1
|
Fang JL, Hu FL, Wu YQ, Liu T, Sun PP, Ren YY. Green construction and digestive properties of Fe (II) and quercetin double-loaded delivery system by wampee polysaccharide and its application. Food Chem 2025; 478:143688. [PMID: 40056615 DOI: 10.1016/j.foodchem.2025.143688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/06/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
This study was aimed to investigate green synthesis of wampee polysaccharide-Fe (II), called PQ-Fe (II), and its potential to load quercetin. Results showed that molecular weight of PQ-Fe (II) was 2.48 × 106 Da and it was composed of mannose, rhamnose, glucuronic acid, glucose, galactose with Fe (II) content being 84 %. Structural characterization proved the formation of FeO bonds and its average particle size was 68.1 nm, zeta potential being -30.1 mV. Moreover, Fe (II) and quercetin double-loaded delivery system PQ-Fe(II)-QR was successfully constructed and applied in gummy candies, which achieved 84.37 % loading efficiency of quercetin with excellent stability. When PQ-Fe(II)-QR concentration was 1 mg/mL, the scavenging rate of hydroxyl radical and DPPH radical were 51.7 % and 94.3 % respectively, and its inhibition rate on α-glucosidase reached 93.2 %. Moreover, PQ-Fe(II)-QR had high bioavailability during simulated digestion in vitro. These results highlighted that PQ-Fe(II)-QR had great prospect in iron supplement and nutrient delivery.
Collapse
Affiliation(s)
- Juan-Li Fang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Fu-Lan Hu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Ya-Qin Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Tao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Peng-Peng Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Yuan-Yuan Ren
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| |
Collapse
|
2
|
Liu Q, Liu P, Ban Q. Green development strategy for efficient quercetin- loaded whey protein complex: Focus on quercetin loading characteristics, component interactions, stability, antioxidant, and in vitro digestive properties. Food Chem 2025; 472:142939. [PMID: 39842208 DOI: 10.1016/j.foodchem.2025.142939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
This study aimed to develop a quercetin-loaded whey protein complex using pH-induced co-assembly for the intestinal-targeted delivery of quercetin. The investigation focused on quercetin loading capacity, formation mechanism, stability, antioxidant activity, and in vitro digestive properties of the complex. The results indicated that the stable complex was obtained at a quercetin-to-protein mass ratio of 1:20, exhibiting a high encapsulation efficiency (96.4 %) and loading capacity (4.6 %). Interaction studies revealed that quercetin binds to whey protein via hydrophobic interactions and hydrogen bonding, forming an irregular layered structure. Stability analysis demonstrated that the complex possesses high ionic and thermal stability. The antioxidant capacity of quercetin was significantly enhanced by complex encapsulation. In vitro digestion studies showed that the complex could pass through the gastrointestinal tract smoothly and effectively improve the bio-accessibility of quercetin. These findings provide a theoretical basis for the application of whey protein-based quercetin delivery systems in the functional food field.
Collapse
Affiliation(s)
- Qingguan Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China.
| | - Puying Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Wang W, Dai Y, Cheng C, Wang R, Ma J, Jing Q. Development and functional evaluation of curcumin-loaded zein-gum Arabic-flaxseed gum complex nanoparticles for anti-fatigue applications. Int J Biol Macromol 2025; 310:142998. [PMID: 40216129 DOI: 10.1016/j.ijbiomac.2025.142998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
In this study, zein-gum Arabic (GA)-flaxseed gum (FG) nanoparticles (ZGF) were prepared using the anti-solvent and electrostatic deposition methods to overcome the hydrophobicity and instability of curcumin (CUR). Additionally, the optimal mass ratio of GA to FG (4:1) and CUR to zein (1:40) was determined. Additionally, the initial concentration of the polysaccharide (0.04 %) was determined and the ZGF nanoparticles encapsulated with CUR (CUR-ZGF) were optimized. The formed CUR-ZGF nanoparticles were spherical, with a particle size of 188 nm and an embedding rate of 96.8 %. Furthermore, the CUR-ZGF nanoparticles showed excellent pH, thermal, storage, and salt stability. The encapsulate CUR exhibited antioxidant capacity and controlled release rate in the gastrointestinal digestive system in vitro. Animal experiments showed CUR-ZGF nanoparticles significantly enhanced exercise capacity and anti-fatigue effects. High-dose CUR-ZGF nanoparticles doubled exhaustion running time versus the model group, improving exercise endurance. Fatigue-related biochemical parameters (serum urea nitrogen, serum lactate, and creatine kinase) were significantly reduced, indicating rapid fatigue elimination. Meanwhile, significantly increased lactate dehydrogenase and fasting glucose levels suggested efficient energy replenishment to mitigate fatigue damage. These results indicate CUR-ZGF nanoparticles may be a promising natural anti-fatigue healthcare product in the future.
Collapse
Affiliation(s)
- Weichen Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China
| | - Yu Dai
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China
| | - Cuilin Cheng
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China; Qiongqing Institute, Harbin Institute of Technology, 618 Liangjiang Road, Longxing Town, Qiongqing 401120, PR China.
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China.
| | - Jiapei Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China
| | - Qiuju Jing
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, 666 Haping Road, Xiangfang District, Harbin 150069, PR China
| |
Collapse
|
4
|
Mu X, Roghzai H, Zeng L, Sun X, Zhao X. Curcumin-loaded zein and shellac composite nanoparticles for ulcerative colitis treatment. Eur J Pharm Biopharm 2025; 209:114658. [PMID: 39914574 DOI: 10.1016/j.ejpb.2025.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/08/2024] [Accepted: 02/02/2025] [Indexed: 03/10/2025]
Abstract
This study highlights the efficacy of microfluidic technology in creating curcumin (Cur) loaded zein + shellac (Z + S) hybrid nanoparticles (NPs), presenting a promising avenue for enhancing Cur's availability in the food industry, especially in beverages, and positioning it as a potent antioxidant strategy for applications such as the treatment of enteritis. The study revealed that an increase in the proportion of shellac led to a gradual increase in the particle size of Z + S NPs, while the polydispersity index (PDI) initially decreasing and then increasing. When Cur is encapsulated, an increase in the proportion of shellac resulted in a gradual decrease in particle size and PDI, accompanied by an increase in encapsulation efficiency (EE). When the ratio of zein and shellac remained constant, elevating the Cur concentration led to a gradual decrease in EE and a gradual increase in drug loading. The consistently low Zeta potential (below -20 mV) confirmed the colloidal stability of the NPs, making them suitable for prolonged storage. The NPs exhibited excellent biocompatibility with normal cells and demonstrated effective free radical scavenging capabilities. Mixing of shellac and zein regulated the release profile of Cur from the NPs, mapping the food fate in human body, enhancing the treatment efficacy of ulcerative colitis. In vivo experiment demonstrated that the NPs are able to effectively relieve the dextran sulphate sodium induced enteritis, providing a promising approach for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Xiaoyan Mu
- School of Pharmacy, Changzhou University, Changzhou 213164 China; School of Chemical Engineering, Changzhou University, Changzhou 213164 China
| | - Hemin Roghzai
- School of Pharmacy, Changzhou University, Changzhou 213164 China; College of Science, University of Sulaimani, Kurdistan 46001 Iraq
| | - Lingwen Zeng
- School of Chemical Engineering, Changzhou University, Changzhou 213164 China
| | - Xiaoqiang Sun
- School of Chemical Engineering, Changzhou University, Changzhou 213164 China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164 China.
| |
Collapse
|
5
|
Zhang J, Gan C, Xu K, Wang H, Li H, Yang L, Sun S. Fabrication and characterization of zein/gelatin/carboxymethyl starch nanoparticles as an efficient delivery vehicle for quercetin with improved stability and bioaccessibility. Int J Biol Macromol 2025; 308:142409. [PMID: 40122423 DOI: 10.1016/j.ijbiomac.2025.142409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Quercetin-loaded zein nanoparticles with dual coating of gelatin and carboxymethyl starch were fabricated and characterized. The composite nanoparticles demonstrated remarkable stability over a wide pH range (2.0-8.0) as well as under heat, UV irradiation, and prolonged storage conditions. Fluorescence and infrared spectroscopy analyses indicated that the primary driving forces in the formation of the composite nanoparticles were hydrogen bonding, electrostatic interactions, and hydrophobic interactions. The quercetin-loaded nanoparticles showed a substantial enhancement in the antioxidant properties and exhibited higher bioaccessibility during in vitro simulated gastrointestinal digestion. Moreover, the encapsulation efficiency of quercetin was greatly improved to 95.2 % after dual coating, in contrast to 60.5 % for the zein nanoparticle without coating. These results indicate that zein nanoparticles double-coated with gelatin and carboxymethyl starch can significantly improve the stability, antioxidant property, and bioaccessibility of the hydrophobic bioactive substance, which helps to promote its application in the field of functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Jingwen Zhang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Changsheng Gan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Kun Xu
- Anhui Dexinjia Biopharm Co., Ltd, Taihe, Anhui 236600, PR China
| | - Honglei Wang
- Anhui Dexinjia Biopharm Co., Ltd, Taihe, Anhui 236600, PR China
| | - Huiya Li
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Liu Yang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Shiji Sun
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| |
Collapse
|
6
|
Wang X, Cao Z, Su J, Ma Y, Zhang S, Shao Z, Ge X, Cheng X, Zhou Z. Preparation of sodium alginate and chitosan modified curcumin liposomes and study on the formation of protein corona. Int J Biol Macromol 2025; 293:139392. [PMID: 39746413 DOI: 10.1016/j.ijbiomac.2024.139392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Curcumin (CUR) is a polyphenolic compound extracted from plants with a wide range of pharmacological activities. However, the low stability and bioavailability limits its practical application. This work utilized the chitosan (CH) and sodium alginate (SA) to modify the surface of the liposome to improve the stability of curcumin. Studies on the adsorption of pepsin to the surface of liposomes and the formation of protein coronas (PCs) were also carried out to investigate the in vivo behavior of the sodium alginate and chitosan modified curcumin liposomes (SA-CH-LPs). The result shown that the average particle size of SA-CH-LPs was around 220.7 ± 1.68 nm. X-ray Diffractometer (XRD) and differential scanning calorimeter (DSC) confirmed the successful preparation of SA-CH-LPs and illustrated their crystalline characteristics. The cytotoxicity of SA-CH-LPs was determined by CCK-8 assay and the results showed that the cell viability was above 80 % at different concentrations. In vitro results showed that the bioaccessibility of SA-CH-LPs (87.9 %) was better than curcumin liposomes (LPs) (66.4 %), and could better resist to catabolic degradation in the gastrointestinal environment. This work could provide the feasibility for improving the stability and bioaccessibility of the curcumin liposome, as well as given the preliminary evidence for investigation of the interaction with enzyme during the in vivo digestion process for the further application in food.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhaoxin Cao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jingyi Su
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yu Ma
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Siyu Zhang
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zihan Shao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Xiaoliang Cheng
- Xi'an Jiaotong University, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Zhiyong Zhou
- College of Medicine and Health Sciences, Three Gorges University, Yichang, China
| |
Collapse
|
7
|
Chai Y, Zhou Y, Zhang K, Shao P. Resveratrol nanoparticles coated by metal-polyphenols supramolecular enhance antioxidant activity and long-term stability of dietary gel. Food Chem 2025; 465:141987. [PMID: 39608093 DOI: 10.1016/j.foodchem.2024.141987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Resveratrol (RES) is an important functional substance with multiple active properties. However, RES is susceptible to natural environmental conditions that reduce its bioactivity. To improve the bioavailability of RES, in this study, Catechin and Fe3+/Ca2+ were selected to form supramolecules, which were then coated on the surface of hydrophobic RES nanoparticles (RES NPs) to create composite RES NPs. The obtained composite RES NPs demonstrated higher antioxidant capacity and better photo-thermal stability than RES NPs. Additionally, a pectin (PE) dietary gel was designed as a delivery carrier for RES. The results showed that the incorporation of composite RES NPs not only endowed the gels with significant dietary activity but also enhanced the texture, water retention capacity and hydrophobicity. After 28 days of storage, the retention rate of RES could be maintained above 90 % in the dietary gels. Meanwhile, the controlled release of RES was achieved in in vitro simulated digestion.
Collapse
Affiliation(s)
- Yiyang Chai
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Ying Zhou
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Dept, Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany; Biotechnology Center (Biotechnikum), University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China; Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang, Huzhou 313200, PR China.
| |
Collapse
|
8
|
Li J, Li L. Preparation and characterization of quercetin-loaded nanoparticles based on soy protein isolate-oat β-glucan extrudates: Interaction, structure, stability, and in vitro release properties. Food Res Int 2025; 202:115576. [PMID: 39967084 DOI: 10.1016/j.foodres.2024.115576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/02/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Soy protein isolate (SPI)-oat β-glucan (OG) conjugates produced by extrusion were used to prepare nanoparticle carriers for improving quercetin stability. The 70-130 °C SPI-OG extrudate nanoparticles exhibited higher encapsulation efficiency (EE, 75.63-80.30 %) and loading capacity (LC, 46.22-50.83 %), especially 90°C (EE and LC were 80.30 % and 50.83 %, respectively) and 110 °C (EE and LC were 79.84 % and 49.26 %, respectively) SPI-OG extrudate nanoparticles. The average particle size of quercetin-loaded SPI-OG extrudate nanoparticles ranged from 185.77 nm to 244.07 nm. SPI-OG extrudates around quercetin were tightly bound to it through hydrogen bonding and hydrophobic interactions, resulting in the structure of quercetin to change from crystalline state to amorphous state. Stability results of quercetin indicated that SPI-OG extrudate nanoparticles could more effectively protect the antioxidant activity of quercetin and improve its storage stability (quercetin retention of 31.89-39.82 % after 21 days). Meanwhile, SPI-OG extrudate nanoparticles mainly continuously released quercetin during the simulated intestinal digestion (cumulative release rate was 18.99-21.10 % in intestinal stage). These results indicated that SPI-OG extrudate nanoparticles could effectively encapsulate quercetin and prolong its biological activity, thus could be applied in nutritional supplements and functional foods.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
9
|
Wang ZX, Chen X, Ni LH, Zhai JM, Zong WL, Wu YC, Li HJ. Assembly of foxtail millet prolamin/chitosan hydrochloride/carboxymethyl-beta-cyclodextrin in acetic acid aqueous solution for enhanced curcumin retention. Food Chem 2025; 464:141753. [PMID: 39504901 DOI: 10.1016/j.foodchem.2024.141753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
The aim of this work is to investigate the assembly of foxtail millet prolamin (FP) with chitosan hydrochloride (CHC) and carboxymethyl-beta-cyclodextrin (CMCD) in acetic acid aqueous solutions. The proportion of acetic acid has a positive impact on the disintegration of FP. With the use of 91.0 % (v/v) acetic acid, FP forms smaller particles of approximately 45 nm (naked FP particles) and 220 nm (FP - CHC - CMCD hybrid particles). In the case of using 61.5 % (v/v) acetic acid, the microstructures of bare FP particles and 570 nm composite FP nanoparticles (NPs) are looser, about 485 nm. Acetic acid inhibits the noncovalent bonds, including the hydrophobic interactions, hydrogen bonding and electrostatic attractions between FP and polysaccharides. Therefore, 3.8 % (v/v) acetic acid can nucleate FP to form more compact FP hybrid particles for delivering curcumin (Cur) with higher encapsulation efficiency, storage stability and release performance, and improve the antibacterial and anticancer activity of Cur.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Li-Hui Ni
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Jia-Ming Zhai
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Wan-Li Zong
- Weihai Institute for Food and Drug Control, Weihai 264200, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China.
| |
Collapse
|
10
|
Liu S, Yu L, Han Y, Wang S, Liu Z, Xu H. Preparation, characterization, formation mechanism, and stability studies of zein/pectin nanoparticles for the delivery of prodigiosin. Int J Biol Macromol 2025; 290:138915. [PMID: 39706435 DOI: 10.1016/j.ijbiomac.2024.138915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Prodigiosin (PG) is a natural compound produced by microorganisms, that is known for its promising bioactive properties. However, owing to its inherent water insolubility, low bioavailability, and poor stability, the practical application of prodigiosin remains challenging. In this work, the nanoparticles of prodigiosin-loaded zein-pectin were prepared using electrostatic deposition and antisolvent precipitation methods. The encapsulation efficiency and loading capacity of prodigiosin in Z-Pet/PG 2:1 nanoparticles were 89.05 % and 7.49 %, respectively, with a zeta potential of -23.03 mV, with a particle size was 184.13 nm. The nanoparticles were uniformly distributed and possessed a spherical morphology, as determined using scanning electron microscopy. The formation mechanism between nanoparticles has been investigated using circular dichroism, fluorescence spectroscopy, molecular docking, and Fourier-transform infrared spectroscopy, which indicated stabilization predominantly through electrostatic, hydrophobic, and hydrogen-bonding interactions. Furthermore, Z-Pet/PG 2:1 nanoparticles proved remarkable stability across a pH range from 3 to 7, NaCl concentrations below 50 mmol/L, at elevated temperatures (60, 70, and 80 °C) for 1 h, and at redispersion. Prodigiosin was progressively delivered by the nanoparticles in simulated gastrointestinal settings, with a cumulative release rate of 75.32 % in simulated intestinal fluid, thereby demonstrating enhanced bioavailability and allowing for a controlled and sustained-release in vitro. These findings indicate that Z-Pet/PG nanoparticles are a promising delivery platform for prodigiosin, and are potentially applicable to other hydrophobic compounds with limited bioavailability.
Collapse
Affiliation(s)
- Shuhua Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Leijuan Yu
- Shandong Polytechnic, Jinan 250104, China
| | - Yanlei Han
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Shanshan Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Zihao Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Hui Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China.
| |
Collapse
|
11
|
Li Y, Ni Y, He W, Li H, Zhang W, Tan L, Zhao J, Xu B. Mussel-inspired highly adhesive carrageenan-based coatings with self-activating enhanced activity for meat preservation. Carbohydr Polym 2025; 348:122840. [PMID: 39562113 DOI: 10.1016/j.carbpol.2024.122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
In order to solve the problem of poor adhesion of polysaccharide coatings in meat storage and inconvenient secondary spraying, which leads to poor preservation effect, this study was inspired by the property of mussels to adhere firmly to surfaces and design a bioactive composite coating. Here, curcumin-loaded zein nanoparticles (CZ NPs) were successfully prepared and incorporated into carrageenan-based biocomposite coatings for chilled meat preservation. The prepared curcumin-zein-riboflavin-carrageenan (CZRC) coating featured smooth spherical morphology and the solubility of hydrophobic substances, the adhesion and stability of the composite coating were respectively improved to 3.8 and 6 times compared to CZ NPs. The CZRC coating also shows desirable antioxidant activity (89.78 ± 4.8 % on DPPH and 91.40 ± 2.1 % on ABTS+) and the treatment based on CZRC coating under light irradiation reduced Pseudomonas fragi (by 2.02 log CFU/mL) and Brochothrix thermosphacta (by 4.35 log CFU/mL), which prolonged the shelf life of lamb and pork to 1.8 and 2.3 times at 4 °C storage condition. This work provides a viable strategy for the development of highly adhesive coatings with self-activation enhanced activity to achieve long-lasting preservation.
Collapse
Affiliation(s)
- Yumeng Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China.
| | - Wei He
- Shandong Huifa Foodstuff Co., Ltd., Zhucheng 262200, Shandong Province, China
| | - Haoran Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China
| |
Collapse
|
12
|
Qian M, Shi H, Wang F, You C, Zhang Y, Li X. Preparation, characterization, stability and functional properties of andrographolide loaded kafirin/carboxymethyl cellulose composite particles using antisolvent precipitation method. Int J Biol Macromol 2025; 284:138105. [PMID: 39608519 DOI: 10.1016/j.ijbiomac.2024.138105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Enhancing the oral bioavailability of hydrophobic nutraceuticals and protecting bioactive components through encapsulation systems has gained significant attention in food science. This study explored the preparation and characterization of kafirin (Kaf)/carboxymethyl cellulose (CMC) composite nanoparticles for encapsulating andrographolide (AG) using the antisolvent precipitation method. The optimal Kaf to CMC mass ratio was identified as 4:1, resulting in nanoparticles with an average diameter of 146.4 nm. CMC markedly improved the water dispersibility of the nanoparticles compared to Kaf alone. The formation of these composite nanoparticles was mainly driven by hydrophobic interactions, hydrogen bonding, and electrostatic interactions. Compared to Kaf nanoparticles, the Kaf/CMC nanoparticles showed enhanced encapsulation efficiency, gastrointestinal release characteristics, and stability. Additionally, AG-loaded composite nanoparticles showed exhibited superior biological safety and anti-cancer effects, highlighting their potential for therapeutic applications. In conclusion, Kaf/CMC composite nanoparticles present a promising delivery system for hydrophobic nutraceuticals and drugs, contributing to advancements in drug delivery technologies and nutraceutical formulations.
Collapse
Affiliation(s)
- Mengyu Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoqun You
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Xue Y, Zhang X, Wang Z. Improving the color stability of red Monascus pigments by direct protein microgelation. Food Res Int 2025; 199:115389. [PMID: 39658179 DOI: 10.1016/j.foodres.2024.115389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The application of red Monascus pigments (RMPs) in food storage as well as food processing usually endures harsh environmental conditions. Here, we presented a new encapsulation strategy to improve the stability of RMPs. At first, we managed to realize the azaphilic substitution reaction between orange Monascus pigments (OMPs) and soy protein to produce water-soluble RMPs, i.e., soy protein chemically modified by OMPs. Then, the as-prepared RMPs as a kind of protein were directly utilized to fabricate microgels where microgel efficiency > 60 % (encapsulation of RMPs in microgels > 60 %) was achieved after optimization of Ca2+ and RMP concentrations. The microgels with particle sizes < 10 μm dispersed very well in water. The stability of encapsulated RMPs in microgels under harsh environmental conditions, such as heating, acidic pH, and sunlight irradiation, had improved approximately 10-20 % compared with that of free RMPs under the same condition.
Collapse
Affiliation(s)
- Yunxin Xue
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Zhilong Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China.
| |
Collapse
|
14
|
Zhang Z, Zhang X, Lin B, Zhong Y, Zhang W, Zhong S, Chen X. Characterization and application of Cinnamaldehyde-loaded zein nanoparticles in a polyvinyl alcohol/chitosan film for silver pomfret ( Pampus argenteus) packaging. Food Chem X 2024; 24:102012. [PMID: 39651374 PMCID: PMC11625282 DOI: 10.1016/j.fochx.2024.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
This study aims to prepare and characterize cinnamaldehyde-loaded zein/sodium alginate nanoparticles (ZCNPs) and incorporate them into polyvinyl alcohol/chitosan (PVA/CS) bioactive films (PSCN) to investigate their compatibility, physicochemical properties, and their application as a preservation material for pomfret fish. The results indicate that the anionic sodium alginate coating improved the particle size, zeta potential, and PDI of zein nanoparticles. The ZCNPs were uniformly dispersed within the films, enhancing the mechanical properties and water vapor barrier performance. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses confirmed the amorphous structure of the films and the formation of hydrogen bonds. In the PVA/CS film, with the increase of ZCNPs, the thermal decomposition temperature of the film increased from 298 °C to 308 °C, while the film thickness and water contact angle were not significantly affected, remaining around 0.31 cm and 23°, respectively. Additionally, after the incorporation of ZCNPs, the DPPH radical scavenging rate of the film increased from 14.58 % to 95.38 %, significantly delaying the quality deterioration of pomfret during storage.
Collapse
Affiliation(s)
- Zhan Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Xiaojun Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Bing Lin
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Yaqian Zhong
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Wenxiu Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Shangrong Zhong
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Xiaxia Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| |
Collapse
|
15
|
Chen Y, Mao L, Wang W, Yuan H, Yang C, Zhang R, Zhou Y, Zhang G. An efficient strategy to tailor PET hydrolase: Simple preparation with high yield and enhanced hydrolysis to micro-nano plastics. Int J Biol Macromol 2024; 281:136479. [PMID: 39393729 DOI: 10.1016/j.ijbiomac.2024.136479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Polyethylene terephthalate (PET) nano/microplastics (PET-NMPs) are regarded as an emergent hazardous waste for the environment. Enzymatic treatment of PET-NMPs is one of the most promising methods. However, strategies for mining or engineering of PET hydrolases with better characteristics and the simple and cost-effective preparation of them are the bottlenecks currently. Herein, we proposed a gene fusion strategy to tailor PET hydrolase (ICCG) with ferritin (namely F-C) towards micro-nano PET degradation. The purified F-C was obtained by an easy scalable low-speed centrifugation with 80.8 % activity recovery and 82.9 % protein recovery compared to the crude protein extraction, with the final high yield of 2.17 g/L. Encouragingly, unlike only hydrolyzing amorphous PET (crystallinity lower than 10 %), the resulted F-C showed 84.53 mgTPA/h/mgEnzyme specific activity at 70 °C for 5 h towards micro-PET with relatively high crystallinity (20.54 %) at the optimized enzyme/PET ratio of 1:100 (Wt), without producing intermediates. The supreme activity of F-C was closely related to its enhanced affinity towards substrate, increased substrate's ester bond tensions and binding pocket volume. More interestingly, F-C exhibited promising stability not only in storage or high temperature, but also in simulated seawater (hypersaline environment), with the half-lives of 128.4 days at 30 °C. Thus, the all-in-one strategy will offer a green and alternative solution to assist the PET-NMPs waste treatments such as recycling in the high-temperature reactor or degradation in seawater.
Collapse
Affiliation(s)
- Yaxin Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Lei Mao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Weijuan Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Hang Yuan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Chun Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ruifang Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yanhong Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guangya Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
16
|
Luo X, Zhao L, Khan IM, Yue L, Zhang Y, Wang Z. Chitosan-curcumin conjugate prepared by one-step free radical grafting: Characterization, and functional evaluation. Carbohydr Res 2024; 545:109297. [PMID: 39467401 DOI: 10.1016/j.carres.2024.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Curcumin (Cur) is a naturally hydrophobic polyphenol, and it has a wide range of physiological functions. But the practical application of Cur is constrained by its low water solubility and poor stability. To improve these deficiencies of Cur, a novel Cur derivative (CS-Cur) was prepared by grafting chitosan (CS) with Cur through a one-step reaction of a free radical-mediated redox system. A series of characterizations provided evidence that the grafting of CS with Cur was successful. The obtained CS-Cur showed lower crystallinity and thermal properties than CS and Cur. After grafting, the water solubility of CS-Cur was found to be 9.76 ± 2.45 g/L and greatly improved. Meanwhile, the CS-Cur showed good photothermal stability, antioxidant activity, and photodynamic antibacterial activity in an aqueous solution, and it had good in vitro biosafety. This provides an idea for the design and synthesis of novel highly water-soluble Cur derivatives and also improves the practical application of Cur in aqueous systems.
Collapse
Affiliation(s)
- Xuerong Luo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Lingyu Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Lin Yue
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
17
|
Zhao Z, Zhao D, Su L, Ding M, Zhang M, He H, Li C. Encapsulation and release of salidroside in myofibrillar protein‑sodium alginate gel: Effects of different M/G ratios of sodium alginate. Int J Biol Macromol 2024; 282:136811. [PMID: 39461650 DOI: 10.1016/j.ijbiomac.2024.136811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Myofibrillar protein‑sodium alginate (MP-SA) gels play a pivotal role in the development of functional food gels. Salidroside (SAL) is promising component but suffers from low bioavailability, necessitating effective delivery systems. This study introduces M/G ratio factor into classical theoretical MP-based gel models, and use for the SAL delivery. The findings indicate that SA significantly enhances gel properties and functions. Scanning electron microscopy, liquid chromatography, and low-field nuclear magnetic resonance confirmed that the addition of SA improved microstructure, water retention, and thus reduced SAL loss during processing. Digestion simulations revealed the influence of SA type on SAL release kinetics. Molecular docking showed that SA with lower M/G ratio binds more readily to MP, a key determinant of gel performance. These insights provide a novel theoretical basis for MP-SA gels and offer a new perspective on the delivery of bioactive compounds in functional foods.
Collapse
Affiliation(s)
- Zerun Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liuyu Su
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengzhen Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Miao Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hui He
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Cs J, Haider M, Rawas-Qalaji M, Sanpui P. Curcumin-loaded zein nanoparticles: A quality by design approach for enhanced drug delivery and cytotoxicity against cancer cells. Colloids Surf B Biointerfaces 2024; 245:114319. [PMID: 39461183 DOI: 10.1016/j.colsurfb.2024.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Zein, a maize protein, has been explored for constructing potential biomaterial due to its hydrophobic nature, self-assembly capability, and biocompatibility. In its nanoparticulate form, zein is a promising material for drug delivery applications, particularly in cancer treatment. Despite the importance of colloidal stability for effective drug delivery, systematic studies investigating the effect of various surface modifying agents (MAs) on the zein nanoparticles (ZNPs)-based formulations are limited. This study employs quality-by-design (QbD) approach to optimize curcumin-loaded ZNPs, enhancing colloidal stability, size, and drug-encapsulation efficiency using different MAs for potential cancer therapy. Gum arabic (GA) emerged as the optimal stabilizer, with GA-stabilized curcumin-loaded ZNPs (GA-Cur-ZNPs) achieving a particle size of 184.8 ± 2.85 nm, zeta potential of -23.4 ± 0.56 mV and 87.1 ±1.55 % drug encapsulation efficiency, along with excellent colloidal stability over two months. The optimal formulation also demonstrated sustained release of Cur over 72 h. GA-Cur-ZNPs demonstrated lower IC50 values and higher anti-proliferative effects on three different cancer cell lines compared to the free drug, while also exhibiting superior intracellular uptake. With negligible toxicity to human dermal fibroblast cells, the optimized Cur-GA-ZNPs show promise for safe and effective killing of cancer cells.
Collapse
Affiliation(s)
- Jayalakshmi Cs
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, UAE; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Mohamed Haider
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE.
| | - Mutasem Rawas-Qalaji
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, UAE.
| |
Collapse
|
19
|
Liu Q, Zhang Q, Jia F, Jiang N, Wang C, Sun R, Ma Y. Construction of quaternary ammonium chitosan-coated protein nanoparticles as novel delivery system for curcumin: Characterization, stability, antioxidant activity and bio-accessibility. Food Chem 2024; 455:139923. [PMID: 38833855 DOI: 10.1016/j.foodchem.2024.139923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
This research aimed to develop a novel, effective, and stable delivery system based on zein (ZE), sodium caseinate (SC), and quaternary ammonium chitosan (HACC) for curcumin (CUR). The pH-driven self-assembly combined with electrostatic deposition methods were employed to construct CUR-loaded ZE-SC nanoparticles with HACC coating (ZE-SC@HACC). The optimized nanocomposite was prepared at ZE:SC:HACC:CUR mass ratios of 1:1:2:0.1, and it had encapsulation efficiency of 89.3%, average diameter of 218.2 nm, and ζ-potential of 40.7 mV. The assembly of composites and encapsulation of CUR were facilitated primarily by hydrophobic, hydrogen-bonding, and electrostatic interactions. Physicochemical stability analysis revealed that HACC coating dramatically enhanced ZE-SC nanoparticles' colloidal stability and CUR's resistance to chemical degradation. Additionally, antioxidant activity and simulated digestion results indicated that CUR-ZE-SC@HACC nanoparticles showed higher free radical scavenging capacity and bio-accessibility of CUR than CUR-ZE-SC nanoparticles and free CUR. Therefore, the ZE-SC@HACC nanocomposite is an effective and viable delivery system for CUR.
Collapse
Affiliation(s)
- Qianyuan Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Qian Zhang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Feihong Jia
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Ning Jiang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China.
| | - Cheng Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China.
| | - Rongxue Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China.
| | - Yanhong Ma
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China.
| |
Collapse
|
20
|
Hu L, Zhao P, Wei Y, Lei Y, Guo X, Deng X, Zhang J. Preparation and Characterization Study of Zein-Sodium Caseinate Nanoparticle Delivery Systems Loaded with Allicin. Foods 2024; 13:3111. [PMID: 39410146 PMCID: PMC11475593 DOI: 10.3390/foods13193111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Allicin, as a natural antibacterial active substance from plants, has great medical and health care value. However, due to its poor stability, its application in the field of food and medicine is limited. So, in this paper, allicin-zein-sodium caseinate composite nanoparticles (zein-Ali-SC) were prepared by antisolvent precipitation and electrostatic deposition. Through the analysis of the particle size, ζ-potential, encapsulation efficiency (EE), loading rate (LC) and microstructure, the optimum preparation conditions for composite nanoparticles were obtained. The mechanism of its formation was studied by fluorescence spectrum, Fourier infrared spectrum (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The stability study results showed that the particle size of composite nanoparticles was less than 200 nm and its PDI was less than 0.3 under different NaCl concentrations and heating conditions, showing good stability. When stored at 4 °C for 21 days, the retention rate of allicin reached 61.67%, which was 52.9% higher than that of free allicin. After freeze-drying and reheating, the nanoparticles showed good redispersibility; meanwhile, antioxidant experiments showed that, compared with free allicin, the nanoparticles had stronger scavenging ability of free radicals, which provided a new idea for improving the stability technology and bioavailability of bioactive compounds.
Collapse
Affiliation(s)
- Ling Hu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Pengcheng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yongdong Lei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| |
Collapse
|
21
|
Kou F, Wang W, You S, Wei X, Wu X. Preparation and characterization of metal-polyphenol networks encapsulated in sodium alginate microbead hydrogels for catechin and vitamin C delivery. Int J Biol Macromol 2024; 276:133870. [PMID: 39009264 DOI: 10.1016/j.ijbiomac.2024.133870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
A novel encapsulation system was designed, utilizing sodium alginate (SA) polysaccharide as the matrix and easily absorbed Fe2+ as the metal-organic framework, to construct microbead scaffolds with both high catechins (CA) and vitamin C (Vc) loading and antioxidant properties. The structure of microbead hydrocolloids was investigated using SEM, XPS, FTIR, XRD and thermogravimetry, and the antioxidant activity, in vitro digestion and the release of CA and Vc were evaluated. These results revealed that the microbead hydrocolloids SA-CA-Fe and SA-CA-Vc-Fe exhibited denser and stronger cross-linking structures, and the formation of inter- and intramolecular hydrogen and coordination bonds improved thermal stability. Moreover, SA-CA-Fe (44.9 % DPPH and 47.8 % ABTS) and SA-CA-Vc-Fe (89.9 % DPPH and 89.3 % ABTS) displayed strong antioxidant activity. Importantly, they were non-toxic in Caco2 cells. The SA-CA-Fe and SA-CA-Vc-Fe achieved significantly higher CA (56.9 and 62.7 %, respectively) and Vc (42.2 %) encapsulation efficiency while maintaining higher CA and Vc release in small intestinal environment. These results suggested that SA polysaccharide-based encapsulation system using Fe2+ framework as scaffold had greater potential for delivery and controlled release of CA and Vc than conventional hydrocolloids, which could provide new insights into the construction of high loading, safe, targeted polyphenol delivery system.
Collapse
Affiliation(s)
- Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, South Korea; College of Food Science, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, Daqing 163319, China
| | - Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, Daqing 163319, China; School of Forestry, Northeast Forestry University, No.26 Hexing Road, Harbin 150030, China; National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing 163319, China.
| | - Sangguan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, South Korea.
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, China.
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, United States of America
| |
Collapse
|
22
|
Li X, Lin Y, Huang Y, Li X, An F, Song H, Huang Q. Preparation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of curcumin: pectin extracted by high-speed shearing from passion fruit (Passiflora edulis f. flavicarpa) peel. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6573-6583. [PMID: 38520286 DOI: 10.1002/jsfa.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Pectin extracted by high-speed shearing from passion fruit peel (HSSP) is a potentially excellent wall material for encapsulating curcumin, which has multiple advantages over pectin prepared by heated water extraction. HSSP was used to fabricate complex nanoparticles of zein-sodium caseinate-pectin for encapsulation of curcumin in this study. The influence of heating on the physicochemical properties of the composite nanoparticles was also investigated, as well as the effect of composite nanoparticles on the encapsulation efficiency, antioxidant activity and release characteristics of curcumin. RESULTS The nanoparticles were formed through electrostatic interactions, hydrogen bonds and hydrophobic interactions between the proteins and HSSP. A temperature of 50 °C was more favorable for generating compact and small-sized nanoparticles, which could effectively improve the encapsulation efficiency and functional properties. Moreover, compared to other pectin used in the study, the nanoparticles prepared with HSSP showed the best functionality with a particle size of 234.28 ± 0.85 nm, encapsulation rate of 90.22 ± 0.54%, free radical scavenging rate of 78.97% and strongest protective capacity in simulated gastric fluid and intestinal release effect. CONCLUSION Zein-sodium caseinate-HSSP is effective for encapsulating and delivering hydrophobic bioactive substances such as curcumin, which has potential applications in the functional food and pharmaceutical industries. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yupeng Lin
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yumeng Huang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Fengping An
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongbo Song
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
23
|
Zhang S, Li C. A curcumin-loaded biopolymeric nanocomposite alleviates dextran sulfate sodium induced ulcerative colitis via suppression of inflammation and oxidative stress. Int J Biol Macromol 2024; 275:133665. [PMID: 38971294 DOI: 10.1016/j.ijbiomac.2024.133665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Functional drugs nano delivery systems manufactured from natural active products are promising for the field of biomedicines. In this study, an anti-ulcerative colitis (UC) curcumin loaded biopolymeric nanocomposite (CZNH) was fabricated and investigated. CZNH nanocomposite was obtained using the anti-solvent precipitation method, wherein curcumin-loaded zein colloidal particles served as the core, while sodium casein (NaCas) and hyaluronic acid (HA) formed the outermost layer of CZNH nanocomposite. Fourier transform infrared (FT-IR) spectrum and transmission electron microscopy (TEM) findings demonstrated that CZNH nanocomposite was a double-layer spherical micelle (250 nm) resulting from the hydrogen bond interactions and electrostatic adsorptions between zein, NaCas, and HA. Furthermore, CZNH nanocomposite exhibited prominent resuspension and storage stability in aqueous solution, which can be stored at 4 °C for approximately 30 days. In vivo anti-UC studies showed that CZNH nanocomposite could effectively alleviate UC symptoms via mediating inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6], myeloperoxidase (MPO), and oxidative stress factor [malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)]. This study suggested that the CZNH nanocomposite showed great promise as an efficient curcumin nanocarrier for UC therapy.
Collapse
Affiliation(s)
- Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
24
|
Jin M, Jiang S, Wang Y, Wang Y, Guo S, Dong X, Qi H. Formation of chlorophyll-anionic polysaccharide complex coacervates to improve chlorophyll color stability: Thermodynamic and kinetic stability studies. Int J Biol Macromol 2024; 275:133253. [PMID: 38945709 DOI: 10.1016/j.ijbiomac.2024.133253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Chlorophyll (Chl) is the predominant pigment in green plants that can act as a food color and possesses various functional activities. However, its instability and rapid degradation on heating compromise the sensory qualities of its products. This study aimed to enhance the heat resistance of Chl by forming complex coacervates with two negatively charged polysaccharides, sodium alginate (SA) and K-carrageenan (KC). Dynamic light scattering and scanning electron microscopy analyses confirmed the formation of coacervates between Chl and the polysaccharides, whereas Fourier-transform infrared spectroscopy revealed that hydrogen bonding and electrostatic attraction were the primary forces behind complex formation. Electron spin resonance and thermodynamic studies further revealed that these complexes bolstered the thermal stability of Chl, with a maximum improvement of 70.38 % in t1/2 and a reduction of 50.72 % in the degradation rate constant. In addition, the antioxidant capacity of Chl was enhanced up to 35 %. Therefore, this study offers a novel approach to Chl preservation and suggests a viable alternative to artificial pigments in food products.
Collapse
Affiliation(s)
- Meiran Jin
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Jiang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yujiao Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuze Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sainan Guo
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Qi
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
25
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
26
|
Aghelinejad A, Golshan Ebrahimi N. Investigation of delivery mechanism of curcumin loaded in a core of zein with a double-layer shell of chitosan and alginate. Heliyon 2024; 10:e33205. [PMID: 39044993 PMCID: PMC11263642 DOI: 10.1016/j.heliyon.2024.e33205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The pursuit of efficient drug delivery systems has led to innovative approaches such as matrix and core-shell structures. This study explores these systems with a focus on enhancing the delivery and stability of curcumin, a bioactive compound with therapeutic potential. Matrix systems using zein protein were fabricated through coaxial airflow extrusion with a vibration generator, while core-shell systems were produced using concentric nozzles. Double-layer reservoir systems were also formed by coating chitosan-shelled structures with an alginate solution. Encapsulation of curcumin within each system was confirmed through FTIR and optical microscope analysis, followed by efficiency evaluation, which was measured approximately 86.5 ± 0.7 % for the matrix systems and 90 ± 0.8 % for the core-shell systems. Moreover, the particle sizes of matrix systems were measured in the range of 2000-2100 mμ and the particle sizes of single-layer and double-layer reservoir systems were in the ranges of 1600-1700 mμ and 1500-1700 mμ, respectively. The study investigated the stability of curcumin in these systems under various environmental conditions, including exposure to light, heat, pH variations, ions, and storage. Results demonstrated that the presence of multiple layers significantly enhanced the drug's stability. Afterwards, swelling and drug release profiles were assessed in simulated gastric, intestinal, and colon fluids. The swelling of the matrix, single-layer and double-layer reservoir systems after 29 h were 127.4 %, 146.9 % and 144 %, respectively. The matrix system showed 68.7 % drug release after 29 h, whereas single-layer chitosan-shelled and double-layer chitosan/alginate-shelled reservoir systems released 51.8 % and 45.6 % of the drug, respectively. The release mechanism was explored using zero-order, Korsmeyer-Peppas, and Kopcha kinetic models. Comparative analysis of the experimental results and model fittings indicated a deviation from Fickian diffusion, with erosion becoming more pronounced with each additional layer. In conclusion, the system with a zein core and double-layer chitosan/alginate shell displayed effective drug release regulation and enhanced stability of curcumin, making it a promising candidate for efficient drug delivery.
Collapse
Affiliation(s)
- Amitis Aghelinejad
- Polymer Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Nadereh Golshan Ebrahimi
- Polymer Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Xie M, Zhou C, Li X, Ma H, Liu Q, Hong P. Preparation and characterization of tilapia protein isolate - Hyaluronic acid complexes using a pH-driven method for improving the stability of tilapia protein isolate emulsion. Food Chem 2024; 445:138703. [PMID: 38387313 DOI: 10.1016/j.foodchem.2024.138703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
This study aimed to investigate the non-covalent complexation between hyaluronic acid (HA) and tilapia protein isolate (TPI) on the stability of oil-in-water (O/W) TPI emulsion. The results showed that HA binds to TPI through electrostatic, hydrophobic, and hydrogen bonding interactions, forming homogeneous hydrophilic TPI-HA complexes. The binding of HA promoted the structural folding of TPI and altered its secondary structure during pH neutralization. The TPI-HA complexes presented significantly improved EAI and ESI (P < 0.05) when the HA concentration was 0.8 % (w/v). Emulsion characterization showed that HA promoted the transfer of TPI to the O/W interface, forming an emulsion with excellent stability, which, combined with the high surface charge and strong spatial site resistance effect of HA, improved TPI emulsion stability. Therefore, non-covalent complexation with HA is an effective strategy to improve the stability of TPI emulsion.
Collapse
Affiliation(s)
- Mengya Xie
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong, Zhanjiang 524088, China
| | - Xiang Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Huanta Ma
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Qingguan Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China.
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong, Zhanjiang 524088, China.
| |
Collapse
|
28
|
Tian M, Cheng J, Guo M. Stability, Digestion, and Cellular Transport of Soy Isoflavones Nanoparticles Stabilized by Polymerized Goat Milk Whey Protein. Antioxidants (Basel) 2024; 13:567. [PMID: 38790672 PMCID: PMC11117734 DOI: 10.3390/antiox13050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Soy isoflavones (SIF) are bioactive compounds with low bioavailability due to their poor water solubility. In this study, we utilized polymerized goat milk whey protein (PGWP) as a carrier to encapsulate SIF with encapsulation efficiency of 89%, particle size of 135.53 nm, and zeta potential of -35.16 mV. The PGWP-SIF nanoparticles were evaluated for their stability and in vitro digestion properties, and their ability to transport SIF was assessed using a Caco-2 cell monolayer model. The nanoparticles were resistant to aggregation when subjected to pH changes (pH 2.0 to 8.0), sodium chloride addition (0-200 mM), temperature fluctuations (4 °C, 25 °C, and 37 °C), and long-term storage (4 °C, 25 °C, and 37 °C for 30 days), which was mainly attributed to the repulsion generated by steric hindrance effects. During gastric digestion, only 5.93% of encapsulated SIF was released, highlighting the nanoparticles' resistance to enzymatic digestion in the stomach. However, a significant increase in SIF release to 56.61% was observed during intestinal digestion, indicating the efficient transport of SIF into the small intestine for absorption. Cytotoxicity assessments via the MTT assay showed no adverse effects on Caco-2 cell lines after encapsulation. The PGWP-stabilized SIF nanoparticles improved the apparent permeability coefficient (Papp) of Caco-2 cells for SIF by 11.8-fold. The results indicated that using PGWP to encapsulate SIF was an effective approach for delivering SIF, while enhancing its bioavailability and transcellular transport.
Collapse
Affiliation(s)
- Mu Tian
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China;
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jianjun Cheng
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China;
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
29
|
Chen Y, Cai S, He N, Huang X, Hong Z, He J, Chen H, Zhang Y. An Effective Method to Prepare Curcumin-Loaded Soy Protein Isolate Nanoparticles Co-Stabilized by Carrageenan and Fucoidan. Pharmaceuticals (Basel) 2024; 17:534. [PMID: 38675494 PMCID: PMC11055026 DOI: 10.3390/ph17040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, a novel and simple strategy is proposed based on 3D network formed by easily blending polysaccharide carrageenan (Car) and fucoidan (Fuc) without a crosslinker. The Fuc/Car dual coating effectively assists the self-assembly of soy protein-isolated (SPI)/curcumin (Cur, C) composite microcapsules (SPI/C) and achieves an excellent curcumin encapsulation efficiency (EE) up to 95.28% with a 4.16% loading capacity (LC) under optimal conditions. The resulting nanocomposites achieved a satisfying redispersibility in aqueous solution and enhanced the water solubility with a lower size dispersity index (PDI) of 0.12 and a larger zeta potential of -29.67 mV. The Fuc/Car double-layer network not only dramatically improved its thermal stability and photostability, but also provided controlled release and enhanced antioxidant activity in in vitro conditions. The underlying mechanism of the self-assembly of the curcumin-loaded nanoparticles was also addressed. The results proved the feasibility of the encapsulation of unstable hydrophobic bioactive substances (curcumin) with the dual anionic polysaccharide Fuc/Car co-stabilized SPI nanoparticles. This study paves the way for an alternative way of developing novel curcumin delivery systems and will have broad prospects in the pharmaceutical industries.
Collapse
Affiliation(s)
- Yaxin Chen
- School of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.C.); (N.H.); (Z.H.)
| | - Shuyun Cai
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.C.); (N.H.); (Z.H.)
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Niaoniao He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.C.); (N.H.); (Z.H.)
| | - Xiaomei Huang
- School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361005, China;
| | - Zhuan Hong
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.C.); (N.H.); (Z.H.)
| | - Jianlin He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.C.); (N.H.); (Z.H.)
| | - Hui Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.C.); (N.H.); (Z.H.)
| | - Yiping Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.C.); (N.H.); (Z.H.)
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361005, China;
| |
Collapse
|
30
|
Condello A, Piacentini E, Giorno L. Insights into the preparation of zein nanoparticles by continuous membrane nanoprecipitation. Int J Biol Macromol 2024; 265:130935. [PMID: 38493815 DOI: 10.1016/j.ijbiomac.2024.130935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Nanoparticles (NPs) preparation is limited to an exclusive use in batch processes and small-scale formulations. The use of membranes as high-performance micromixers is expected to open new scenarios to overcome limitations of conventional nanoprecipitation system such as stirred tank (ST) nanoprecipitation. The ability of the porous membrane to add uniformly one phase to another and govern their mixing at the membrane interface seems to be an important parameter for obtaining uniform NPs. Inorganic membranes (pore size of 1 μm) were used to carry out membrane nanoprecipitation (MN) to form Zein nanoparticles (ZNPs) at pores level by non-solvent induced phase separation. A systematic study of the preparation of ZNPs in the ST and MN systems was carried out to establish the Ouzo diagram. The influence of zein concentration and solvent to non-solvent ratio on the size and size distribution of ZNPs was also investigated. A wider stable Ouzo zone was obtained with MN than with the ST process. ZNPs size increased from 100 nm up to 700 nm, while maintaining low polydispersity index (PDI < 0.2). The results demonstrate the suitability of MN for the continuous production of ZNPs and open the possibility of scaling up the nanoprecipitation process.
Collapse
Affiliation(s)
- A Condello
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy; Physics Department, University of Calabria, Ponte P. Bucci 33B, 87036 Rende, CS, Italy.
| | - E Piacentini
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy.
| | - L Giorno
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy.
| |
Collapse
|
31
|
Dai K, Wu J, Liu X, Wang S, Liu Y, Li H, Wang H. Inclusion complex of quercetin with sulfobutylether β-cyclodextrin: preparation, characterization, antioxidant and antibacterial activities and the inclusion mechanism. RSC Adv 2024; 14:9472-9481. [PMID: 38516163 PMCID: PMC10951979 DOI: 10.1039/d3ra08936c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Quercetin (QCT) has a variety of pharmacological effects, such as antioxidant, antibacterial, anticancer, anticardiovascular and antiaging effects. However, its poor water solubility, stability and bioavailability limit its applications. The special structure of cyclodextrins and their derivatives with a hydrophobic inner cavity and hydrophilic outer wall can load a variety of hydrophobic drugs of a suitable size and shape, thereby improving the stability and solubility of these molecules. In this study, an inclusion complex of quercetin and sulfobutylether-β-cyclodextrin was prepared. It was characterized via FT-IR, UV, 1H NMR, XRD, DSC, and SEM analysis, which revealed the successful formation of the inclusion complex. In vitro biological activity estimations were carried out and the results indicated that the inclusion complex displayed higher antioxidative and antibacterial properties compared with free QCT. In addition, the mechanisms of inclusion were explored using 1H NMR analysis and docking calculations, thus providing a theoretical basis for obtaining an inclusion complex.
Collapse
Affiliation(s)
- Kunkun Dai
- Department of Food Nutrition and Health, School of Engineering, China Pharmaceutical University Nanjing 211198 China
| | - Jiayi Wu
- Department of Food Nutrition and Health, School of Engineering, China Pharmaceutical University Nanjing 211198 China
| | - Xinyang Liu
- Department of Food Nutrition and Health, School of Engineering, China Pharmaceutical University Nanjing 211198 China
| | - Suilou Wang
- Department of Food Nutrition and Health, School of Engineering, China Pharmaceutical University Nanjing 211198 China
| | - Yihang Liu
- Department of Food Nutrition and Health, School of Engineering, China Pharmaceutical University Nanjing 211198 China
| | - Hehe Li
- Beijing Laboratory of Food Quality and Safety, Key Laboratory of Alcoholic Beverages Quality and Safety of China Light Industry, Beijing Technology and Business University Beijing 100048 China
| | - Haixiang Wang
- Department of Food Nutrition and Health, School of Engineering, China Pharmaceutical University Nanjing 211198 China
| |
Collapse
|
32
|
Yan J, Jia X, Qu Y, Yan W, Li Y, Yin L. Development of sorghum arabinoxylan-soy protein isolate composite nanoparticles for delivery of curcumin: Effect of polysaccharide content on stability and in vitro digestibility. Int J Biol Macromol 2024; 262:129867. [PMID: 38309400 DOI: 10.1016/j.ijbiomac.2024.129867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The purpose of this study was to fabricate composite nanoparticles using soy protein isolate (SPI) and sorghum bran arabinoxylan (AX) for the delivery of curcumin (Cur). The influences of AX concentrations on the physicochemical characteristic, stability and bioaccessibility of curcumin were investigated. The findings showed that the encapsulation efficiency of curcumin obviously increased upon incorporating AX in comparison to SPI-Cur particles. Hydrogen bonds and hydrophobic interactions were the primary driving forces for the formation of SPI-Cur-AX nanoparticles (SCA). SCA nanoparticles with 1.00 % AX exhibited a uniform size with orderly distribution, suggesting its remarkable physical stability due to the strengthened electrostatic repulsion. However, excessive AX led to aggregation of particles, a noticeable increase in size, and subsequently, a reduction in stability. Due to the heightened free radical scavenging capacity of sorghum AX, SCA nanoparticles exhibited superior antioxidant capabilities. Compared to free curcumin, encapsulation within composite particles significantly enhanced the retention rate and bioaccessibility of curcumin. This improvement was attributed to the potent emulsification ability of AX, which coordinated with bile salt to promote the transfer of curcumin into micelles. The research provides an effective strategy for developing food-grade delivery carriers aimed at enhancing dispersibility, stability and bioaccessibility of the fat-soluble bioactives.
Collapse
Affiliation(s)
- Jinxin Yan
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuanyuan Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wenjia Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuanyuan Li
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, Zhejiang, PR China; Department of Food Science, College of Agriculture and Life Sciences, Cornell University, NY, 14456, USA.
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
33
|
Yang X, Lv Z, Han C, Zhang J, Duan Y, Guo Q. Stability and encapsulation properties of daidzein in zein/carrageenan/sodium alginate nanoparticles with ultrasound treatment. Int J Biol Macromol 2024; 262:130070. [PMID: 38340944 DOI: 10.1016/j.ijbiomac.2024.130070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/23/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
This study aimed to prepare carrageenan/sodium alginate double-stabilized layers of zein nanoparticles loaded with daidzein using ultrasound technology to investigate the effect of ultrasound treatment on the stability of composite nanoparticles and encapsulation of daidzein. Compared with composite nanoparticles without ultrasound treatment, the encapsulation efficiency of nanoparticles was increased (90.36 %) after ultrasound treatment (320 W, 15 min). Ultrasound treatment reduced the particle size and PDI of nanoparticles and improved the stability and solubility of nanoparticles. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that the nanoparticles treated with ultrasound were smooth spherical and uniformly distributed. Fourier transform infrared spectroscopy (FTIR) results showed that the main forces that form nanoparticles are hydrogen bonding, electrostatic interactions and hydrophobic interactions. Fluorescence and CD chromatography showed that ultrasound treatment alters the secondary structure of zein and maintains nanoparticle stability. Encapsulation of daidzein in nanocarriers with ultrasound treatment can effectively scavenge DPPH and ABTS free radicals, improve antioxidant activity, and realize the slow release of daidzein in the gastrointestinal tract. The results showed that ultrasonication helps the construction of hydrophobic bioactives delivery carriers and provides better protection for unstable bioactives.
Collapse
Affiliation(s)
- Xue Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhuojia Lv
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cuiping Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Junfang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Duan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingxin Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
34
|
Liu Y, Ma L, Guo Y, Kuang H, Liu Y. Fabricating oleic acid-ovalbumin complexes using an ultrasonic-coupled weakly alkaline pH technique: Improving the dispersibility, stability, and bioaccessibility of lutein in water. Food Chem 2024; 435:137593. [PMID: 37776652 DOI: 10.1016/j.foodchem.2023.137593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
This study constructed a self-assembly non-covalent oleic acid (OA) and ovalbumin (OVA) complex via an ultrasonic coupled pH-driven approach to simultaneously improve the water dispersibility, stability, and bioaccessibility of lutein (LUT). The results showed that homogeneous, stable hydrophilic OA-OVA particles were obtained in optimized conditions (an OVA concentration of 4.0 mg/mL, pH 9.0, ultrasonic conditions of 200 W for 2 min, and OA-OVA molar ratios of 2:1-20:1), with the LUT encapsulation efficiency (EE) exceeding 88.9%. Furthermore, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) confirmed complete LUT encapsulation in the OA-OVA particles, displaying spherical particle formation with smooth surfaces. The OA-OVA complexes effectively improved the thermal and storage stability of LUT and significantly enhanced its bioaccessibility. These findings suggest that fatty acid-protein complexes may have potential application value as carotenoid delivery vectors.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Liyuan Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yuanjie Guo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Huiying Kuang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China.
| |
Collapse
|
35
|
Gu X, Li W, Jiang X, Chang C, Wu J. Pectin-coated whey protein isolate/zein self-aggregated nanoparticles as curcumin delivery vehicles: Effects of heating, pH, and adding sequence. Int J Biol Macromol 2024; 258:128892. [PMID: 38134988 DOI: 10.1016/j.ijbiomac.2023.128892] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
In this work, pectin was employed as a coating material to fabricate zein/whey protein isolate (WPI)/pectin complex nanoparticles via a pH-adjusted and heat-induced electrostatic adsorption process for potential oral administration applications of curcumin. Factors such as the order of raw material addition, heating temperature and pH, and zein concentration were comprehensively examined. In addition to electrostatic interactions, Fourier transform infrared and fluorescence spectroscopy indicated that hydrophobic interactions and hydrogen bonds were also involved in the development of complex nanoparticles. The complex nanoparticles obtained not only improved the antioxidant activity of curcumin in aqueous phase, but also contributed to its controlled release under gastrointestinal conditions. Our findings revealed that the heating pH and adding sequence of raw materials had a notable impact on the properties of complex nanoparticles, and that pectin coating had an exceptional stabilizing effect on complex nanoparticles under gastrointestinal circumstances. This study provides novel insights and perspectives for the preparation of polysaccharide-protein complex nanoparticles, signifying the potential use of zein/WPI/pectin complex nanoparticles as delivery vehicles in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaolian Gu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanbing Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| |
Collapse
|
36
|
Zhong Q, Reyes-Jurado F, Calumba KF. Structured soft particulate matters for delivery of bioactive compounds in foods and functioning in the colon. SOFT MATTER 2024; 20:277-293. [PMID: 38090993 DOI: 10.1039/d3sm00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The present review discusses challenges, perspectives, and current needs of delivering bioactive compounds (BCs) using soft particulate matters (SPMs) for gut health. SPMs can entrap BCs for incorporation in foods, preserve their bioactivities during processing, storage, and gastrointestinal digestion, and deliver BCs to functioning sites in the colon. To enable these functions, physical, chemical, and biological properties of BCs are integrated in designing various types of SPMs to overcome environmental factors reducing the bioavailability and bioactivity of BCs. The design principles are applied using food grade molecules with the desired properties to produce SPMs by additionally considering the cost, sustainability, and scalability of manufacturing processes. Lastly, to make delivery systems practical, impacts of SPMs on food quality are to be evaluated case by case, and health benefits of functional foods incorporated with delivery systems are to be confirmed and must outweigh the cost of preparing SPMs.
Collapse
Affiliation(s)
- Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| | | | - Kriza Faye Calumba
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
37
|
Ghadimi AH, Amiri S, Radi M. Improving the performance of Ca-alginate films through incorporating zein-caseinate nanoparticles-loaded cinnamaldehyde. Int J Biol Macromol 2024; 256:128456. [PMID: 38016606 DOI: 10.1016/j.ijbiomac.2023.128456] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
This study aimed to fabricate and characterize the Ca-alginate films functionalized by incorporating zein nanoparticles containing cinnamaldehyde (CA). The zein nanoparticles were coated with Na-caseinate (CN) to inhibit the precipitation of zein in the alginate solution. Afterward, the physical, mechanical, morphological, and barrier properties of the nanocomposite films were evaluated. The particle sizes of different zein nanoparticles (with/without CA and CN) ranged between 43.58 and 251.66 nm. The addition of free CA, zein, and CN nanoparticles significantly increased the thickness, opacity, thermal stability, and water contact angle and improved the mechanical properties of the films. The water vapor permeability was not affected but the antimicrobial activity was improved on fresh-cut apples. The lightness of nanocomposite films decreased and the yellowness and greenness increased. According to SEM and AFM images, a dense and organized interlayer arrangement with a rougher surface was detected in the nanocomposite films. FTIR analysis showed that no new interactions were formed between the Ca-alginate and zein/CN nanoparticles. An excellent sustained CA release into the water was observed for the CA/zein nanoparticles-loaded alginate films. Overall, the results showed that Ca-alginate nanocomposite films of zein nanoparticles have good potential to carry hydrophobic bioactive compounds for specific pharmaceutical and food applications.
Collapse
Affiliation(s)
- Amir Hossein Ghadimi
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Sedigheh Amiri
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran; Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran.
| | - Mohsen Radi
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran; Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran.
| |
Collapse
|
38
|
De Silva ND, Attanayake AP, Karunaratne DN, Arawwawala LDAM, Pamunuwa GK. Synthesis and bioactivity assessment of Coccinia grandis L. extract encapsulated alginate nanoparticles as an antidiabetic drug lead. J Microencapsul 2024; 41:1-17. [PMID: 37966469 DOI: 10.1080/02652048.2023.2282964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
AIM This study aimed to prepare, characterise, and evaluate the antidiabetic activity of Coccinia grandis (L.) extracts encapsulated alginate nanoparticles. METHODS Alginate nanoparticles were prepared using the ionic gelation method and characterised by encapsulation efficiency %w/w, loading capacity %w/w, particle size analysis, zeta potential, Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). In vitro antidiabetic activity was also evaluated. RESULTS Encapsulation efficiency %w/w, loading capacity %w/w, mean diameter, zeta potential of C. grandis encapsulated alginate nanoparticles ranged from 10.51 ± 0.51 to 62.01 ± 1.28%w/w, 0.39 ± 0.04 to 3.12 ± 0.11%w/w, 191.9 ± 76.7 to 298.9 ± 89.6 nm, -21.3 ± 3.3 to -28.4 ± 3.4 mV, respectively. SEM and FTIR confirmed that particles were in nano range with spherical shape and successful encapsulation of plant extracts into an alginate matrix. The antidiabetic potential of aqueous extract of C. grandis encapsulated alginate nanoparticles (AqCG-ANP) exhibited inhibition in α-amylase, α-glucosidase and dipeptidyl peptidase IV enzymes of 60.8%c/c, 19.1%c/c, and 30.3%c/c, respectively, compared to the AqCG. CONCLUSION The AqCG-ANP exerted promising antidiabetic potential as an antidiabetic drug lead.
Collapse
Affiliation(s)
| | | | | | | | - Geethi Kaushalya Pamunuwa
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Sri Lanka
| |
Collapse
|
39
|
Chen H, Wang X, Jin D, Liu M, Wu X, Jiang Y, Fang Y, Lin Q, Ding Y. Characterization, in vitro digestibility and release properties of starch-linoleic acid-sodium alginate composite film. Food Res Int 2023; 174:113647. [PMID: 37981361 DOI: 10.1016/j.foodres.2023.113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
This study aimed to improve the complexing degree, digestibility and controlled release properties of the potato starch (PS)-linoleic acid (LA) complexes by encapsulating PS-LA complexes to sodium alginate (AG) beads. The results revealed that AG had a positive effect on the complexing index, R1047/1022 values, relative crystallinity, enthalpy and morphological structure of PS-LA-AG films, especially for PS-LA-AG film with the PS-LA: AG of 5:1. The in vitro digestion and hydrolysis kinetic analysis indicated that AG addition reduced the digestibility of PS-LA-AG films to a higher slowly digestible starch content and resistant starch content and a lower equilibrium hydrolysis percentage and kinetic constant. Furthermore, in vivo release study of PS-LA-AG films indicated a restrained release in simulated gastrointestinal conditions. Consequently, the results indicated that AG addition significantly improved the inclusion efficiency for the complex formation between PS and LA, which was beneficial for the design of resistant films to entrap and control release of unsaturated fatty.
Collapse
Affiliation(s)
- Huirong Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoyan Wang
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Danni Jin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Mingyue Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaonian Wu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yuling Jiang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023,China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
40
|
Albogamy NTS, Aboushoushah SF, Aljoud F, Organji H, Elbialy NS. Preparation and characterization of dextran-zein-curcumin nanoconjugate for enhancement of curcumin bioactivity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1891-1910. [PMID: 37000910 DOI: 10.1080/09205063.2023.2198389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Curcumin is one of the most important polyphenolic nutrients in pharmaceutical industries. Unfortunately, its poor solubility and bioavailability have hampered its clinical application. To improve curcumin solubility and bioavailability, a natural nanocarrier made from protein-polysaccharide conjugate has been developed. Following antisolvent precipitation method, zein (Z) nanoparticles coated with dextran sulphate (DS) have been fabricated as curcumin (C) nanocarrier (DSZCNPs). The physicochemical properties of the nanoconjugate were measured using different techniques. Morphologically, DSZCNPs appeared spherical and monodispersed in scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Curcumin encapsulation efficiency was ≈ 96%. DSZCNPs size was 180 nm and the polydispersity index value (PDI) 0.28. Zeta potential for DSZCNPs was -28.5 mV. DSZCNPs showed stability either for shelf storage (100 days) or at different pHs. Furthermore, DSZCNPs protected zein nanoparticles degradation in gastric environment and achieved controlled curcumin release in intestinal environment. DSZCNPs greatly enhanced the antioxidant activity of curcumin as demonstrated by DPPH assay. DSZCNPs had significant results in the reduction of colony forming unit (CFU%) against the tested microbes when compared with free curcumin. Also, the anticancer activity of DSZCNPs and free curcumin against hepatocellular carcinoma cells (HepG2) were assessed by MTT assay. IC50 for DSZCNPs was 13 µg/ml compared to 50 µg/ml for free curcumin indicating the therapeutic impact of DSZCNPs over free curcumin.Based on the above results, the developed zein-dextran nanocomplex exhibited high stability and improved the efficacy and bioactivity of curcumin suggesting its potential utility as nanovehicle for the hydrophobic drug curcumin.
Collapse
Affiliation(s)
- N T S Albogamy
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Physics Department, University College-Taraba, Taif University, Turbah, Kingdom of Saudi Arabia
| | - Samia F Aboushoushah
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F Aljoud
- Regenerative Medicine Unit-KFMRC, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H Organji
- Centre of Excellence in Desalination Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nihal S Elbialy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
41
|
Elsherbini AM, Sabra SA, Rashed SA, Abdelmonsif DA, Haroun M, Shalaby TI. Electrospun polyvinyl alcohol/ Withania somnifera extract nanofibers incorporating tadalafil-loaded nanoparticles for diabetic ulcers. Nanomedicine (Lond) 2023; 18:1361-1382. [PMID: 37800462 DOI: 10.2217/nnm-2023-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Background: Impaired inflammation and vascularization are common reasons for delayed diabetic wound healing. Nanoparticles (NPs)-in-nanofibers composites can manage diabetic wounds. A multifunctional scaffold was developed based on tadalafil (TDF)-loaded NPs incorporated into polyvinyl alcohol/Withania somnifera extract nanofibers. Materials & methods: TDF-loaded NPs were prepared and fully characterized in terms of their physicochemical properties. Extract of ashwagandha was prepared and a blend composed of TDF-loaded NPs, herbal extract and polyvinyl alcohol was used to prepare the whole composite. Results: The whole composite exhibited improved wound closure in a diabetic rat model in terms of reduced inflammation and enhanced angiogenesis. Conclusion: Results suggest that this multifunctional composite could serve as a promising diabetic wound dressing.
Collapse
Affiliation(s)
- Asmaa M Elsherbini
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Shimaa A Rashed
- Department of Botany& Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt 4 Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Thanaa I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
42
|
Zhong W, Li J, Wang C, Zhang T. Formation, stability and in vitro digestion of curcumin loaded whey protein/ hyaluronic acid nanoparticles: Ethanol desolvation vs. pH-shifting method. Food Chem 2023; 414:135684. [PMID: 36809722 DOI: 10.1016/j.foodchem.2023.135684] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Curcumin (CUR) was encapsulated in whey protein isolate/hyaluronic acid (WPI/HA) electrostatic nanoparticles at pH 5.4, 4.4, 3.4 and 2.4 using ethanol desolvation (DNP) or pH-shifting (PSNP) method. The prepared nanoparticles were characterized and compared for physiochemical properties, structure, stability, and in vitro digestion. PSNPs had smaller particle size, more uniform distribution, and higher encapsulation efficiency than DNPs. Main driving forces involved for fabricating the nanoparticles were electrostatic forces, hydrophobic forces, and hydrogen bonds. PSNP exhibited better resistance towards salt, thermal treatment, and long-term storage while DNPs showed stronger protection for CUR against thermal degradation and photodegradation. Stability of nanoparticles increased with decreasing pH values. In vitro simulated digestion exhibited that DNPs had lower release rate of CUR in SGF and higher antioxidant activity of its digestion products. Data may provide a comprehensive reference for selection of loading approach when constructing nanoparticles based on proteins/polysaccharides electrostatic complexes.
Collapse
Affiliation(s)
- Weigang Zhong
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jiatong Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| | - Tiehua Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
43
|
Ai C, Zhao C, Xiang C, Zheng Y, Zhong S, Teng H, Chen L. Gum arabic as a sole wall material for constructing nanoparticle to enhance the stability and bioavailability of curcumin. Food Chem X 2023; 18:100724. [PMID: 37397193 PMCID: PMC10314165 DOI: 10.1016/j.fochx.2023.100724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
In this study, a kind of nanoparticle prepared using gum arabic as a sole wall material for loading curcumin was obtained. The properties and digestive characteristics of the curcumin-loaded nanoparticle were determined. Results showed that the maximum loading amount of the nanoparticle was 0.51 µg/mg with an approximately 500 nm size. The Fourier transform infrared (FTIR) spectrum showed that the complexation was mainly related to the -C[bond, double bond]O, -CH, and -C-O-C- groups. The curcumin-loaded nanoparticle exhibited good stability under highly concentrated salinity stress, and the stability of the curcumin loaded in nanoparticles was significantly higher than that of free curcumin under ultraviolet radiation. The curcumin loaded in nanoparticle was released mainly in the intestinal digestion stage, and the release process was sensitive to the pH changes rather than protease. In conclusion, these nanoparticles can be a potential nanocarrier for enhancing the stability of curcumin which can be applied in the salt-containing food system.
Collapse
Affiliation(s)
| | | | - Chunhong Xiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yimei Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
44
|
Qiu C, Zhang Z, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Xu X, Jin Z. Co-encapsulation of curcumin and quercetin with zein/HP-β-CD conjugates to enhance environmental resistance and antioxidant activity. NPJ Sci Food 2023; 7:29. [PMID: 37316567 DOI: 10.1038/s41538-023-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/27/2023] [Indexed: 06/16/2023] Open
Abstract
In this study, composite nanoparticles consisting of zein and hydroxypropyl beta-cyclodextrin were prepared using a combined antisolvent co-precipitation/electrostatic interaction method. The effects of calcium ion concentration on the stability of the composite nanoparticles containing both curcumin and quercetin were investigated. Moreover, the stability and bioactivity of the quercetin and curcumin were characterized before and after encapsulation. Fluorescence spectroscopy, Fourier Transform infrared spectroscopy, and X-ray diffraction analyses indicated that electrostatic interactions, hydrogen bonding, and hydrophobic interactions were the main driving forces for the formation of the composite nanoparticles. The addition of calcium ions promoted crosslinking of the proteins and affected the stability of the protein-cyclodextrin composite particles through electrostatic screening and binding effects. The addition of calcium ions to the composite particles improved the encapsulation efficiency, antioxidant activity, and stability of the curcumin and quercetin. However, there was an optimum calcium ion concentration (2.0 mM) that provided the best encapsulation and protective effects on the nutraceuticals. The calcium crosslinked composite particles were shown to maintain good stability under different pH and simulated gastrointestinal digestion conditions. These results suggest that zein-cyclodextrin composite nanoparticles may be useful plant-based colloidal delivery systems for hydrophobic bio-active agents.
Collapse
Affiliation(s)
- Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jie Long
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
45
|
Liu K, Liu Y, Lu J, Liu X, Hao L, Yi J. Nanoparticles prepared by polysaccharides extracted from Biyang floral mushroom loaded with resveratrol: Characterization, bioactivity and release behavior under in vitro digestion. Food Chem 2023; 426:136612. [PMID: 37348397 DOI: 10.1016/j.foodchem.2023.136612] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/30/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
Resveratrol (RES) is a common active factor in the functional food field, but poor water solubility and low bioavailability have limited its application. In the present study, the novel nanoparticles (RES-CBFMP NPs) using floral mushroom polysaccharide as the wall material have been developed for delivering RES, aiming to overcome its application shortcomings. After ratio optimization, RES-CBFMP NPs (RES-CBFMP,1:8 w/w), which combined through the hydrogen bonds between RES and CBFMP, showed the best overall performance, with the encapsulation efficiency (EE) of 49.74 ± 0.16%, loading efficiency (LE) of 5.53 ± 0.02%, particle size of 158.56 ± 1.97 nm and zeta-potential of -17.56 ± 0.24 mV. In addition, RES-CBFMP NPs exhibited good physicochemical stabilities, sustained gastrointestinal digestive release property, as well as improved in vitro antioxidant and anticancer activities. This study may contribute to the development of RES oral delivery systems and the application of hydrophobic active molecules in the functional food field.
Collapse
Affiliation(s)
- Keke Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, China
| | - Yongqi Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, China
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, China.
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, China.
| |
Collapse
|
46
|
Carrasco-Sandoval J, Aranda M, Henríquez-Aedo K, Fernández M, López-Rubio A, Fabra MJ. Impact of molecular weight and deacetylation degree of chitosan on the bioaccessibility of quercetin encapsulated in alginate/chitosan-coated zein nanoparticles. Int J Biol Macromol 2023; 242:124876. [PMID: 37182618 DOI: 10.1016/j.ijbiomac.2023.124876] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
This work aimed at studying the effect of molecular weight (MW) and degree of deacetylation (DD) of chitosan on the quercetin bioaccessibility encapsulated in alginate/chitosan-coated zein nanoparticles (alg/chiZN). The chitosan coating layer produced nanoparticulate systems with good stability parameters, high encapsulation efficiency (EE) and a higher bioaccessibilty of quercetin after in-vitro digestion. By increasing the DD of chitosan, the ζ-potential of the colloidal system significantly increased (≥27.1 mV), while low and very low MW chitosans generated systems with smaller particle sizes (≤ 277.8 nm) and polydispersity index [PDI (0.189)]. The best results, in terms of EE (≥84.44) and bioaccessibility (≥76.70), were obtained when the systems were prepared with low MW chitosan and high DD. Thus, the alg/chiZN nanocapsules may be a promising delivery system for improving the quercetin bioaccessibility or other compounds with a similar chemical nature, especially when higher DD and lower MWs are used.
Collapse
Affiliation(s)
- Jonathan Carrasco-Sandoval
- Laboratorio de Biotecnología y Genética de Alimentos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Farmacia, Universidad de Concepción, Chile
| | - Mario Aranda
- Laboratorio de Investigación en Fármacos y Alimentos, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Karem Henríquez-Aedo
- Laboratorio de Biotecnología y Genética de Alimentos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Farmacia, Universidad de Concepción, Chile
| | - Marcos Fernández
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile
| | - Amparo López-Rubio
- Food Safety and Preservation Department. Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - María José Fabra
- Food Safety and Preservation Department. Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
47
|
Racz CP, Racz LZ, Floare CG, Tomoaia G, Horovitz O, Riga S, Kacso I, Borodi G, Sarkozi M, Mocanu A, Roman C, Tomoaia-Cotisel M. Curcumin and whey protein concentrate binding: Thermodynamic and structural approach. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
48
|
Hou L, Zhang L, Yu C, Chen J, Ye X, Zhang F, Linhardt RJ, Chen S, Pan H. One-Pot Self-Assembly of Core-Shell Nanoparticles within Fibers by Coaxial Electrospinning for Intestine-Targeted Delivery of Curcumin. Foods 2023; 12:foods12081623. [PMID: 37107418 PMCID: PMC10137979 DOI: 10.3390/foods12081623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Nanotechniques for curcumin (Cur) encapsulation provided a potential capability to avoid limitations and improve biological activities in food and pharmaceutics. Different from multi-step encapsulation systems, in this study, zein-curcumin (Z-Cur) core-shell nanoparticles could be self-assembled within Eudragit S100 (ES100) fibers through one-pot coaxial electrospinning with Cur at an encapsulation efficiency (EE) of 96% for ES100-zein-Cur (ES100-Z-Cur) and EE of 67% for self-assembled Z-Cur. The resulting structure realized the double protection of Cur by ES100 and zein, which provided both pH responsiveness and sustained release performances. The self-assembled Z-Cur nanoparticles released from fibermats were spherical (diameter 328 nm) and had a relatively uniform distribution (polydispersity index 0.62). The spherical structures of Z-Cur nanoparticles and Z-Cur nanoparticles loaded in ES100 fibermats could be observed by transmission electron microscopy (TEM). Fourier transform infrared spectra (FTIR) and X-ray diffractometer (XRD) revealed that hydrophobic interactions occurred between the encapsulated Cur and zein, while Cur was amorphous (rather than in crystalline form). Loading in the fibermat could significantly enhance the photothermal stability of Cur. This novel one-pot system much more easily and efficiently combined nanoparticles and fibers together, offering inherent advantages such as step economy, operational simplicity, and synthetic efficiency. These core-shell biopolymer fibermats which incorporate Cur can be applied in pharmaceutical products toward the goals of sustainable and controllable intestine-targeted drug delivery.
Collapse
Affiliation(s)
- Lijuan Hou
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Laiming Zhang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chengxiao Yu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianle Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Haibo Pan
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| |
Collapse
|
49
|
Li X, He Y, Zhang S, Gu Q, McClements DJ, Chen S, Liu X, Liu F. Lactoferrin-Based Ternary Composite Nanoparticles with Enhanced Dispersibility and Stability for Curcumin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18166-18181. [PMID: 36893425 DOI: 10.1021/acsami.2c20816] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Curcumin has been reported to exhibit free radical antioxidant, anti-inflammatory, and anticancer activities, which are beneficial for nutraceutical applications. However, its application for this purpose is limited by its poor water solubility, stability, and bioavailability. These problems can be overcome using food-grade colloidal particles that encapsulate, protect, and deliver curcumin. These colloidal particles can be assembled from structure-forming food components that may also exhibit protective effects, such as proteins, polysaccharides, and polyphenols. In this study, lactoferrin (LF), (-)-epigallocatechin gallate (EGCG), and hyaluronic acid (HA) were used to fabricate composite nanoparticles using a simple pH-shift method. We showed that curcumin could be successfully loaded into these LF-EGCG-HA nanoparticles (d = 145 nm). The encapsulation efficiency (86%) and loading capacity (5.8%) of curcumin within these nanoparticles were relatively high. Encapsulation improved the thermal, light, and storage stabilities of the curcumin. Moreover, the curcumin-loaded nanoparticles exhibited good redispersibility after dehydration. The in vitro digestion properties, cellular uptake, and anticancer effects of the curcumin-loaded nanoparticles were then explored. Compared to free curcumin, the bioaccessibility and cellular uptake of the curcumin were significantly improved after encapsulation in the nanoparticles. Furthermore, the nanoparticles significantly promoted the apoptosis of colorectal cancer cells. This study suggests that food-grade biopolymer nanoparticles can be used to improve the bioavailability and bioactivity of an important nutraceutical.
Collapse
Affiliation(s)
- Xueqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiyang He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingzhuo Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430000, Hubei, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
50
|
Bolanos-Barbosa AD, Rodríguez CF, Acuña OL, Cruz JC, Reyes LH. The Impact of Yeast Encapsulation in Wort Fermentation and Beer Flavor Profile. Polymers (Basel) 2023; 15:polym15071742. [PMID: 37050356 PMCID: PMC10096922 DOI: 10.3390/polym15071742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The food and beverage industry is constantly evolving, and consumers are increasingly searching for premium products that not only offer health benefits but a pleasant taste. A viable strategy to accomplish this is through the altering of sensory profiles through encapsulation of compounds with unique flavors. We used this approach here to examine how brewing in the presence of yeast cells encapsulated in alginate affected the sensory profile of beer wort. Initial tests were conducted for various combinations of sodium alginate and calcium chloride concentrations. Mechanical properties (i.e., breaking force and elasticity) and stability of the encapsulates were then considered to select the most reliable encapsulating formulation to conduct the corresponding alcoholic fermentations. Yeast cells were then encapsulated using 3% (w/v) alginate and 0.1 M calcium chloride as a reticulating agent. Fourteen-day fermentations with this encapsulating formulation involved a Pilsen malt-based wort and four S. cerevisiae strains, three commercially available and one locally isolated. The obtained beer was aged in an amber glass container for two weeks at 4 °C. The color, turbidity, taste, and flavor profile were measured and compared to similar commercially available products. Cell growth was monitored concurrently with fermentation, and the concentrations of ethanol, sugars, and organic acids in the samples were determined via high-performance liquid chromatography (HPLC). It was observed that encapsulation caused significant differences in the sensory profile between strains, as evidenced by marked changes in the astringency, geraniol, and capric acid aroma production. Three repeated batch experiments under the same conditions revealed that cell viability and mechanical properties decreased substantially, which might limit the reusability of encapsulates. In terms of ethanol production and substrate consumption, it was also observed that encapsulation improved the performance of the locally isolated strain.
Collapse
Affiliation(s)
- Angie D. Bolanos-Barbosa
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Cristian F. Rodríguez
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Olga L. Acuña
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
- Correspondence: (J.C.C.); (L.H.R.); Tel.: +57-1-339-4949 (ext. 1789) (J.C.C.); +57-1-339-4949 (ext. 1702) (L.H.R.)
| | - Luis H. Reyes
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
- Correspondence: (J.C.C.); (L.H.R.); Tel.: +57-1-339-4949 (ext. 1789) (J.C.C.); +57-1-339-4949 (ext. 1702) (L.H.R.)
| |
Collapse
|