1
|
Zhang H, Wu Z, Wu J, Hua Q, Liang Y, Renneckar S. High internal phase Pickering emulsions stabilized by surface-modified dialdehyde xylan nanoparticles. Carbohydr Polym 2025; 354:123324. [PMID: 39978906 DOI: 10.1016/j.carbpol.2025.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/22/2025]
Abstract
Polysaccharide-based particles have attracted considerable attention for stabilizing Pickering emulsions due to their sustainability and biocompatibility. In this study, we developed a novel approach utilizing hemicellulose-based nanoparticles for the stabilization of high internal phase Pickering emulsions (HIPPEs). Polyethylenimine-modified dialdehyde xylan nanoparticles (PEI-DAXNPs) were prepared through periodate oxidation of xylan nanoparticles obtained from esparto pulp, followed by a Schiff base reaction with polyethylenimine (PEI). Oil-in-water HIPPEs were fabricated using PEI-DAXNPs as the sole stabilizer through a one-time homogenization method and exhibited long-term stability after 180 days of storage. Furthermore, gel-like HIPPEs were obtained with a minimum concentration of 0.1 wt% PEI-DAXNPs in the continuous phase and exhibited shear-thinning behavior and promising viscoelastic properties, indicating good processability in the fabrication of soft materials and porous scaffolds. Therefore, the produced PEI-DAXNPs demonstrated significant potential as HIPPE stabilizers, providing inspiration for the valorization of hemicellulose-based nanoparticles.
Collapse
Affiliation(s)
- Huaiyu Zhang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Zemeng Wu
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jie Wu
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Qi Hua
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yalan Liang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
2
|
Jing L, Su L, Xie Q, Zeng S, Zeng X, You S, Fu C, Sun J, Huang D. Alcogels based on secalin and konjac glucomannan composites for the controlled release of curcumin. Food Res Int 2025; 203:115822. [PMID: 40022348 DOI: 10.1016/j.foodres.2025.115822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 03/03/2025]
Abstract
Alcogel has been increasingly applied in foods, cosmetics, and pharmaceutical industries. However, their application is limited by the lack of efficient biomacromolecule-based gelators. Herein, we present our discovery of secalin, a prolamin from rye, combined with konjac glucomannan (KGM) as novel food-grade gelators. Secalin-KGM (SK) alcogels could be prepared by directly cooling down their alcoholic solution, resulting in a thermo-induced sol-gel transition. SK gels (5 w/v % in 50 v/v % ethanol solution) exhibited diverse microstructural features and tunable mechanical properties that could be adjusted by varying the ratio of secalin to KGM. Microscopic images showed that when blended at a certain ratio, a homogeneous porous network is formed due to strong intermolecular interactions. Moreover, the SK gels exhibited a great ability to controllably release curcumin under simulated gastrointestinal tract conditions. The findings provide a novel plant protein-polysaccharide system to develop alcogels with tunable gelling properties and digestibility for functional food and drug delivery applications.
Collapse
Affiliation(s)
- Linzhi Jing
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China.
| | - Lingshan Su
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China; Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore City 117542, Singapore
| | - Qingtong Xie
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore City 117542, Singapore
| | - Shunjiang Zeng
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
| | - Xianjian Zeng
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China; Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore City 117542, Singapore
| | - Siyong You
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China; Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore City 117542, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
| | - Jie Sun
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Suzhou 215123, China.
| | - Dejian Huang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China; Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore City 117542, Singapore.
| |
Collapse
|
3
|
Heidari-Dalfard F, Tavasoli S, Assadpour E, Miller R, Jafari SM. Surface modification of particles/nanoparticles to improve the stability of Pickering emulsions; a critical review. Adv Colloid Interface Sci 2025; 336:103378. [PMID: 39671888 DOI: 10.1016/j.cis.2024.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Pickering emulsions (PEs) are dispersions stabilized by solid particles, which are derived from various materials, both organic (proteins, polysaccharides, lipids) and inorganic (metals, silica, metal oxides). These colloidal particles play a critical role in ensuring the stability and functionality of PEs, making them highly valued across multiple industries due to their enhanced stability and lower toxicity compared to conventional emulsions. The stabilization mechanisms in PEs differ from those in emulsions stabilized by surfactants or biopolymers. The stability of PEs is influenced by intrinsic particle properties, such as wettability, size, shape, deformability, and charge, as well as external conditions like pH, salinity, and temperature. Some particles, especially organic ones, alone may not be effective stabilizers. For instance, many polysaccharides inherently lack surface activity, while most proteins have significant surface activity but often become unstable under environmental stresses, potentially leading to emulsion instability. The chemical composition and morphology of the particles can lead to varying properties, particularly wettability, which plays a vital role in their ability to adsorb at interfaces. As a result, surface modification emerges as an essential approach for improving the effectiveness of particles as stabilizers in PEs. This review presents the mechanisms that stabilize PEs, identifies factors influencing the stability of PEs, and discusses physical and chemical techniques for modifying particle surfaces. There has been a significant advance in understanding surface modification, employing both physical (non-covalent bonds) and chemical (covalent bonds) approaches. These insights are invaluable for optimizing PE formulations, broadening their application potential across various fields.
Collapse
Affiliation(s)
- Fatemeh Heidari-Dalfard
- Food Science and Technology Department, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Sedighe Tavasoli
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Reinhard Miller
- TU Darmstadt, Institute for Condensed Matter Physics, Hochschulstrasse 8, 64289 Darmstadt, Germany
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
4
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
5
|
Bahraminejad S, Mousavi M, Askari G, Gharaghani M, Pourramzan H. Octenylsuccinated alginate as a delivery agent for encapsulation of bergamot essential oil: Preparation, functional properties and release behavior. Int J Biol Macromol 2024; 282:136616. [PMID: 39419153 DOI: 10.1016/j.ijbiomac.2024.136616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
This study evaluate the effect of succinylation of sodium alginate (ALG) by octenyl succinic anhydride (OSA) and its effect on the bergamot essential oil (BEO)-loaded ALG beads. The physico-chemical, antioxidant, antibacterial, and in vitro release properties of BEO-loaded ALG beads were assessed. The presence of BEO in alginate beads was assessd using Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) experiments. The higher amount of BEO in modified alginate beads at higher degree of substitution (DS) has been confirmed. Accordingly, it was discovered that the DS has notable effects on encapsulation efficiency (EE), loading capacity (LC) of beads, so that the values of EE and LC were about 31-75 % and 19-45 %, respectively, when the DS value of ALG was 0.00-0.022. Besides, BEO-loaded beads prepared using high DS, exhibited higher total phenolic compound (TPC = 21.101 mg garlic acid/g brad), good antioxidant activity (DPPH radical scavenging activity ≈ 69 %) and antibacterial properties (against E. coli and S. aureus). In vitro release analysis showed the initial fast release followed by a slow-release. OSA modification slowed down the release rate of bergamot essential oil from alginate beads. Also, the release of BEO from the beads followed Fickian diffusion.
Collapse
Affiliation(s)
- Sajjad Bahraminejad
- Bioprocessing and Biodetection Laboratory, Department of Food Science, Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran
| | - Mohammad Mousavi
- Bioprocessing and Biodetection Laboratory, Department of Food Science, Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran
| | - Gholamreza Askari
- Bioprocessing and Biodetection Laboratory, Department of Food Science, Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran.
| | - Mohammad Gharaghani
- Bioprocessing and Biodetection Laboratory, Department of Food Science, Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran
| | - Hamidreza Pourramzan
- Bioprocessing and Biodetection Laboratory, Department of Food Science, Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
6
|
Karaca AC, Boostani S, Assadpour E, Tan C, Zhang F, Jafari SM. Pickering emulsions stabilized by prolamin-based proteins as innovative carriers of bioactive compounds. Adv Colloid Interface Sci 2024; 333:103246. [PMID: 39208623 DOI: 10.1016/j.cis.2024.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
7
|
Kim W, Yiu CCY, Wang Y, Zhou W, Selomulya C. Toward Diverse Plant Proteins for Food Innovation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408150. [PMID: 39119828 DOI: 10.1002/advs.202408150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 08/10/2024]
Abstract
This review highlights the development of plant proteins from a wide variety of sources, as most of the research and development efforts to date have been limited to a few sources including soy, chickpea, wheat, and pea. The native structure of plant proteins during production and their impact on food colloids including emulsions, foams, and gels are considered in relation to their fundamental properties, while highlighting the recent developments in the production and processing technologies with regard to their impacts on the molecular properties and aggregation of the proteins. The ability to quantify structural, morphological, and rheological properties can provide a better understanding of the roles of plant proteins in food systems. The applications of plant proteins as dairy and meat alternatives are discussed from the perspective of food structure formation. Future directions on the processing of plant proteins and potential applications are outlined to encourage the generation of more diverse plant-based products.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | | | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore
| | | |
Collapse
|
8
|
Yu Y, Gong M, Wang S, Wang X, Liu Y, Huang D, Guan H, Liu H, Chen Y, Jiang Y, Li D. Pectin-based cinnamon essential oil Pickering emulsion film with two-sided differential wettability: A major role in the spatial distribution of microdroplets. Int J Biol Macromol 2024; 277:133727. [PMID: 39084975 DOI: 10.1016/j.ijbiomac.2024.133727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Pickering emulsions have attracted much attention as a novel emulsifying technology. This research to explore Zein-Citrus pectin nanoparticles stabilized cinnamon essential oil (CEO) Pickering emulsion (ZCCPEs) for constructing Pickering emulsion edible film (PEF). Unlike traditional research, which focuses on antibacterial and antioxidant activities, our research examined the physical properties of PEF, specifically changes in wettability. The results show that PEF has better transparency and tensile strength than the pectin alone direct emulsion film (PAEF), and the spatial distribution of Pickering emulsion droplets gives different wettability on both sides of PEF. The partially hydrophobic upside has important application value in food packaging. At the same time, the PEF is biodegradable and environmentally non-polluting. The edible film loaded with essential oils, developed based on the Pickering stabilization mechanism in this study, possesses several desirable characteristics for potential used as bioactive packaging films in food applications.
Collapse
Affiliation(s)
- Yitian Yu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Min Gong
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Shuyi Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Xinyue Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yiyan Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Dongjie Huang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yannan Chen
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China.
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| |
Collapse
|
9
|
Sun Y, Wei Z. Modification of hordein by gallic acid in ethanol-free environments: Impact of covalent and non-covalent interactions on structure, physicochemical properties and self-assembly. Food Chem 2024; 449:139273. [PMID: 38599110 DOI: 10.1016/j.foodchem.2024.139273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
The objectives of this study were to modify hordein with gallic acid (GA) in alcohol-free media and to compare the impact of covalent and non-covalent binding on the properties of hordein. Covalent hordein-GA complexes (H-GA) and non-covalent hordein/GA complexes (H/GA) were distinguished by molecular weight, free sulfhydryl groups and free amino groups. Isothermal titration calorimetry (ITC) demonstrated that physical mixing induced non-covalent binding of GA to hordein via hydrogen bonding and hydrophobic interactions, with a lower binding efficiency than covalent ones. Both complexation types led to a structural shift of hordein toward disorder, while grafting of oligomeric GA and alkaline treatment resulted in lower surface hydrophobicity and higher antioxidant activity of H-GA compared to H/GA. The nanoparticles assembled from H-GA had smaller particle sizes and higher physical stability than those formed from H/GA. The results of this study may provide new insights into the modification of hordein by polyphenols.
Collapse
Affiliation(s)
- Yuanjing Sun
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
10
|
Han H, Chang Y, Jiao Y. Recent Advances in Efficient Lutein-Loaded Zein-Based Solid Nano-Delivery Systems: Establishment, Structural Characterization, and Functional Properties. Foods 2024; 13:2304. [PMID: 39063387 PMCID: PMC11276201 DOI: 10.3390/foods13142304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Plant proteins have gained significant attention over animal proteins due to their low carbon footprint, balanced nutrition, and high sustainability. These attributes make plant protein nanocarriers promising for applications in drug delivery, nutraceuticals, functional foods, and other areas. Zein, a major by-product of corn starch processing, is inexpensive and widely available. Its unique self-assembly characteristics have led to its extensive use in various food and drug systems. Zein's functional tunability allows for excellent performance in loading and transporting bioactive substances. Lutein offers numerous bioactive functions, such as antioxidant and vision protection, but suffers from poor chemical stability and low bioavailability. Nano-embedding technology can construct various zein-loaded lutein nanodelivery systems to address these issues. This review provides an overview of recent advances in the construction of zein-loaded lutein nanosystems. It discusses the fundamental properties of these systems; systematically introduces preparation techniques, structural characterization, and functional properties; and analyzes and predicts the target-controlled release and bioaccessibility of zein-loaded lutein nanosystems. The interactions and synergistic effects between Zein and lutein in the nanocomplexes are examined to elucidate the formation mechanism and conformational relationship of zein-lutein nanoparticles. The physical and chemical properties of Zein are closely related to the molecular structure. Zein and its modified products can encapsulate and protect lutein through various methods, creating more stable and efficient zein-loaded lutein nanosystems. Additionally, embedding lutein in Zein and its derivatives enhances lutein's digestive stability, solubility, antioxidant properties, and overall bioavailability.
Collapse
Affiliation(s)
| | | | - Yan Jiao
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (H.H.); (Y.C.)
| |
Collapse
|
11
|
Javed M, Xu Y, Sun H, Hao H, Li D, Matloob A, Xiaowei Y, Luo Z. Camellia Oleifera shells derived nano cellulose crystals conjugated with gallic acid as a sustainable Pickering emulsion stabilizer. Int J Biol Macromol 2024; 270:131831. [PMID: 38702246 DOI: 10.1016/j.ijbiomac.2024.131831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Lately, emulsions with low-fat and natural stabilizers are predominant. This study extracted the nano cellulose crystals (NCs) from Camellia Oleifera shells, and their gallic acid (GA) conjugates were synthesized by free-radical grafting. Pickering emulsions were prepared using NCs 1 %, 1.5 %, 2.5 %, and gallic acid conjugates NC-GA1, NC-GA2, and NC-GA3 as stabilizers. The obtained nano cellulose crystals exhibited 18-25 nm, -40.01 ± 2.45 size, and zeta potential, respectively. The contact angle of 83.4° was exhibited by NC-GA3 conjugates. The rheological, interfacial, and microstructural properties and stability of the Pickering emulsion were explored. NC-GA3 displayed the highest absorption content of 79.12 %. Interfacial tension was drastically reduced with increasing GA concentration in NC-GA conjugates. Rheological properties suggested that the low-fat NC-GA emulsions showed a viscoelastic behavior, increased viscosity, gel-like structure, and increased antioxidant properties. Moreover, NC-GA3 displayed reduced droplet size and improved emulsion temperature and storage stability (28 days) against phase separation. POV and TBARS values were reduced with the NC-GA3 (P < 0.05). This work confirmed that grafting phenolic compounds on NCs could enhance bioactive properties, which can be used in developing low-fat functional foods. NC-GA conjugates can potentially fulfill the increasing demand for sustainable, healthy, and low-fat foods.
Collapse
Affiliation(s)
- Miral Javed
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; Ningbo Innovation Centre, Zhejiang University, Ningbo 315100, People's Republic of China
| | - Haixin Sun
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Huang Hao
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Dong Li
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Anam Matloob
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yan Xiaowei
- College of Food and Biological Engineering, Guangxi key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, Guangxi, People's Republic of China
| | - Zisheng Luo
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China; Ningbo Innovation Centre, Zhejiang University, Ningbo 315100, People's Republic of China.
| |
Collapse
|
12
|
Li M, Yu H, Gantumur MA, Guo L, Lian L, Wang B, Yu C, Jiang Z. Insight into oil-water interfacial adsorption of protein particles towards regulating Pickering emulsions: A review. Int J Biol Macromol 2024; 272:132937. [PMID: 38848834 DOI: 10.1016/j.ijbiomac.2024.132937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Over the past decade, Pickering emulsions (PEs) stabilized by protein particles have been the focus of researches. The characteristics of protein particles at the oil-water interface are crucial for stabilizing PEs. The unique adsorption behaviors of protein particles and various modification methods enable oil-water interface to exhibit controllable regulation strategies. However, from the perspective of the interface, studies on the regulation of PEs by the adsorption behaviors of protein particles at oil-water interface are limited. Therefore, this review provides an in-depth study on oil-water interfacial adsorption of protein particles and their regulation on PEs. Specifically, the formation of interfacial layer and effects of their interfacial characteristics on PEs stabilized by protein particles are elaborated. Particularly, complicated behaviors, including adsorption, arrangement and deformation of protein particles at the oil-water interface are the premise of affecting the formation of interfacial layer. Moreover, the particle size, surface charge, shape and wettability greatly affect interfacial adsorption behaviors of protein particles. Importantly, stabilities of protein particles-based PEs also depend on properties of interfacial layers, including interfacial layer thickness and interfacial rheology. This review provides useful insights for the development of PEs stabilized by protein particles based on interfacial design.
Collapse
Affiliation(s)
- Meng Li
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Haiying Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Lidong Guo
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Lian Lian
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Bo Wang
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Chunmiao Yu
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
13
|
Boostani S, Sarabandi K, Tarhan O, Rezaei A, Assadpour E, Rostamabadi H, Falsafi SR, Tan C, Zhang F, Jafari SM. Multiple Pickering emulsions stabilized by food-grade particles as innovative delivery systems for bioactive compounds. Adv Colloid Interface Sci 2024; 328:103174. [PMID: 38728772 DOI: 10.1016/j.cis.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The most common carrier for encapsulation of bioactive components is still simple emulsion. Recently, bio-based novel emulsion systems such as multiple emulsions (MEs) and Pickering emulsions (PEs) have been introduced as innovative colloidal delivery systems for encapsulation and controlled release of bioactive compounds. Multiple PEs (MPEs), which carries both benefit of MEs and PEs could be fabricated by relatively scalable and simple operations. In comparison with costly synthetic surfactants and inorganic particles which are widely used for stabilization of both MEs and PEs, MPEs stabilized by food-grade particles, while having health-promoting aspects, are able to host the "clean label" and "green label" attributes. Nevertheless, in achieving qualified techno-functional attributes and encapsulation properties, the selection of suitable materials is a crucial step in the construction of such complex systems. Current review takes a cue from both MEs and PEs emulsification techniques to grant a robust background for designing various MPEs. Herein, various fabrication methods of MEs and PEs are described comprehensively in a physical viewpoint in order to find key conception of successful formulation of MPEs. This review also highlights the link between the underlying aspects and exemplified specimens of evidence which grant insights into the rational design of MPEs through food-based ingredients to introduces MPEs as novel colloidal/functional materials. Their utilization for encapsulation of bioactive compounds is discussed as well. In the last part, instability behavior of MPEs under various conditions will be discussed. In sum, this review aims to gain researchers who work with food-based components, basics of innovative design of MPEs.
Collapse
Affiliation(s)
- Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ozgur Tarhan
- Food Engineering Department, Engineering Faculty, Uşak University, 1 Eylul Campus, Uşak 64100, Türkiye
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
14
|
Cheng T, Zhang G, Sun F, Guo Y, Ramakrishna R, Zhou L, Guo Z, Wang Z. Study on stabilized mechanism of high internal phase Pickering emulsions based on commercial yeast proteins: Modulating the characteristics of Pickering particle via sonication. ULTRASONICS SONOCHEMISTRY 2024; 104:106843. [PMID: 38471387 PMCID: PMC10944291 DOI: 10.1016/j.ultsonch.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
The primary significance of this work is that the commercial yeast proteins particles were successfully used to characterize the high internal phase Pickering emulsions (HIPPEs). The different sonication time (0,3,7,11,15 min) was used to modulate the structure and interface characteristics of yeast proteins (YPs) that as Pickering particles. Immediately afterward, the influence of YPs particles prepared at different sonication time on the rheological behavior and coalescence mechanism of HIPPEs was investigated. The results indicate that the YPs sonicated for 7 min exhibited a more relaxed molecular structures and conformation, the smallest particle size, the highest H0 and optimal amphiphilicity (the three-phase contact (θ) was 88.91°). The transition from extended to compact conformations of YPs occurred when the sonication time exceeded 7 min, resulting in an augmentation of size of YPs particles, a reduction in surface hydrophobicity (H0), and an elevation in hydrophilicity. The HIPPEs stabilized by YPs particles sonicated for 7 min exhibited the highest adsorption interface protein percentage and a more homogeneous three-dimensional (3D) protein network, resulting in the smallest droplet size and the highest storage (G'). The HIPPEs sample that stabilized by YPs particles sonicated for 15 min showed the lowest adsorption protein percentage. This caused a reduction in the thickness of its interface protein layer and an enlargement in the droplet diameter (D [3,2]). It was prone to droplet coalescence according to the equation used to evaluate the coalescence probability of droplets (Eq (2)). And the non-adsorbed YPs particles form larger aggregation structures in the continuous phase and act as "structural agents" in 3D protein network. Therefore, mechanistically, the interface protein layer formed by YPs particles sonicated 7 min contributed more to HIPPEs stability. Whereas the "structural agents" contributed more to HIPPEs stability when the sonication time exceeded 7 min. The present results shed important new light on the application of commercial YPs in the functional food fields, acting as an available and effective alternative protein.
Collapse
Affiliation(s)
- Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guofang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | | | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Grain Industry Technology Innovation Center, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
15
|
Liu Z, Xu M, Zhou S, Wang J, Huang Z. Enhancing the Thermal Stability of Zein Particle-Stabilized Aeratable Emulsions Through Genipin-Protein Cross-Linking and Its Possible Mechanism of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3707-3718. [PMID: 38268446 DOI: 10.1021/acs.jafc.3c07770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Protein particle-stabilized emulsions often lack thermal stability, impacting their industrial use. This study investigated the effects of genipin (GP)-zein cross-linked particles with varying GP-to-protein weight ratios (0/0.02/0.1:1) on emulsion thermal stability. Enhanced stability was observed at the GP level of 0.1. Heat treatment increased the covalent cross-linking in raw particles and emulsions. Isolated particles from heated emulsions grew in size (micrometer scale) with higher GP levels, unlike heated raw particles (nanoscale). GP-protein cross-linking reduced the droplet-droplet and particle-emulsifier interactions in the heated emulsion. Spectroscopic analysis and electrophoresis revealed that GP-zein cross-linking increased protein structural stability and inhibited nondisulfide and non-GP cross-linking reactions in heated emulsions. The GP-zein bridges between particles at the oil-water interface create strong connections in the particle layer (shell), referred to as "particle-shell locking", enhancing the thermal stability of emulsion significantly. This insight aids the future design of protein-particle-based emulsions, preserving properties like aeratability during thermal processing.
Collapse
Affiliation(s)
- Zelong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Meiyu Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Zhaoxian Huang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
16
|
Yang Z, Li Z, Xu Z, Kong Z, Qiao X, Zhang L, Dai L, Wang Y, Sun Q, McClements DJ, Xu X. Properties of Heat-Assisted pH Shifting and Compounded Chitosan from Insoluble Rice Peptide Precipitate and Its Application in the Curcumin-Loaded Pickering Emulsions. Foods 2023; 12:4384. [PMID: 38137189 PMCID: PMC10742475 DOI: 10.3390/foods12244384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Curcumin exhibits antioxidant and antitumor properties, but its poor chemical stability limits its application. Insoluble peptide precipitates formed by proteolysis of rice glutelin are usually discarded, resulting in resource waste. The coupled treatment of heat-assisted pH shifting and compounded chitosan (CS) was used to fabricate rice peptide aggregate-chitosan complexes (RPA-CS). The structure, interfacial behavior, emulsion properties, and digestibility of curcumin-loaded RPA-CS Pickering emulsions were investigated. Increasing the CS concentration led to lower interfacial tension but larger particle size, and the three-phase contact angle of the RPA-CS complexes approached 90°. Quartz crystal microbalance with dissipation (QCM-D) indicated that RPA-CS complexes with 6 g·kg-1 of CS (RPA-CS6) had the highest K1 (0.592 × 106 Hz-1) and K4 (0.487 × 106 Hz-1), suggesting that the softest interfacial layers were formed. The solid-liquid balance of RPA-RPA-CS emulsions was lower than 0.5, declaring that they had more elastic behavior than that of RPA emulsions. RPA-RPA-CS4-and RPA-CS6 emulsions had better storage stability, lower FFA release (79.8% and 76.3%, respectively), and higher curcumin bioaccessibility (65.2% and 68.2%, respectively) than RPA emulsions. This study showed that a low-value insoluble rice peptide precipitate could be used as a valuable emulsifier in foods, which may increase the economics and sustainability of the food supply.
Collapse
Affiliation(s)
- Zhenyu Yang
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (Z.Y.); (Z.L.); (Z.X.); (Z.K.); (X.Q.); (L.Z.); (L.D.); (Y.W.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Zhiying Li
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (Z.Y.); (Z.L.); (Z.X.); (Z.K.); (X.Q.); (L.Z.); (L.D.); (Y.W.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Zitong Xu
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (Z.Y.); (Z.L.); (Z.X.); (Z.K.); (X.Q.); (L.Z.); (L.D.); (Y.W.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Zhihao Kong
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (Z.Y.); (Z.L.); (Z.X.); (Z.K.); (X.Q.); (L.Z.); (L.D.); (Y.W.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Xin Qiao
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (Z.Y.); (Z.L.); (Z.X.); (Z.K.); (X.Q.); (L.Z.); (L.D.); (Y.W.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Liwen Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (Z.Y.); (Z.L.); (Z.X.); (Z.K.); (X.Q.); (L.Z.); (L.D.); (Y.W.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (Z.Y.); (Z.L.); (Z.X.); (Z.K.); (X.Q.); (L.Z.); (L.D.); (Y.W.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (Z.Y.); (Z.L.); (Z.X.); (Z.K.); (X.Q.); (L.Z.); (L.D.); (Y.W.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (Z.Y.); (Z.L.); (Z.X.); (Z.K.); (X.Q.); (L.Z.); (L.D.); (Y.W.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | | | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China; (Z.Y.); (Z.L.); (Z.X.); (Z.K.); (X.Q.); (L.Z.); (L.D.); (Y.W.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| |
Collapse
|
17
|
Nejadmansouri M, Eskandari MH, Yousefi GH, Riazi M, Hosseini SMH. Promising application of probiotic microorganisms as Pickering emulsions stabilizers. Sci Rep 2023; 13:15915. [PMID: 37741896 PMCID: PMC10517997 DOI: 10.1038/s41598-023-43087-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
The purpose of this work was to study the ability of nineteen food-grade microorganisms as Pickering emulsion (PE) stabilizers. Medium-chain triacylglycerol (MCT) oil-in-water (50:50) PEs were fabricated by 10 wt% or 15 wt% of thermally-inactivated yeast, cocci, Bacillus spp. and lactobacilli cells. The characteristics of microorganisms related to "Pickering stabilization" including morphology, surface charge, interfacial tension, and "contact angle" were firstly studied. After that, the cells-stabilized PEs were characterized from both kinetic and thermodynamic viewpoints, microstructure and rheological properties. The interfacial tension and "contact angle" values of various microorganisms ranged from 16.33 to 38.31 mN/m, and from 15° to 106°, respectively. The mean droplet size of PEs ranged from 11.51 to 57.69 µm. Generally, the physical stability of cell-stabilized PEs followed this order: lactobacilli > Bacillus spp. > cocci > yeast. These variations were attributed to the morphology and cell wall composition. Increasing the microorganism concentration significantly increased the physical stability of PEs from a maximum of 12 days at 10 wt% to 35 days at 15 wt% as a result of better interface coverage. Shear-thinning and dominant elastic behaviors were observed in PEs. Physical stability was affected by the free energy of detachment. Therefore, food-grade microorganisms are suggested for stabilizing PEs.
Collapse
Affiliation(s)
- Maryam Nejadmansouri
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Gholam Hossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Riazi
- Enhanced Oil Recovery (EOR) Research Centre, IOR/EOR Research Institute, Shiraz University, Shiraz, Iran
- Department of Petroleum Engineering, School of Chemical and Petroleum Eng, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
18
|
Su D, Mo H, Huang J, Li Q, Zhong H, Jin B. Soy protein/β-glucan/tannic acid complex coacervates with different micro-structures play key roles in the rheological properties, tribological properties, and the storage stability of Pickering high internal phase emulsions. Food Chem 2023; 401:134168. [DOI: 10.1016/j.foodchem.2022.134168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
|
19
|
Wang W, Liu C, Zhang H, Zhu X, Wang L, Zhang N, Yu D. Properties of OSA-modified starch and emulsion prepared with different materials: Glutinous rice starch, japonica rice starch, and indica rice starch. Food Res Int 2022; 161:111845. [DOI: 10.1016/j.foodres.2022.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
20
|
Song H, Wang Q, He A, Li S, Guan X, Hu Y, Feng S. Antioxidant activity, storage stability and in vitro release of epigallocatechin-3-gallate (EGCG) encapsulated in hordein nanoparticles. Food Chem 2022; 388:132903. [DOI: 10.1016/j.foodchem.2022.132903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 12/25/2022]
|
21
|
Wang L, Wei Z, Xue C. The presence of propylene glycol alginate increased the stability and intestine-targeted delivery potential of carboxymethyl starch-stabilized emulsions. Food Res Int 2022; 157:111387. [PMID: 35761643 DOI: 10.1016/j.foodres.2022.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 12/31/2022]
Abstract
Propylene glycol alginate (PGA) was added to improve the stability and delivery performance of carboxymethyl starch (CMS)-stabilized emulsion. In the first instance, the CMS/PGA complexes were characterized, which proved that the formation of CMS/PGA complexes mainly depended on hydrogen bonding, and the CMS/PGA complexes showed porous networks. The CMS/PGA complexes were more hydrophobic than CMS, and the interaction of CMS with PGA enhanced the thermal stability of CMS. Next, the effects of CMS/PGA complexes on the properties of emulsions were investigated, and the intestine-targeted delivery potential of emulsions was evaluated through the in vitro release study as well. The droplet size of CMS/PGA complex-stabilized emulsions gradually decreased and the encapsulation efficiency (EE) improved with increasing the PGA content in CMS/PGA complexes. The addition of PGA also greatly improved the physical stability of emulsions, including anti-flocculation and anti-coalescence stabilities. All emulsions exhibited non-Newtonian pseudoplastic properties. Furthermore, the emulsions stabilized by CMS/PGA complexes showed reduced curcumin (Cur) release in the simulated gastric fluid (SGF), whereas exhibited sustained release in the α-amylase-containing simulated intestinal fluid (SIF). These results demonstrated that the emulsion stabilized by CMS/PGA complex was able to control and modulate the release of Cur in the gastrointestinal tract, and was therefore a promising intestine-targeted delivery system for Cur.
Collapse
Affiliation(s)
- Luhui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
22
|
|
23
|
Boostani S, Riazi M, Marefati A, Rayner M, Hosseini SMH. Development and characterization of medium and high internal phase novel multiple Pickering emulsions stabilized by hordein nanoparticles. Food Chem 2022; 372:131354. [PMID: 34656912 DOI: 10.1016/j.foodchem.2021.131354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Medium and high internal phase W1/O/W2 multiple Pickering emulsions (MPEs) were fabricated by physically-modified hordein nanoparticles. A triphasic system was developed at dispersed phase volume fraction (Φ) of 0.5 with an overrun value of ∼40%. No overrun was detected in high internal phase MPEs (Φ 0.8). Optical and confocal laser scanning microscopy confirmed the formation of MPEs. Monomodal droplet size distribution with a mean diameter of 32.90 and 21.48 μm was observed for MPEs at Φ 0.5 and Φ 0.8, respectively. Static multiple light scattering confirmed that creaming was the main mechanism behind the instability of MPEs. Both MPEs revealed pseudo-plastic behavior and predominant storage modulus (G') over the applied frequency range. The encapsulation efficiency of vitamin B12 in MPEs was 98.3% and remained relatively constant during 28 d. These results suggested the excellent potential of hordein nanoparticles as appropriate candidate for designing multi-structural colloidal systems using plant proteins.
Collapse
Affiliation(s)
- Sareh Boostani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Food Technology, Engineering and Nutrition, Faculty of Engineering, Lund University, Lund, Sweden
| | - Masoud Riazi
- Enhanced Oil Recovery (EOR) Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Ali Marefati
- Department of Food Technology, Engineering and Nutrition, Faculty of Engineering, Lund University, Lund, Sweden
| | - Marilyn Rayner
- Department of Food Technology, Engineering and Nutrition, Faculty of Engineering, Lund University, Lund, Sweden
| | | |
Collapse
|
24
|
Schmitt C, Bovetto L, Buczkowski J, De Oliveira Reis G, Pibarot P, Amagliani L, Dombrowski J. Plant proteins and their colloidal state. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Boukid F, Rosell CM, Rosene S, Bover-Cid S, Castellari M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:6390-6420. [PMID: 33775185 DOI: 10.1080/10408398.2021.1901649] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumer interest in protein rich diets is increasing, with more attention being paid to the protein source. Despite the occurrence of animal proteins in the human diet, non-animal proteins are gaining popularity around the world due to their health benefits, environmental sustainability, and ethical merit. These sources of protein qualify for vegan, vegetarian, and flexitarian diets. Non-animal proteins are versatile, derived mainly from cereals, vegetables, pulses, algae (seaweed and microalgae), fungi, and bacteria. This review's intent is to analyze the current and future direction of research and innovation in non-animal proteins, and to elucidate the extent (limitations and opportunities) of their applications in food and beverage industries. Prior knowledge provided relevant information on protein features (processing, structure, and techno-functionality) with particular focus on those derived from soy and wheat. In the current food landscape, beyond conventionally used plant sources, other plant proteins are gaining traction as alternative ingredients to formulate animal-free foodstuffs (e.g., meat alternatives, beverages, baked products, snack foods, and others). Microbial proteins derived from fungi and algae are also food ingredients of interest due to their high protein quantity and quality, however there is no commercial food application for bacterial protein yet. In the future, key points to consider are the importance of strain/variety selection, advances in extraction technologies, toxicity assessment, and how this source can be used to create food products for personalized nutrition.
Collapse
Affiliation(s)
- Fatma Boukid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Sara Rosene
- General Mills, Golden Valley, Minnesota, USA
| | - Sara Bover-Cid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| |
Collapse
|
26
|
Li F, Li X, Huang K, Luo Y, Mei X. Preparation and characterization of pickering emulsion stabilized by hordein-chitosan complex particles. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Wang Y, Yang F, Yang J, Bai Y, Li B. Synergistic stabilization of oil in water emulsion with chitin particles and tannic acid. Carbohydr Polym 2021; 254:117292. [PMID: 33357861 DOI: 10.1016/j.carbpol.2020.117292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023]
Abstract
The aim of the present study was to explore the effect of CP and TA on stability of oil in water emulsion stabilized by the two components, so as to fabricate the most efficient chitin based emulsifying agents. It was found that there was synergistic effect for CP and TA in stabilizing emulsion, specifically, the complex of chitin particles (CP) (3 g/L) with tannic acid (TA) (2 g/L) produced the most physically and oxidatively stable oil-in-water emulsion compared with other groups in this study. This is because CP-TA (3/5) complex had the lowest zeta potential, the lowest the oil water interfacial tension, the highest viscosity and the highest content of TA with excellent antioxidant activity. Furthermore, this is because there was intense interaction between CP and TA in CP-TA complex from results of FTIR, XRD and ITC, which then result in the formation of large CP-TA particles.
Collapse
Affiliation(s)
- Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, 450001, China
| | - Fang Yang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, 450001, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, Henan, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, 450001, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
28
|
Yang F, Yang J, Qiu S, Xu W, Wang Y. Tannic acid enhanced the physical and oxidative stability of chitin particles stabilized oil in water emulsion. Food Chem 2020; 346:128762. [PMID: 33385917 DOI: 10.1016/j.foodchem.2020.128762] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023]
Abstract
In this work, the stability of CP-TA complex stabilized emulsion was first characterized. It was found that the peak thickness, Turbiscan Stability Index (TSI) and droplet size of CP-TA complex stabilized emulsion gradually decreased with increasing content of TA, indicating the gradually enhanced physical stability of emulsion, which was attributed to the gradually decreased interfacial tension, zeta potential and increased viscosity of CP-TA complex. Moreover, the oxidative stability of CP-TA complex stabilized emulsion gradually enhanced with increasing of TA content due to the antioxidant activity of TA. XRD and FTIR results suggested that the interaction between CP and TA gradually enhanced with increasing content of TA in CP-TA complex, leading to the formation of larger CP-TA clusters shown in AFM results. In conclusion, the presence of tannic acid (TA) enhanced the physical and oxidative stability of chitin particles-tannic acid (CP-TA) complex stabilized oil in water emulsion.
Collapse
Affiliation(s)
- Fang Yang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Henan Province, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, Henan, China
| | - Si Qiu
- Chengdu Normal University, College of Chemistry and Life Sciences, Chengdu 610000, China
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Henan Province, China.
| |
Collapse
|
29
|
Li M, Yu M. Development of a nanoparticle delivery system based on zein/polysaccharide complexes. J Food Sci 2020; 85:4108-4117. [DOI: 10.1111/1750-3841.15535] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ming Li
- College of Food Science and Engineering Tonghua Normal University 950, Yucai Road Tonghua Jilin 134001 P.R. China
| | - Meihui Yu
- College of Food Science and Engineering Tonghua Normal University 950, Yucai Road Tonghua Jilin 134001 P.R. China
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Li hu Road Wuxi Jiangsu 214122 P.R. China
- School of Food Science and Technology Jiangnan University 1800 Li hu Road Wuxi Jiangsu 214122 P.R. China
| |
Collapse
|
30
|
Gharaghani M, Mousavi M, Khodaiyan F, Yarmand MS, Omar-Aziz M, Hosseini SS. Octenyl succinylation of kefiran: Preparation, characterization and functional properties. Int J Biol Macromol 2020; 166:1197-1209. [PMID: 33157131 DOI: 10.1016/j.ijbiomac.2020.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/09/2020] [Accepted: 11/01/2020] [Indexed: 11/16/2022]
Abstract
In this study, kefiran was esterified with octenyl succinic anhydride (OSA). The esterification reaction variables including pH (8.5), kefiran concentration (5% (w/w)), OSA concentration (12% (w/w)), temperature (~38 °C) and reaction time (~80 min) were found as optimum points to achieve the maximum degree of substitution (DS) (0.041 ± 0.002). Kefiran-OSA samples with DS of 0.021 (FDA suggested DS) and 0.041 (maximum DS) were prepared and compared with unmodified kefiran in all experiments. FTIR and 1H NMR spectroscopies proved the grafting of OSA on kefiran structure. XRD analysis revealed that with increase in DS, the physical state of kefiran to be more amorphous. In addition, the esterification modification led to a decrease in the degradation temperature and an increase in the apparent viscosity based on the obtained data from thermal analysis and viscosity measurement. The results of the foaming and emulsifying properties confirmed the improvement in surface properties of the modified kefiran. The frequency sweep test illustrated that with an increase in DS, the viscoelastic behavior of the kefiran cryogels to be more viscous. It can finally be stated that the modification with OSA was a high potential strategy to extend the industrial applications of the kefiran.
Collapse
Affiliation(s)
- Mohammad Gharaghani
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Mohammad Mousavi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran.
| | - Mohammad Saeid Yarmand
- Department of Food Science and Technology, Razi Food Chemistry Lab, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Maedeh Omar-Aziz
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Seyed Saeid Hosseini
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
31
|
|
32
|
Sarkar A, Dickinson E. Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.04.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
He A, Guan X, Song H, Li S, Huang K. Encapsulation of (−)-epigallocatechin-gallate (EGCG) in hordein nanoparticles. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Effects of zein stabilized clove essential oil Pickering emulsion on the structure and properties of chitosan-based edible films. Int J Biol Macromol 2020; 156:111-119. [DOI: 10.1016/j.ijbiomac.2020.04.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/26/2022]
|
35
|
Martínez-López AL, Pangua C, Reboredo C, Campión R, Morales-Gracia J, Irache JM. Protein-based nanoparticles for drug delivery purposes. Int J Pharm 2020; 581:119289. [PMID: 32243968 DOI: 10.1016/j.ijpharm.2020.119289] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
36
|
Gahruie HH, Eskandari MH, Khalesi M, Van der Meeren P, Hosseini SMH. Rheological and interfacial properties of basil seed gum modified with octenyl succinic anhydride. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105489] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Boostani S, Hosseini SMH, Golmakani MT, Marefati A, Abdul Hadi NB, Rayner M. The influence of emulsion parameters on physical stability and rheological properties of Pickering emulsions stabilized by hordein nanoparticles. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105520] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
38
|
Jafari SM, Sedaghat Doost A, Nikbakht Nasrabadi M, Boostani S, Van der Meeren P. Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Prolamins from cereal by-products: Classification, extraction, characterization and its applications in micro- and nanofabrication. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|