainly presents the basic information of polysaccharides and proteins-based films, principles of CP modified biopolymer films, and the effects of CP on the structural changes including surface morphology, surface composition, and bulk modification, and properties including wettability, mechanical properties, barrier properties, and thermal properties of polysaccharides, proteins, and polysaccharide/protein composite-based films. It is concluded that the CP modified performances are mainly depending on the polysaccharides and proteins raw materials, CP generation types and treatment conditions. The existing difficulties and future trends are also discussed. Despite natural materials currently not fully substitute for traditional plastic materials, CP has exhibited an effective solution to shape the future of natural materials for food packaging.
Collapse
Affiliation(s)
- Hong Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Zhuorui Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
11
|
Liu Z, Guo Z, Wu D, Fei X, Ei-Seedi HR, Wang C. High-pressure homogenization influences the functional properties of protein from oyster (Crassostrea gigas). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Wang F, Ma Y, Wang Y, Zhao L, Liao X. Physicochemical properties of seed protein isolates extracted from pepper meal by pressure-assisted and conventional solvent defatting. Food Funct 2021; 12:11033-11045. [PMID: 34665193 DOI: 10.1039/d1fo01726h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pepper seed is one by-product in pepper processing, rich in protein, fat, and fiber, and is a new plant-based protein source. In this paper, the physicochemical and functional properties of pepper seed protein isolates (PSPIs) extracted from pepper meal by pressure-assisted defatting (PAD) and conventional solvent defatting (CSD) were investigated. The yields of SPIs extracted by CSD and PAD were 22.8% and 20.5%, respectively. Compared with the PSPIs obtained by CSD, the solubility, water-holding and oil-holding capacities, and emulsifying and foaming abilities of the PSPIs obtained by PAD were significantly increased by 11.22%, 29.17%, 40%, 160%, and 100%, respectively. Additionally, UV-visible, intrinsic fluorescence and infrared spectroscopic characterization revealed the tertiary and secondary conformation changes of the PSPIs, which might contribute to the improvement of their functional properties. Overall, PAD significantly improved the functional properties of the PSPIs. The PSPIs extracted by this innovative technology would be a new plant protein alternative for food formulations with better functional properties.
Collapse
Affiliation(s)
- Fengzhang Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| | - Yan Ma
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, 100083, China. .,Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Xinjiang Deeper Processing and Engineering Technology Research Centre of Main Byproducts, Urumqi, 830091, China
| | - Yongtao Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| | - Liang Zhao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, 100083, China. .,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, 225700, Jiangsu, China
| | - Xiaojun Liao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
13
|
Effect of lysozyme infusion, high-intensity ultrasound and controlled thermal treatment on the physicochemical and functional characteristics of Chenopodium album protein isolate based active packaging film. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Development and Characterization of Fenugreek Protein-Based Edible Film. Foods 2021; 10:foods10091976. [PMID: 34574085 PMCID: PMC8465570 DOI: 10.3390/foods10091976] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
The present investigation studied the physicochemical, mechanical, structural, thermal, and morphological attributes of a novel edible film formed from fenugreek protein concentrate. Films were produced at different pH-9, 10, 11, and 12-and the effect of the pH on the films was studied. As the pH increased, tensile strength increased while water vapor absorption decreased, which is interrelated to the surface morphological properties; as the pH increased, the surface became smoother and compact without any cavities. The films produced were darker in color. Fenugreek protein films exhibited good thermal stability. Fourier transform infrared spectroscopy (FTIR) revealed the presence of strong bonding for the films made at alkaline pH. X-ray diffraction analysis (XRD) indicated the major structure of the film was amorphous. The study demonstrated that the fenugreek protein concentrate film has influential characteristics and can be used as an edible packaging film.
Collapse
|
15
|
Ran R, Wang L, Su Y, He S, He B, Li C, Wang C, Liu Y, Chen S. Preparation of pH-indicator films based on soy protein isolate/bromothymol blue and methyl red for monitoring fresh-cut apple freshness. J Food Sci 2021; 86:4594-4610. [PMID: 34392537 DOI: 10.1111/1750-3841.15884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/26/2021] [Accepted: 07/22/2021] [Indexed: 01/17/2023]
Abstract
Intelligent pH-indicator films based on soy protein isolate (SPI) were prepared using pH-sensitive dyes (bromothymol blue and methyl red). The addition of mixed indicators imparts pH-indicator films with an appreciable microstructure, acceptable water resistance, and favorable optical properties. The incorporation of the mixed indicators did not lead to significant improvement in the mechanical properties of films due to weak ionic cross-linking by hydrogen bonding between the SPI macromolecules and low-molecular-weight indicators. Fourier-transform infrared spectroscopy indicated hydrogen bond-mediated intermolecular interactions, and scanning electron microscopy showed that BB/MR were well dispersed in the SPI film. The indicator addition hindered the sorption and passage of water molecules. The water vapor permeability, moisture sorption, moisture content, and total soluble matter were 4.32 to 6.12 ×10-12 g·cm/cm2 ·s·Pa, 36.70% to 73.33%, 25.28% to 44.11%, and 8.21% to 25.56%, respectively. Also, the addition of indicators reduced UV light transmittance with minimal effect on the transparency of the film. The presence of indicators enhanced the pH sensitivity, seen as a visible color reaction at different pHs (total color difference, ΔE > 5). When the pH-indicator film containing 8 ml/100 ml final film emulsions was used to monitor the fresh-cut apple freshness, a green color for fresh status was observed, which turned blue after 60 h. Collectively, our findings suggested that indicator-containing SPI films have the potential for monitoring the freshness of fruits. PRACTICAL APPLICATION: pH-indicator films can help consumers to identify the freshness of packaged food by a change in the color of the packaging material, which is easily visible to the unaided eye without the need for opening the packaging. This protects consumers' interests.
Collapse
Affiliation(s)
- Ruimin Ran
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Luyao Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Yuhang Su
- School of Ocean Science and Biochemistry Engineering, Fujian Normal University Fuqing Branch, Fujian Province, Fuzhou, China
| | - Shujian He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Binbin He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Caixia Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Saiyan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| |
Collapse
|
16
|
Álvarez S, Weng S, Álvarez C, Marcet I, Rendueles M, Díaz M. A new procedure to prepare transparent, colourless and low-water-soluble edible films using blood plasma from slaughterhouses. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Sharma R, Bhat ZF, Kumar A, Kumar S, Bhatti MA, Jayawardena R. Rubia cordifolia
based novel edible film for improved lipid oxidative and microbial stability of meat products. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Radhika Sharma
- Division of Livestock Products Technology SKUAST‐J Jammu India
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology SKUAST‐J Jammu India
| | - Arvind Kumar
- Division of Livestock Products Technology SKUAST‐J Jammu India
| | - Sunil Kumar
- Division of Livestock Products Technology SKUAST‐J Jammu India
| | - Muhammad A. Bhatti
- Department of Animal and Aquacultural Sciences Norwegian University of Life Sciences (NMBU) As Norway
| | - Reshan Jayawardena
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln New Zealand
| |
Collapse
|
18
|
Sharma R, Bhat ZF, Kumar A, Kumar S, Bekhit AEA, Naqvi Z. Characterization of
Commiphora wightii
based bioactive edible film and its efficacy for improving the storage quality of meat products. J Food Saf 2021. [DOI: 10.1111/jfs.12909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Radhika Sharma
- Division of Livestock Products Technology, SKUAST‐J Jammu India
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUAST‐J Jammu India
| | - Arvind Kumar
- Division of Livestock Products Technology, SKUAST‐J Jammu India
| | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST‐J Jammu India
| | | | - Zahra Naqvi
- Charles Sturt University Wagga Wagga New South Wales Australia
| |
Collapse
|
19
|
Effect of high pressure homogenization on microstructure and rheological properties of hazelnut beverage cold-set gels induced glucono-δ-lactone. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Yousuf B, Sun Y, Wu S. Lipid and Lipid-containing Composite Edible Coatings and Films. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1876084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Basharat Yousuf
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai China
| | - Yaqing Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai China
| |
Collapse
|
21
|
Advances in converting of meat protein into functional ingredient via engineering modification of high pressure homogenization. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Xu J, Zhang M, Cao P, Adhikari B. Effect of ZnO nanoparticles combined radio frequency pasteurization on the protein structure and water state of chicken thigh meat. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Shi R, Liu Y, Hu J, Gao H, Qayum A, Bilawal A, Munkh-Amgalan G, Jiang Z, Hou J. Combination of high-pressure homogenization and ultrasound improves physiochemical, interfacial and gelation properties of whey protein isolate. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102450] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
|
25
|
Physicochemical, antioxidant and antimicrobial properties of mechanically deboned chicken meat protein films enriched with various essential oils. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100527] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Norcino L, Mendes J, Natarelli C, Manrich A, Oliveira J, Mattoso L. Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105862] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Zhao X, Xing T, Xu X, Zhou G. Influence of extreme alkaline pH induced unfolding and aggregation on PSE-like chicken protein edible film formation. Food Chem 2020; 319:126574. [DOI: 10.1016/j.foodchem.2020.126574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 11/26/2022]
|
28
|
Beikzadeh S, Ghorbani M, Shahbazi N, Izadi F, Pilevar Z, Mortazavian AM. The Effects of Novel Thermal and Nonthermal Technologies on the Properties of Edible Food Packaging. FOOD ENGINEERING REVIEWS 2020. [PMCID: PMC7280782 DOI: 10.1007/s12393-020-09227-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Edible packaging is influenced by factors such as formulation, production technology, and solvent and additive properties. With the increase in the request for coating and film quality, appropriate form, and high product safety and storage period, various technologies such as high hydrostatic pressure, irradiation, ultrasound, high-pressure homogenization, cold plasma, and microwave have been reviewed. The present study states definitions and mechanisms of novel technologies. The experimental condition, packaging matrix, and the results pertaining to the effects of these technologies on various types of edible packaging is also discussed. The most of the matrix used for packaging was whey protein, soy protein isolate, chitosan, and gelatin. The technologies conditions such as power, frequency, time, temperature, dose, pressure, and voltage can have a significant influence on the application of them in film and coating. Therefore, finding the optimum point for the features of the technologies is important because improper use of them reduces the properties of the edible packaging.
Collapse
|
29
|
Yilmaz K, Turhan S, Saricaoglu FT, Tural S. Improvement of physicochemical, mechanical, thermal and surface properties of anchovy by-product protein films by addition of transglutaminase, and the correlation between secondary structure and mechanical properties. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Cakıroglu K, Dervisoglu M, Gul O. Development and characterization of black mulberry (Morus nigra) pekmez (molasses) composite films based on alginate and pectin. J Texture Stud 2020; 51:800-809. [PMID: 32358987 DOI: 10.1111/jtxs.12528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 11/29/2022]
Abstract
Production of composite films is an important approach to improve functionality of edible films, by combining different polysaccharides, proteins, and lipids. Carbohydrate-based composite films are most attractive, which have good film-forming ability due to their unique colloidal properties. Fruit purees include high polysaccharide content that plays a role to have desirable film properties including mechanical resistance, efficient barrier properties, and selective permeability against oxygen transmission. The purpose of this study was to characterize physical, barrier, mechanical, thermal, and water sorption properties of composite films formulated with different mulberry pekmez concentrations (26, 32, and 38 °Brix) based on alginate or pectin. All film-forming solutions were showed shear thinning behavior with higher yield stress and viscosity-shear rate data were fitted to Ostwald de Waele model (R2 ≥ 0.943). A noticeable decrease in tensile strength of films with increasing concentration was determined, but films prepared with high concentration showed more flexible. The mechanical properties of pectin films exhibited weakened properties compared to alginate films. Increasing pekmez concentration in the film matrix improved the water vapor permeability of alginate films, whereas pectin films showed reverse behavior as resulting in cracks and crack propagation within the structure. The sorption isotherms of films showed a typical profile of foods contain high soluble components and the Guggenheim-Anderson-deBoer (GAB) model gave a good fit for all of the obtained data. The results showed that mulberry pekmez films based alginate have a potential for food applications depends on the physical properties and for the replacement of non-biodegradable plastic packaging.
Collapse
Affiliation(s)
- Kubra Cakıroglu
- Trabzon Food Control Laboratory Directorate, Republic of Turkey Ministry of Agriculture and Forestry, Trabzon, Turkey
| | | | - Osman Gul
- Faculty of Engineering and Architecture, Department of Food Engineering, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
31
|
Wu H, Xiao D, Lu J, Jiao C, Li S, Lei Y, Liu D, Wang J, Zhang Z, Liu Y, Shen G, Li S. Effect of high-pressure homogenization on microstructure and properties of pomelo peel flour film-forming dispersions and their resultant films. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Mendes J, Norcino L, Martins H, Manrich A, Otoni C, Carvalho E, Piccoli R, Oliveira J, Pinheiro A, Mattoso L. Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105428] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
|
34
|
Development and Properties of Fish Gelatin/Oxidized Starch Double Network Film Catalyzed by Thermal Treatment and Schiff' Base Reaction. Polymers (Basel) 2019; 11:polym11122065. [PMID: 31835840 PMCID: PMC6960496 DOI: 10.3390/polym11122065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 01/22/2023] Open
Abstract
In order to improve the properties of fish gelatin (FG), oxidized starch (OS) was adopted to form hetero-covalent linkage with it based on thermal treatment and the Schiff’ base reaction. The effects of different ratios of FG/OS (ranging from 10:1 to 2:1) on the properties of films were investigated. OS improved the mechanical and barrier properties of films significantly, while the moisture content decreased as OS concentration increased. The optimum concentration was obtained at the loading amount of 1.5% (w/v) OS. FT-IR spectra revealed the covalent cross-linking between FG and OS induced by Schiff’ base reaction. Moreover, composite films had superior preservation effect on blueberry, according to the results of weight loss, total soluble solids, titratable acidity, and total anthocyanin content. Therefore, this study suggested that FG-OS double network films (FODF) has great potential in the packaging industry.
Collapse
|
35
|
Li G, Chen Y, Xuan S, Lv M, Zhang J, Lou Q, Jia R, Yang W. Rheological properties and structure of myofibrillar protein extracted from Oratosquilla oratoria muscle as affected by ultra-high pressure. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1642915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gaoshang Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yanting Chen
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shifen Xuan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Mingchun Lv
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Qiaoming Lou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ru Jia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
36
|
Falcó I, Randazzo W, Sánchez G, López-Rubio A, Fabra MJ. On the use of carrageenan matrices for the development of antiviral edible coatings of interest in berries. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Asaithambi N, Singha P, Dwivedi M, Singh SK. Hydrodynamic cavitation and its application in food and beverage industry: A review. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Poonam Singha
- Department of Food ScienceCornell University Ithaca New York
| | - Madhuresh Dwivedi
- Department of Food Process EngineeringNIT Rourkela Rourkela Odisha India
| | - Sushil K. Singh
- Department of Food Process EngineeringNIT Rourkela Rourkela Odisha India
| |
Collapse
|
38
|
Kurt A. Development of a water-resistant salep glucomannan film via chemical modification. Carbohydr Polym 2019; 213:286-295. [DOI: 10.1016/j.carbpol.2019.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/04/2023]
|
39
|
Kurt A. RHEOLOGY OF FILM-FORMING SOLUTIONS AND PHYSICAL PROPERTIES OF DIFFERENTLY DEACETYLATED SALEP GLUCOMANNAN FILM. ACTA ACUST UNITED AC 2019. [DOI: 10.3153/fh19019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Paglarini CS, Martini S, Pollonio MAR. Physical properties of emulsion gels formulated with sonicated soy protein isolate. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Camila S. Paglarini
- Department of Food Technology; School of Food Engineering; University of Campinas (UNICAMP); Campinas 13083-862 Brazil
| | - Silvana Martini
- Department of Nutrition, Dietetics, and Food Sciences; Utah State University; Logan UT 84322-8700 USA
| | - Marise A. R. Pollonio
- Department of Food Technology; School of Food Engineering; University of Campinas (UNICAMP); Campinas 13083-862 Brazil
| |
Collapse
|