1
|
Lin J, Dai J, Yang Q, Li J, Xiao J, Zhang Y, Huang Y, Wang L, Chen P, Xu B, Zhao J, Yang X, Chen X. Preparation and characterization of Salecan β-glucan-based edible film loaded with lemon essential oil nanoemulsion: Effects on the preservation of chilled pork. Food Chem 2025; 478:143598. [PMID: 40043435 DOI: 10.1016/j.foodchem.2025.143598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/16/2025] [Accepted: 02/23/2025] [Indexed: 04/06/2025]
Abstract
Chilled meat is highly prone to microbial spoilage, and edible films with antimicrobial properties offer a feasible solution. In this study, oil-in-water (O/W) nanoemulsions loaded with lemon essential oil (LEO) were developed. Nanoemulsification improved the antioxidant and antimicrobial activities of LEO. The edible films, using Salecan β-glucan as the matrix and incorporating varying ratios of LEO nanoemulsion, demonstrated uniform oil distribution and desirable appearance. Kinetic modeling showed a slow release of LEO from the film by a diffusion-dominated coupled mechanism. The film with 5 % LEO nanoemulsion displayed superior mechanical strength, barrier properties, and prolonged essential oil release, significantly inhibiting spoilage bacteria. Preservation tests confirmed its efficacy in controlling pH, total viable count, TVB-N, and lipid oxidation, thereby prolonging the shelf-life of chilled pork and significantly delaying deterioration in quality indicators such as color and texture. This approach presents a promising method for developing innovative edible films for chilled meat preservation.
Collapse
Affiliation(s)
- Jiao Lin
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Qian Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Jiarui Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Jing Xiao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Yuexin Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - YuKun Huang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Buyi Xu
- National Anti-Drug Laboratory Sichuan Regional Center,Chengdu 610000, PR China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd., Chengdu 610000, PR China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China; Food Microbiol Key Lab Sichuan Prov, Chengdu 610039, PR China.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China; Food Microbiol Key Lab Sichuan Prov, Chengdu 610039, PR China.
| |
Collapse
|
2
|
Bao G, He L, Zhang X, Yu X, Li J, Qin D. Preparation of 3-Iodo-2-propargyl-butyl-carbamate-Loaded Microcapsules for Long-Term Mold Resistance in Bamboo. Polymers (Basel) 2025; 17:679. [PMID: 40076171 PMCID: PMC11902751 DOI: 10.3390/polym17050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Bamboo, recognized as a nutrient-dense biomass material, exhibits a high susceptibility to mold infestations, which can result in discoloration and a notable decrease in longevity, thereby posing potential health risks to humans. In this study, melamine-formaldehyde resin (MFR) was utilized to load 3-iodo-2-propargyl-butyl-carbamate (IPBC) via in situ polymerization, resulting in the preparation of microcapsules suitable for anti-mold protection of bamboo. The mold resistance of Aspergillus niger, Trichoderma viride, and Penicillium citrinum were evaluated. A scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier-transform infrared spectrometer (FTIR), and thermogravimetric analysis (TG) were used to characterize and analyze the formation process, surface morphology, structural composition, and thermal stability of the microcapsules. The effects of different surfactants (Span 80, Tween 80, SDBS, SDS, GA) on the microscopic morphology of the anti-mold microcapsules were investigated. The results show that microcapsules prepared with Tween 80 as the surfactant exhibited good mold resistance. After coating MFR with IPBC, the drug loading of I-MFR is 20%, with an encapsulation efficiency of 80%, demonstrating excellent anti-mold performance. The microcapsules show favorable anti-mold performance and have broad application prospects in bamboo protection.
Collapse
Affiliation(s)
- Gege Bao
- International Centre for Bamboo and Rattan, Beijing 100102, China; (G.B.); (L.H.); (X.Z.); (X.Y.)
- Key Laboratory of National Forestry and Grassland Administration for Bamboo and Rattan Science & Technology, Beijing 100102, China
| | - Lu He
- International Centre for Bamboo and Rattan, Beijing 100102, China; (G.B.); (L.H.); (X.Z.); (X.Y.)
- Key Laboratory of National Forestry and Grassland Administration for Bamboo and Rattan Science & Technology, Beijing 100102, China
| | - Xiaofeng Zhang
- International Centre for Bamboo and Rattan, Beijing 100102, China; (G.B.); (L.H.); (X.Z.); (X.Y.)
- Key Laboratory of National Forestry and Grassland Administration for Bamboo and Rattan Science & Technology, Beijing 100102, China
| | - Xi Yu
- International Centre for Bamboo and Rattan, Beijing 100102, China; (G.B.); (L.H.); (X.Z.); (X.Y.)
- Key Laboratory of National Forestry and Grassland Administration for Bamboo and Rattan Science & Technology, Beijing 100102, China
| | - Jingpeng Li
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, China
| | - Daochun Qin
- Sanya Research Base, International Centre for Bamboo and Rattan, Sanya 572000, China
| |
Collapse
|
3
|
Wang X, Wang Z, Sun Z, Wang D, Liu F. A novel gelatin/chitosan-based "sandwich" antibacterial nanofiber film loaded with perillaldehyde for the preservation of chilled chicken. Food Chem 2025; 465:142025. [PMID: 39571426 DOI: 10.1016/j.foodchem.2024.142025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024]
Abstract
Quality deterioration caused by microorganisms is a crucial problem in food industry. Herein, to enhance the antibacterial effect and extend the storage life of chilled chicken, a gelatin/chitosan (GC)-based "sandwich" nanofiber film was prepared by sandwiching GP2 (gelatin nanofibers loaded with 2 % (v/v) perillaldehyde) between two layers of GC nanofibers. The diameter of GP nanofibers was positively correlated with perillaldehyde concentration. However, the thermal stability of GP nanofibers was negatively correlated. The thermal degradation temperature (Tm) of GP2 was the lowest. Fortunately, GC nanofibers improved Tm of GP2 from 98.91 °C to 111.60 °C. Besides, FTIR absorption bands at 1636 and 1442 cm-1 indicated that perillaldehyde was successfully embedded. Moreover, poor water resistance of gelatin nanofibers was also improved. Specifically, benefiting from the synergy between perillaldehyde and chitosan, the shelf-life of chilled chicken was efficiently prolonged (over 10 days). Thus, this "sandwich" nanofiber film shows promise for food packaging.
Collapse
Affiliation(s)
- Xinxia Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zaitian Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
4
|
Zhang H, Wei A, Chuang R, Xu L, Han C, Li H, Xia N. Preparation and Characterization of Egg White Protein-Based Composite Edible Coating Containing Thymol Nanoemulsion. Foods 2024; 13:3809. [PMID: 39682880 DOI: 10.3390/foods13233809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, thymol-loaded nanoemulsion (THYNE) was incorporated into a mixture of egg white protein and hyaluronic acid to prepare antibacterial biopolymer coatings. The oil phase of the nanoemulsion (NE) was prepared by mixing different mass ratios of thymol and corn oil. NE was formed using ultrasonic emulsification, and the physicochemical properties of the NE were investigated. When the content of thymol in the oil phase was 30%, the particle size reached a minimum of 107.93 nm, PDI was 0.167, and Zeta potential was -18.2 mV, and it remained kinetically stable after 4 weeks of storage at 4 °C. Based on this study, composite coatings containing 5%, 10% and 20% THYNE were prepared, and the rheological properties, microstructure, FTIR, release properties and antibacterial properties of the coatings were investigated. The results show that the coating solutions exhibited shear thinning behavior. With increasing THYNE content, the coating structure became loose and inhomogeneous. The release rate of THY in the coatings was greater in 95% ethanol-water solution than in deionized water. In addition, the coating solutions showed stronger antibacterial activity against Staphylococcus aureus than against Escherichia coli. The egg white protein-based composite coating containing THYNE developed in this study is expected to be an antibacterial material for food packaging with sustained release performance.
Collapse
Affiliation(s)
- Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Afeng Wei
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rui Chuang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cuiping Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Thepphankulngarm N, Manmuan S, Hirun N, Kraisit P. Nanotechnology-Driven Delivery of Caffeine Using Ultradeformable Liposomes-Coated Hollow Mesoporous Silica Nanoparticles for Enhanced Follicular Delivery and Treatment of Androgenetic Alopecia. Int J Mol Sci 2024; 25:12170. [PMID: 39596238 PMCID: PMC11595114 DOI: 10.3390/ijms252212170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Androgenetic alopecia (AGA) is caused by the impact of dihydrotestosterone (DHT) on hair follicles, leading to progressive hair loss in men and women. In this study, we developed caffeine-loaded hollow mesoporous silica nanoparticles coated with ultradeformable liposomes (ULp-Caf@HMSNs) to enhance caffeine delivery to hair follicles. Caffeine, known to inhibit DHT formation, faces challenges in skin penetration due to its hydrophilic nature. We investigated caffeine encapsulated in liposomes, hollow mesoporous silica nanoparticles (HMSNs), and ultradeformable liposome-coated HMSNs to optimize drug delivery and release. For ultradeformable liposomes (ULs), the amount of polysorbate 20 and polysorbate 80 was varied. TEM images confirmed the mesoporous shell and hollow core structure of HMSNs, with a shell thickness of 25-35 nm and a hollow space of 80-100 nm. SEM and TEM analysis showed particle sizes ranging from 140-160 nm. Thermal stability tests showed that HMSNs coated with ULs exhibited a Td10 value of 325 °C and 70% residue ash, indicating good thermal stability. Caffeine release experiments indicated that the highest release occurred in caffeine-loaded HMSNs without a liposome coating. In contrast, systems incorporating ULp-Caf@HMSNs exhibited slower release rates, attributable to the dual encapsulation mechanism. Confocal laser scanning microscopy revealed that ULs-coated particles penetrated deeper into the skin than non-liposome particles. MTT assays confirmed the non-cytotoxicity of all HMSN concentrations to human follicle dermal papilla cells (HFDPCs). ULp-Caf@HMSNs promoted better cell viability than pure caffeine or caffeine-loaded HMSNs, highlighting enhanced biocompatibility without increased toxicity. Additionally, ULp-Caf@HMSNs effectively reduced ROS levels in DHT-damaged HFDPCs, suggesting they are promising alternatives to minoxidil for promoting hair follicle growth and reducing hair loss without increasing oxidative stress. This system shows promise for treating AGA.
Collapse
Affiliation(s)
- Nattanida Thepphankulngarm
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (N.T.); (N.H.)
| | - Suwisit Manmuan
- Division of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand;
| | - Namon Hirun
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (N.T.); (N.H.)
| | - Pakorn Kraisit
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (N.T.); (N.H.)
| |
Collapse
|
6
|
Li X, Song Y, Yang X, Xu J, Zhang X, Sun H. Multi-functional reinforced food packaging using delivery carriers: A comprehensive review of preparation, properties, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70050. [PMID: 39495570 DOI: 10.1111/1541-4337.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
With the rapid development of globalization, food packaging takes on more responsibility, while guaranteeing product quality and safety. In this context, the health risks associated with chemically synthesized additives and inorganic nanoparticles have opened a new chapter in the reinforcement of food packaging with natural active ingredients. Various delivery carriers have been developed to overcome the limitations of poor stability, uneven dispersion, and low bioavailability of natural active ingredients. The combination of encapsulation technologies can increase the biocompatibility of the active ingredient with the packaging material. Moreover, the protective and slow-release effects of the carrier matrix on the active ingredients are desirable for the reinforcement of food packaging. This review presents the latest advances in the application of delivery systems in food packaging, including the types of delivery systems used in food packaging, reinforced properties of food packaging, and potential applications in the food industry. Previous scientific studies found that active ingredient-loaded delivery carriers increased the effectiveness of food packaging in preventing food spoilage. Furthermore, the integration of active packaging with smart food packaging exhibits the synergistic effects of freshness monitoring and quality preservation. This review also discusses the challenges and trends in reinforcing food packaging with delivery carriers under a synergistic strategy that will provide new ideas and insights for the development and application of innovative food packaging.
Collapse
Affiliation(s)
- Xiquan Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Yao Song
- Department of Dairy Chemical Engineering, Beijing Technology and Business University, Beijing, P. R. China
| | - Xiyue Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Jian Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Hui Sun
- Huanan Nongshengyuan Food Co., Ltd., Huanan County, Heilongjiang, P. R. China
| |
Collapse
|
7
|
Pu Y, Chen L, Jiang W. Antimicrobial guar gum films optimized with Pickering emulsions of zein-gum arabic nanoparticle-stabilized composite essential oil for food preservation. Int J Biol Macromol 2024; 278:134911. [PMID: 39173796 DOI: 10.1016/j.ijbiomac.2024.134911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
In this study, composite essential oil Pickering emulsion stabilized with zein-gum arabic (GA) nanoparticles (ZGCEO) was prepared to improve the characteristics of guar gum (GG) films. ZGCEO exhibited commendable stability and compatibility with GG, while leading to a noticeable improvement in the light barrier (from 3.98 A mm-1 to 17.09 A mm-1) and water vapor barrier characteristics of GG films, concomitantly mitigating their hydrophilic nature, with decreasing moisture content (from 17.70 % to 10.50 %), water solubility (from 84.41 % to 71.79 %), water vapor permeability (from 5.64 × 10-11 g (m s Pa)-1 to 4.97 × 10-11 g (m s Pa)-1), and an increasing water contact angle (from 69.8° to 94.2°). The addition of 2 % ZGCEO yielded a notable increase in the tensile strength of the GG-ZGCEO films, but the elongation at break decreased with increasing ZGCEO concentration. Moreover, the incorporated ZGCEO demonstrated outstanding antioxidant and antimicrobial characteristics, featuring a slow-release behavior of essential oil. The GG-ZGCEO coating also showed an excellent preservation effect in pork and "Huangguan" pears during storage. Collectively, we substantiated the efficacy of ZGCEO in augmenting the functional attributes of GG films, thereby establishing their potential utility as antimicrobial packaging materials conducive to food preservation.
Collapse
Affiliation(s)
- Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
8
|
Fiallos-Núñez J, Cardero Y, Cabrera-Barjas G, García-Herrera CM, Inostroza M, Estevez M, España-Sánchez BL, Valenzuela LM. Eco-Friendly Design of Chitosan-Based Films with Biodegradable Properties as an Alternative to Low-Density Polyethylene Packaging. Polymers (Basel) 2024; 16:2471. [PMID: 39274104 PMCID: PMC11398076 DOI: 10.3390/polym16172471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Biopolymer-based films are a promising alternative for the food packaging industry, in which petrochemical-based polymers like low-density polyethylene (LDPE) are commanding attention because of their high pollution levels. In this research, a biopolymer-based film made of chitosan (CS), gelatin (GEL), and glycerol (GLY) was designed. A Response Surface Methodology (RSM) analysis was performed to determine the chitosan, gelatin, and glycerol content that improved the mechanical properties selected as response variables (thickness, tensile strength (TS), and elongation at break (EAB). The content of CS (1.1% w/v), GEL (1.1% w/v), and GLY (0.4% w/v) in the film-forming solution guarantees an optimized film (OPT-F) with a 0.046 ± 0.003 mm thickness, 11.48 ± 1.42 mPa TS, and 2.6 ± 0.3% EAB. The OPT-F was characterized in terms of thermal, optical, and biodegradability properties compared to LDPE films. Thermogravimetric analysis (TGA) revealed that the OPT-F was thermally stable at temperatures below 300 °C, which is relevant to thermal processes in the food industry of packaging. The reduced water solubility (WS) (24.34 ± 2.47%) and the improved biodegradability properties (7.1%) compared with LDPE suggests that the biopolymer-based film obtained has potential applications in the food industry as a novel packaging material and can serve as a basis for the design of bioactive packaging.
Collapse
Affiliation(s)
- Johanna Fiallos-Núñez
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile
| | - Yaniel Cardero
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Lientur 1439 Región del Biobío, Concepción 4080871, Chile
| | | | - Matías Inostroza
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Miriam Estevez
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Beatriz Liliana España-Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ) S. C., Parque Tecnológico Querétaro s/n, Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico
| | - Loreto M Valenzuela
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile
| |
Collapse
|
9
|
Zhou S, Peng H, Zhao A, Yang X, Lin D. Konjac glucomannan-based highly antibacterial active films loaded with thyme essential oil through bacterial cellulose nanofibers/Ag nanoparticles stabilized Pickering emulsions. Int J Biol Macromol 2024; 269:131875. [PMID: 38677701 DOI: 10.1016/j.ijbiomac.2024.131875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The aim of this study was to develop novel konjac glucomannan (KGM)-based highly antibacterial active films, where five types of films were prepared and compared. The microstructure results showed that KGM-based films loaded with thyme essential oil (TEO) through bacterial cellulose nanofibers/Ag nanoparticles (BCNs/Ag nanoparticles) stabilized Pickering emulsions (Type V films) displayed the smoothest surface and the most evenly dispersed TEO droplets as compared with the other four types of films. Moreover, Type V films showed the highest contact angle value (86.28°), the best thermal stability and mechanical properties. Furthermore, Type V films presented the highest total phenol content (13.23 mg gallic acid equivalent/g film) and the best antioxidant activity (33.96 %) as well as the best sustained-release property, thus showing the best antibacterial activity, which was probably due to that BCNs/Ag nanoparticles and TEO displayed a synergistic effect to some extent. Consequently, Type V film-forming solutions were used as coatings for tangerines. The results showed that the tangerines treated with Type V coatings displayed excellent fresh-keeping properties. Therefore, the coatings, KGM-based film-forming solutions loaded with TEO through BCNs/Ag nanoparticles stabilized Pickering emulsions, have great potential for the preservation of fruits and vegetables.
Collapse
Affiliation(s)
- Siyu Zhou
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
10
|
Zeng S, Liu X, Li J, Zhao H, Guo D, Tong X. Multi-functional polyvinyl alcohol/tannin acid composite films incorporated with lignin nanoparticles loaded by potassium sorbate. Int J Biol Macromol 2024; 264:130474. [PMID: 38428769 DOI: 10.1016/j.ijbiomac.2024.130474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
The biocompatible, biodegradable and strong polyvinyl alcohol-based films have been widely investigated and used in the field of active packaging. To endow with diverse function, this paper firstly prepared lignin nanoparticles loaded with potassium sorbate (LNP@PS) as additives to exploit additional antibacterial, UV blocking, oxygen barrier, and water barrier properties. Besides, tannin acid (TA) was incorporated for compensating and further enhancing mechanical properties. Results showed that the PVA-based composite films containing 3 % LNP@PS and 5 % TA could achieve the optimal tensile strength at 74.51 MPa, water vapor permeability at 7.015·10-13·g·cm/cm2·s·Pa and oxygen permeability at 1.93 cm3/m2·24 h MPa, which was an 165 % of increase, 47 % and 112 % of reduction respectively compared to pure PVA films. Additionally, the composite films exhibited apparently superior bacteria and oxygen resistance properties evidenced by microbial infection and free radical scavenging performance. In addition, the slow-release effect of PS assisted the strawberry preservation with an extension of 3 days, which provided a promising novel route to prepare active food packaging material.
Collapse
Affiliation(s)
- Shiyi Zeng
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, China
| | - Xiaogang Liu
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, China
| | - Jing Li
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, China; Key laboratory of recycling and eco-treatment of waste biomass of Zhejiang province, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, China.
| | - Huifang Zhao
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, China
| | - Daliang Guo
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, China.
| | - Xin Tong
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, China; Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
11
|
Wu H, Wang X, Li S, Zhang Q, Chen M, Yuan X, Zhou M, Zhang Z, Chen A. Incorporation of cellulose nanocrystals to improve the physicochemical and bioactive properties of pectin-konjac glucomannan composite films containing clove essential oil. Int J Biol Macromol 2024; 260:129469. [PMID: 38242415 DOI: 10.1016/j.ijbiomac.2024.129469] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
This study aimed to investigate the effectiveness of cellulose nanocrystals (CNC) isolated from cotton in augmenting pectin (PEC)/konjac glucomannan (KGM) composite films containing clove essential oil (CEO) for food packaging application. The effects of CNC dosage on film properties were examined by analyzing the rheology of film-forming solutions and the mechanical, barrier, antimicrobial, and CEO-release properties of the films. Rheological and FTIR analysis revealed the enhanced interactions among the film components after CNC incorporation due to its high aspect ratio and abundant hydroxyl groups, which can also prevent CEO droplet aggregation, contributing to form a compact microstructure as confirmed by SEM and 3D surface topography observations. Consequently, the addition of CNC reinforced the polysaccharide matrix, increasing the tensile strength of the films and improving their barrier properties to water vapor. More importantly, antibacterial, controlled release and kinetic simulation experiments proved that the addition of CNC could further slow down the release rate of CEO, prolonging the antimicrobial properties of the films. PEC/KGM/CEO composite films with 15 wt% CNC was found to have relatively best comprehensive properties, which was also most effective in delaying deterioration of grape quality during the storage of 9 days at 25 °C.
Collapse
Affiliation(s)
- Hejun Wu
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China.
| | - Xiaoxue Wang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Shasha Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Qiangfeng Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Maoxu Chen
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Xiangyang Yuan
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| |
Collapse
|
12
|
Yang L, Zhou C, Liu Y, He Z, Zhang M, Wang C, Yang Z, Li P. Enhanced mechanical properties and antibacterial activities of chitosan films through incorporating zein-gallic acid conjugate stabilized cinnamon essential oil Pickering emulsion. Int J Biol Macromol 2024; 258:128933. [PMID: 38143071 DOI: 10.1016/j.ijbiomac.2023.128933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
In this study, zein-gallic acid covalent complex prepared by alkali treatment was utilized as an emulsifier to stabilize cinnamon essential oil (CEO) Pickering emulsion, and the chitosan-based (CZGE) films loaded with CEO Pickering emulsion were prepared by blending. The influences of different contents of CEO Pickering emulsion on the physical properties and biological activities of CZGE films were investigated. The results showed that Pickering emulsion had good compatibility with chitosan matrix and enhanced the interaction between film-forming matrix polymer. In addition, incorporating with CEO Pickering emulsion (15 %, v/v) significantly improved the mechanical and barrier properties of the films, and also enhanced the light transmittance and thermal stability of the films. Furthermore, the loading of emulsion also improved the antioxidant activities of the films and led to the formation of high antimicrobial property against food pathogens, and the slow-release behavior of CEO could effectively extend the biological activity of the films. These results suggested that Pickering emulsion has potential as a loading system and a plasticizer in active packaging, and the feasibility of CZGE film in food packaging.
Collapse
Affiliation(s)
- Linjie Yang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chuang Zhou
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China.
| | - Yunhao Liu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Zuyu He
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Mengru Zhang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chao Wang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Ziming Yang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China.
| | - Puwang Li
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China.
| |
Collapse
|
13
|
Mouhoub A, Guendouz A, El Alaoui-Talibi Z, Ibnsouda Koraichi S, Er Raouan S, Delattre C, El Modafar C. Preparation of bioactive film based on chitosan and essential oils mixture for enhanced preservation of food products. Int J Biol Macromol 2024; 259:129396. [PMID: 38219942 DOI: 10.1016/j.ijbiomac.2024.129396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Recently, the concept of biodegradable and bioactive packaging and surface coating has become a trend. In this work, the bioactive films of chitosan were elaborated following the casting method. Contrary to the films containing the Cinnamomum zeylanicum Blume, Thymus satureioides Cosson, and Syzygium aromaticum essential oils (EOs) mixtures, the control film was thin, colorless, and showed high moisture content, swelling degree, and elongation at break. Concerning the physicochemical parameters, the incorporation of the EOs mixtures minimized the hydrophobicity of the material (θw < 65°) and modified randomly its surface free energy components (γ-; γ+; γLW). The theoretical prediction of Aspergillus sp. and Rhizopus sp. adherence to the chitosan-based films was relatively correlated to the experimental results (r = -0.601). The latter showed that 6.80 % and 19.02 % of the control film surface was covered by Aspergillus sp. and Rhizopus sp. spores, respectively. In contrast, no fungal adherence was noticed in the case of the film incorporating the triple EOs mixture. These promising results revealed that chitosan film containing C. zeylanicum, T. satureioides, and S. aromaticum EOs mixtures could be utilized as a surface coating or bioactive packaging in the food industry.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Amine Guendouz
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Zainab El Alaoui-Talibi
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco.
| | - Safae Er Raouan
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco.
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 7500 Paris, France.
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| |
Collapse
|
14
|
Yang Q, Zheng F, Chai Q, Li Z, Zhao H, Zhang J, Nishinari K, Zhao M, Cui B. Effect of emulsifiers on the properties of corn starch films incorporated with Zanthoxylum bungeanum essential oil. Int J Biol Macromol 2024; 256:128382. [PMID: 38000598 DOI: 10.1016/j.ijbiomac.2023.128382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The use of natural and safe ingredients in green food packaging material is a hot research topic. This study investigated the effect of different emulsifiers on starch film properties. Three types of emulsifiers, including Tween 80 as a small-molecule surfactant, sodium caseinate (CAS), whey protein isolate (WPI), and gelatin (GE) as macromolecule emulsifiers, whey protein isolate fibril (WPIF) as a particle emulsifier, were utilized to prepare Zanthoxylum bungeanum essential oil (ZBO) emulsions. The mechanical, physical, thermal, antibacterial properties, microstructure and essential oil release of starch films were investigated. CAS-ZBO nanoemulsion exhibited the smallest particle size of 198.6 ± 2.2 nm. The film properties changed with different emulsifiers. CAS-ZBO film showed the highest tensile strength value. CAS-ZBO and WPIF-ZBO films exhibited lower water vapor permeability than Tween-ZBO. CAS-ZBO film showed good dispersion of essential oil, the slowest release rate of essential oils in all food simulants, and the best antibacterial effect against Staphylococcus aureus and Listeria monocytogenes. The films composed of CAS-ZBO nanoemulsion, corn starch, and glycerol are considered more suitable for food packaging. This work indicated that natural macromolecule emulsifiers of CAS and WPIF are expected to be used in green food packaging material to offer better film properties.
Collapse
Affiliation(s)
- Qianwen Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Furun Zheng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qingqing Chai
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhao Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiantao Zhang
- Jinan Quankang Biotechnology Co., Ltd, Jinan 250000, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
15
|
Li J, Bao Y, Li Z, Cui H, Jiang Q, Hou C, Wang Y, Wu Y, Shang J, Xiao Y, Shu C, Wang Y, Wen B, Si X, Li B. Dual-function β-cyclodextrin/starch-based intelligent film with reversible responsiveness and sustained bacteriostat-releasing for food preservation and monitoring. Int J Biol Macromol 2023; 253:127168. [PMID: 37783251 DOI: 10.1016/j.ijbiomac.2023.127168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
The full combination of high sensitivity indication and long-lasting bacteriostatic function is an innovative need to meet the practicality of intelligent film packaging systems for food products. Hence, Blueberry anthocyanins (BA) copigmentated by ferulic acid (FA) was used as an indicator, and cinnamon essential oil (CO) encapsulated by β-cyclodextrin (β-CD) as a bacteriostat, potato starch (PS) as a film-forming substrate to prepared a dual-function starch-based intelligent active packaging film with pH indicator and antibacterial function. FA had the best copigmentation effect with a threefold increase in a value compared to other phenolic acids. The ΔE value increased from 3.24 to 5.13 at pH 2-8, and the change was still prominent in acid-base alternating test, indicating a high response sensitivity. Notably, the yellow gamut of indicating terminus increased its visibility to the naked eye. The release behavior of CO from film was in line with Fick's diffusion. Meanwhile, the release of CO delayed to about 90 h through β-cyclodextrin encapsulation, showing a high growth-inhibition rate in E. coli and S. aureus of almost 100 %. In this study, a dual-function film with indication and bacteriostasis was prepared and enhanced with both, expanding its wide application in intelligent packaging of fresh food.
Collapse
Affiliation(s)
- Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yidi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yunan Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Junzhe Shang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yahua Xiao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Bo Wen
- Yingkou Dongsheng Industry Co., Ltd., 88 Qinghua Street, Yingkou High-tech Industrial Development Zone, Yingkou, Liaoning 115000, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
16
|
Wei Z, Huang L, Feng X, Cui F, Wu R, Kong Q, Sun K, Gao J, Guo J. Development of functional, sustainable pullulan-sodium alginate-based films by incorporating essential oil microemulsion for chilled pork preservation. Int J Biol Macromol 2023; 253:127257. [PMID: 37802450 DOI: 10.1016/j.ijbiomac.2023.127257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Developing safe, eco-friendly, and functionally edible packaging materials has attracted global attention. Essential oils, can be incorporated into packaging materials as antioxidant and antibacterial agents. However, their high volatility and discontinuous film matrix issues may cause a rough film surface, limiting the application in food packaging. In this study, thyme essential oil microemulsion (TEO-M) was prepared and incorporated into a pullulan-sodium alginate (PS) film. The TEO-M incorporation endowed the PS film with antioxidant and UV protection properties. The antioxidant activities of the TEO-M-incorporated PS film were significantly better than those of the TEO-C (thyme essential oil coarse emulsion)-incorporated PS film. In comparison to TEO-C, the distribution of TEO-M in the film is more uniform. Lipid oxidation and the growth of microorganisms in chilled pork were inhibited by incorporating TEO-M at a concentration of 50 mg/mL in the PS film (PS-50M). After 10 days of storage at 4 °C, the total viable count (TVC) of chilled pork preserved in the PS-50M material was significantly reduced compared to the control group (P < 0.05). This study shows that incorporating TEO-M in the PS film provides a method for applying essential oils in food packaging, which may have great potential in the food industry.
Collapse
Affiliation(s)
- Ze Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lingli Huang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinyu Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Feng Cui
- Bozhou Hi-tech Innovation Pharmaceutical Industry Technology Research Institute Co., Ltd., Bozhou 236839, China
| | - Ruijie Wu
- School of Precision Instrument and Opto-electronic Engineering, Tianjin University, China
| | - Qingjun Kong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Keyu Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianhua Gao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Jun Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
17
|
Reis CA, Gomes A, do Amaral Sobral PJ. Films Based on Biopolymers Incorporated with Active Compounds Encapsulated in Emulsions: Properties and Potential Applications-A Review. Foods 2023; 12:3602. [PMID: 37835255 PMCID: PMC10573032 DOI: 10.3390/foods12193602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The rising consumer demand for safer, healthier, and fresher-like food has led to the emergence of new concepts in food packaging. In addition, the growing concern about environmental issues has increased the search for materials derived from non-petroleum sources and biodegradable options. Thus, active films based on biopolymers loaded with natural active compounds have great potential to be used as food packaging. However, several lipophilic active compounds are difficult to incorporate into aqueous film-forming solutions based on polysaccharides or proteins, and the hydrophilic active compounds require protection against oxidation. One way to incorporate these active compounds into film matrices is to encapsulate them in emulsions, such as microemulsions, nanoemulsions, Pickering emulsions, or double emulsions. However, emulsion characteristics can influence the properties of active films, such as mechanical, barrier, and optical properties. This review addresses the advantages of using emulsions to encapsulate active compounds before their incorporation into biopolymeric matrices, the main characteristics of these emulsions (emulsion type, droplet size, and emulsifier nature), and their influence on active film properties. Furthermore, we review the recent applications of the emulsion-charged active films in food systems.
Collapse
Affiliation(s)
- Camily Aparecida Reis
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
| | - Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| |
Collapse
|
18
|
Sajimon A, Edakkadan AS, Subhash AJ, Ramya M. Incorporating oregano (Origanum vulgare L.) Essential oil onto whey protein concentrate based edible film towards sustainable active packaging. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2408-2422. [PMID: 37424588 PMCID: PMC10326189 DOI: 10.1007/s13197-023-05763-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 07/11/2023]
Abstract
The study's objectives were to develop a packaging film incorporating oregano essential oil, and evaluate the antioxidant, antibacterial, mechanical, and physicochemical activities of the film toward grapes packaging. The films were developed by casting method, after adding nano-emulsion of essential oil into WPC-glycerol film forming solution. The effects of the Oregano Essential Oil (OEO) at different concentrations of 1, 2, 3, and 4% (w/w) in the WPC edible films were studied. The light transmittance, colour aspects, water aspects, mechanical, antioxidant, antimicrobial activities, FTIR, SEM microstructure, and biodegradability of the film were studied. Acidity, weight, TSS, pH and 9-point hedonic sensory analysis of grapes packed in WPC-OEO film were evaluated. Results showed that 3% OEO incorporated WPC film displayed positive inhibition towards pathogenic bacteria; Staphylococcus aureus and Escherichia coli (25.36 ± 0.52-28.0 ± 0.5 mm), the antioxidant activity of 86.89 ± 0.087% and 51.24 ± 0.031% for DPPH, FRAP respectively and degradation after 10 days. The film displayed reduced light transmittance, lower water solubility (44.04 ± 2.361%) and prominent surface characteristics in SEM microstructure and FTIR spectra. The grapes packed in WPC-3% OEO film were firmer, had less surface colour change and showed negligible change in weight, pH, acidity, and Brix value throughout the storage period. Thus, the developed film displayed excellent antibacterial and antioxidant properties that potentially extended the quality of fresh grapes during refrigerated storage. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05763-7.
Collapse
Affiliation(s)
- Athul Sajimon
- Department of Food Technology, K S Rangasamy College of Technology, Tiruchengode, Erode India
| | - Athulya Sunil Edakkadan
- Department of Food Technology, K S Rangasamy College of Technology, Tiruchengode, Erode India
| | - Athira Jayasree Subhash
- Department of Food Technology, K S Rangasamy College of Technology, Tiruchengode, Erode India
- Present Address: Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - M. Ramya
- Department of Food Technology, K S Rangasamy College of Technology, Tiruchengode, Erode India
| |
Collapse
|
19
|
Petraru A, Amariei S. A Novel Approach about Edible Packaging Materials Based on Oilcakes-A Review. Polymers (Basel) 2023; 15:3431. [PMID: 37631488 PMCID: PMC10459708 DOI: 10.3390/polym15163431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the growing global population and subsequent environment degradation, as well as changes in the climate, changing consumers' dietary habits is necessary to create strategies for the most efficient use of natural resources to eliminate waste in the food supply chain. The packaging of food is essential to preserve the food's properties, extend its shelf life and offer nutritional information. Food products are packaged in various materials of which the most used are plastics, but they have a negative impact on the environment. Various efforts have been made to address this situation, but unfortunately, this includes recycling rather than replacing them with sustainable solutions. There is a trend toward edible packaging materials with more additional functions (antioxidant, antimicrobial and nutritional properties). Edible packaging is also a sustainable solution to avoid food waste and environment pollution. Oilcakes are the principal by-products obtained from the oil extraction process. These by-products are currently underused as animal feed, landfilling or compost. Because they contain large amounts of valuable compounds and are low-cost ingredients, they can be used to produce materials suitable for food packaging. This review covers the recent developments in oilcake-based packaging materials. Special emphasis is placed on the study of materials and technologies that can be used to make edible film in order to research the most suitable ways of developing oilcake-based film that can be consumed simultaneously with the product. These types of materials do not exist on the market.
Collapse
Affiliation(s)
- Ancuţa Petraru
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | | |
Collapse
|
20
|
Shehabeldine AM, Doghish AS, El-Dakroury WA, Hassanin MMH, Al-Askar AA, AbdElgawad H, Hashem AH. Antimicrobial, Antibiofilm, and Anticancer Activities of Syzygium aromaticum Essential Oil Nanoemulsion. Molecules 2023; 28:5812. [PMID: 37570781 PMCID: PMC10421252 DOI: 10.3390/molecules28155812] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
In the current study, clove oil nanoemulsion (CL-nanoemulsion) and emulsion (CL-emulsion) were prepared through an ecofriendly method. The prepared CL-nanoemulsion and CL-emulsion were characterized using dynamic light scattering (DLS) and a transmission electron microscope (TEM), where results illustrated that CL-nanoemulsion droplets were approximately 32.67 nm in size and spherical in shape, while CL-nanoemulsion droplets were approximately 225.8 nm with a spherical shape. The antibacterial activity of CL-nanoemulsion and CL-emulsion was carried out using a microbroth dilution method. Results revealed that the preferred CL-nanoemulsion had minimal MIC values between 0.31 and 5 mg/mL. The antibiofilm efficacy of CL-nanoemulsion against S. aureus significantly decreased the development of biofilm compared with CL-emulsion. Furthermore, results illustrated that CL-nanoemulsion showed antifungal activity significantly higher than CL-emulsion. Moreover, the prepared CL-nanoemulsion exhibited outstanding antifungal efficiency toward Candida albicans, Cryptococcus neoformans, Aspergillus brasiliensis, A. flavus, and A. fumigatus where MICs were 12.5, 3.12, 0.78, 1.56, and 1.56 mg/mL, respectively. Additionally, the prepared CL-nanoemulsion was analyzed for its antineoplastic effects through a modified MTT assay for evaluating apoptotic and cytotoxic effects using HepG2 and MCF-7 cell lines. MCF-7 breast cancer cells showed the lowest IC50 values (3.4-fold) in CL-nanoemulsion relative to that of CL-emulsion. Thus, CL-nanoemulsion induces apoptosis in breast cancer cells by inducing caspase-8 and -9 activity and suppressing VEGFR-2. In conclusion, the prepared CL-nanoemulsion had antibacterial, antifungal, and antibiofilm as well as anticancer properties, which can be used in different biomedical applications after extensive studies in vivo.
Collapse
Affiliation(s)
- Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Mahmoud M. H. Hassanin
- Ornamental, Medicinal and Aromatic Plant Disease Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2022 Antwerp, Belgium;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| |
Collapse
|
21
|
Li R, Zhuang D, Feng H, Wang S, Zhu J. Novel “all-in-one” multifunctional gelatin-based film for beef freshness maintaining and monitoring. Food Chem 2023; 418:136003. [PMID: 36996647 DOI: 10.1016/j.foodchem.2023.136003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
In this study, a novel multifunctional food packaging was developed by incorporating alizarin (AL) and oregano essential oil Pickering emulsion (OEOP) into a gelatin film matrix. The incorporation of OEOP and alizarin improved the UV-vis resistance property of the film, blocking almost all UV-vis light (decreasing 71.80% to 0.06% at 400 nm). The elongation-at-break (EBA) was 4.02 times of that of gelatin film, indicating the improved mechanical properties of the films. This film showed a significant color change from yellow to purple in the pH range of 3-11 and a considerable sensitivity to ammonia vapor within 4 min, which was attributed to the deprotonation of the alizarin molecule. The film's antioxidant and dynamic antimicrobial capacity was significantly improved owing to the sustained release effect of OEOP. Furthermore, the multifunctional film effectively slowed down the beef spoilage rate and provided real-time visual monitoring of freshness through color changes. Additionally, the color change of the beef quality was linked to the RGB values of the film through a smartphone APP. Overall, this work broadens the possibilities of applications in the food packaging industry for multifunctional food packaging film with preservation and monitoring functions.
Collapse
|
22
|
Arifin HR, Utaminingsih F, Djali M, Nurhadi B, Lembong E, Marta H. The Role of Virgin Coconut Oil in Corn Starch/NCC-Based Nanocomposite Film Matrix: Physical, Mechanical, and Water Vapor Transmission Characteristics. Polymers (Basel) 2023; 15:3239. [PMID: 37571131 PMCID: PMC10422339 DOI: 10.3390/polym15153239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Corn starch-based nanocomposite films usually have low moisture barrier properties. Adding virgin coconut oil (VCO) as a hydrophobic component can improve the nanocomposite film's characteristics, especially the film's permeability and elongation properties. This study aimed to determine the role of VCO with various concentrations (0, 3, 5 wt%) on the physical, mechanical, and water vapor transmission characteristics of corn starch/NCC-based nanocomposite films. Adding 3% VCO to the film showed the lowest WVTR value by 4.721 g/m2.h. At the same time, the value of tensile strength was 4.243 MPa, elongation 69.28%, modulus of elasticity 0.062 MPa, thickness 0.219 mm, lightness 98.77, and water solubility 40.51%. However, adding 5 wt% VCO to the film increased the film's elongation properties by 83.87%. The SEM test showed that adding VCO formed a finer structure with pores in several areas. The FTIR films showed that adding VCO caused a slightly higher absorption peak shift at the O-H groups and new absorption peaks at wave numbers 1741 cm-1 and 1742 cm-1. The results of this study may provide opportunities for the development of nanocomposite films as biodegradable packaging in the future.
Collapse
Affiliation(s)
- Heni Radiani Arifin
- Departement of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.U.); (M.D.); (B.N.); (E.L.); (H.M.)
| | | | | | | | | | | |
Collapse
|
23
|
Wang Z, Tang W, Sun Z, Liu F, Wang D. Preparation and characterization of a novel absorbent pad based on polyvinyl alcohol/gellan gum/citric acid with incorporated Perilla leaf oil nanoemulsion for chilled chicken packaging. Food Chem 2023; 427:136688. [PMID: 37385065 DOI: 10.1016/j.foodchem.2023.136688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
A novel absorbent pad based on polyvinyl alcohol (PVA)/gellan gum/citric acid (CA) composite with incorporated Perilla leaf oil (PO) nanoemulsion was prepared and characterized. The esterification between PVA and CA and strong hydrogen bonds were detected. The PVA improved the tensile strength and elongation at break by 110% and 73%, respectively, whereas PO concentration ≤ 1.5 % (w/v) had little effect on the material properties. The CA and PO nanoemulsion loaded in the pads showed good antioxidant activity, and the pads with PO concentration ≥ 1.5 % (w/v) had effective antimicrobial activity against Escherichia coli and Staphylococcus aureus. The results of chilled chicken storage experiments indicated that the pad with 1.5% (w/v) PO nanoemulsion extended the shelf life of chicken to at least 9 days, demonstrating that the developed absorbent pads are potential materials for chilled chicken storage packing.
Collapse
Affiliation(s)
- Zaitian Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Wenxiang Tang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
24
|
Mouhoub A, Guendouz A, El Alaoui-Talibi Z, Ibnsouda Koraichi S, Delattre C, El Modafar C. Elaboration and general evaluation of chitosan-based films containing terpene alcohols-rich essential oils. World J Microbiol Biotechnol 2023; 39:146. [PMID: 37014476 DOI: 10.1007/s11274-023-03597-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Recently, the scientific community is interested in the synthesis of biodegradable and bioactive packaging to replace oil-based ones. Therefore, the present study aims to elaborate an active and biodegradable material using chitosan (CS-film) combined with pelargonium, tea tree, marjoram, and thyme essential oils (EOs), and then evaluate their different properties and biological activities. The obtained data showed an augmentation in CS-film thickness and opacity following the addition of EOs ranging from 17 ± 3 to 42 ± 2 μm and from 1.53 ± 0.04 to 2.67 ± 0.09, respectively. Furthermore, a significant decrease in the water vapor transmission rate and moisture content parameters was recorded as regards the treated CS-films. On the other hand, the treatment with EOs engenders random modifications in the physicochemical and mechanical characteristics of the material. Concerning the biological activities, the treated CS-films scavenged around 60% of DPPH radical while the control CS-film exhibited a negligible antioxidant activity. Finally, the CS-films containing pelargonium and thyme EOs exhibited the strongest antibiofilm-forming activity against Escherichia coli, Enterococcus hirae, Staphylococcus aureus, and Pseudomonas aeruginosa with values of inhibition greater than 70%. These encouraging results verify the effectiveness of CS-films containing EOs such as pelargonium and thyme EOs as biodegradable and bioactive packaging.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco.
| | - Amine Guendouz
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| | - Zainab El Alaoui-Talibi
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne Et Molécules Bioactives, Faculté Des Sciences Et Techniques, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 7500, Paris, France
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| |
Collapse
|
25
|
Yao L, Man T, Xiong X, Wang Y, Duan X, Xiong X. HPMC films functionalized by zein/carboxymethyl tamarind gum stabilized Pickering emulsions: Influence of carboxymethylation degree. Int J Biol Macromol 2023; 238:124053. [PMID: 36934825 DOI: 10.1016/j.ijbiomac.2023.124053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Pickering emulsions are promising systems to act as carriers of active hydrophobic components, and to improve compatibility and the water vapor barrier properties of bio-based films. This study aimed to investigated the effects of cinnamon essential oil Pickering emulsions (CEOEs) using zein/carboxymethyl tamarind gum as stabilizers on the mechanical, barrier, antibacterial and antioxidant properties of Hydroxypropyl methyl cellulose (HPMC) films, and assessed the influence of carboxymethylation degree. In addition, the effect of the packaging was studied on the shelf life of cherry tomatoes. Results showed that the droplet size reduced approximately from 93.03 to 10.59 μm with the increasing degree of substitution (DS), greatly facilitating the droplet uniform distribution in film matrix. Moreover, with the addition of CEOEs, significant increase was observed with the tensile strength from 8.46 to 25.41 MPa, and the water vapor permeability decreased from 6.18 × 10-10 to 4.24 × 10-10 g·m-1·s-1·Pa-1. The films exhibited good UV barrier properties without sacrificing the transparency after adding CEO. Furthermore, the antibacterial and antioxidant activities of the prepared films have also been greatly improved. Consequently, the CEOEs was an ideal alternative for incorporation with HPMC based films for increasing the shelf life of cherry tomatoes.
Collapse
Affiliation(s)
- Lili Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Tao Man
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yicheng Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xinxin Duan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
26
|
Chitosan nanocarriers containing essential oils as a green strategy to improve the functional properties of chitosan: A review. Int J Biol Macromol 2023; 236:123954. [PMID: 36898453 DOI: 10.1016/j.ijbiomac.2023.123954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
Large amounts of agricultural waste, especially marine product waste, are produced annually. These wastes can be used to produce compounds with high-added value. Chitosan is one such valuable product that can be obtained from crustacean wastes. Various biological activities of chitosan and its derivatives, especially antimicrobial, antioxidant, and anticancer properties, have been confirmed by many studies. The unique characteristics of chitosan, especially chitosan nanocarriers, have led to the expansion of using chitosan in various sectors, especially in biomedical sciences and food industries. On the other hand, essential oils, known as volatile and aromatic compounds of plants, have attracted the attention of researchers in recent years. Like chitosan, essential oils have various biological activities, including antimicrobial, antioxidant, and anticancer. In recent years, one of the ways to improve the biological properties of chitosan is to use essential oils encapsulated in chitosan nanocarriers. Among the various biological activities of chitosan nanocarriers containing essential oils, most studies conducted in recent years have been in the field of antimicrobial activity. It was documented that the antimicrobial activity was increased by reducing the size of chitosan particles in the nanoscale. In addition, the antimicrobial activity was intensified when essential oils were in the structure of chitosan nanoparticles. Essential oils can increase the antimicrobial activity of chitosan nanoparticles with synergistic effects. Using essential oils in the structure of chitosan nanocarriers can also improve the other biological properties (antioxidant and anticancer activities) of chitosan and increase the application fields of chitosan. Of course, using essential oils in chitosan nanocarriers for commercial use requires more studies, including stability during storage and effectiveness in real environments. This review aims to overview recent studies on the biological effects of essential oils encapsulated in chitosan nanocarriers, with notes on their biological mechanisms.
Collapse
|
27
|
Li Y, Shan P, Yu F, Li H, Peng L. Fabrication and characterization of waste fish scale-derived gelatin/sodium alginate/carvacrol loaded ZIF-8 nanoparticles composite films with sustained antibacterial activity for active food packaging. Int J Biol Macromol 2023; 230:123192. [PMID: 36634795 DOI: 10.1016/j.ijbiomac.2023.123192] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
An environmental-friendly composite films containing waste fish scale-derived gelatin (FSG), sodium alginate (SA) and carvacrol loaded ZIF-8 (CV@ZIF-8) nanoparticles were designed and fabricated to develop active food packaging materials capable of sustained antibacterial activity. The microstructure and physicochemical properties of the FSG/SA/CV@ZIF-8 composite films were investigated. The incorporation of CV@ZIF-8 into FSG/SA matrix significantly enhanced the UV-light blocking and the elongation at break, improved water resistance and reduced water vapor permeability, and improved the thermal stability of composite film. The FSG/SA/CV@ZIF-8 film not only exhibited strong antioxidant activity with DPPH radical scavenging rate of 92.35 %, but also showed the satisfactory and long-acting antibacterial ability against E. coli and S. aureus due to slow release of CV from composite film. Strawberry preservation experiment revealed that FSG/SA/CV@ZIF-8 film decelerated the texture deterioration and retarded the growth of spoilage microorganism, resulting in the prolonged shelf-life of 8 days under ambient condition, indicating its promising application prospect in food preservation packaging.
Collapse
Affiliation(s)
- Yongshi Li
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Shan
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Fuyou Yu
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
28
|
Li L, Zhang M, Feng X, Yang H, Shao M, Huang Y, Li Y, Teng F. Internal/external aqueous-phase gelation treatment of soybean lipophilic protein W/O/W emulsions: Improvement in microstructure, interfacial properties, physicochemical stability, and digestion characteristics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Tayah DY, Eid AM. Development of Miconazole Nitrate Nanoparticles Loaded in Nanoemulgel to Improve its Antifungal Activity. Saudi Pharm J 2023; 31:526-534. [PMID: 37063448 PMCID: PMC10102553 DOI: 10.1016/j.jsps.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Miconazole is a synthetic derivative of imidazole, a medication with a broad-spectrum antifungal agent that is used to treat localized vaginal, skin, and nail infections. The aim of the study was to develop an innovative technique to improve the permeability and efficacy of topical miconazole nitrate. A nanoemulgel of miconazole nitrate was formulated by the incorporation of a nanoemulsion and a hydrogel. The nanoemulsion was first optimized using a self-emulsifying technique, and the drug was then loaded into the optimum formulation and evaluated prior to mixing with the hydrogel. Miconazole nitrate nanoemulgel formulations were evaluated for their physical characteristics and antifungal activity. Based on the results, the formulation with 0.4 % Carbopol showed the highest release profile (41.8 mg/ml after 2 h); thus, it was chosen as the optimum formulation. A cell diffusion test was performed to examine the ability of the Miconazole nitrate nanoemulgel to penetrate the skin and reach the bloodstream. Percentage cumulative drug releases of 29.67 % and 23.79 % after 6 h were achieved for the MNZ nanoemulgel and the commercial cream, Daktazol, respectively. The antifungal activity of the novel MNZ nanoemulgel formulation was tested against Candida albicans and compared to Daktazol cream and almond oil; the results were: 40.9 ± 2.3 mm, 25.4 ± 2.7 mm and 18 ± 1.9 mm, respectively. In conclusion, a novel MNZ nanoemulgel showing superior antifungal activity compared to that of the commercial product has been developed. This nanotechnology technique is a step toward making pharmaceutical dosage forms that has a lot of promise.
Collapse
Affiliation(s)
| | - Ahmad M. Eid
- Corresponding author at: Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| |
Collapse
|
30
|
Zou Z, Ismail BB, Zhang X, Yang Z, Liu D, Guo M. Improving barrier and antibacterial properties of chitosan composite films by incorporating lignin nanoparticles and acylated soy protein isolate nanogel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Sharma RK, Dey G, Banerjee P, Maity JP, Lu CM, Siddique JA, Wang SC, Chatterjee N, Das K, Chen CY. New aspects of lipopeptide-incorporated nanoparticle synthesis and recent advancements in biomedical and environmental sciences: a review. J Mater Chem B 2022; 11:10-32. [PMID: 36484467 DOI: 10.1039/d2tb01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.
Collapse
Affiliation(s)
- Raju Kumar Sharma
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.,Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Chung-Ming Lu
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | | - Shau-Chun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Nalonda Chatterjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
32
|
Li N, Yang X, Lin D. Development of bacterial cellulose nanofibers/konjac glucomannan-based intelligent films loaded with curcumin for the fresh-keeping and freshness monitoring of fresh beef. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Effect of W/O pre-emulsion prepared with different emulsifiers on the physicochemical properties of soy protein isolate-based emulsion films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Nazurah RNF, Noranizan M, Nor-Khaizura M, Nur Hanani Z. The potential of chitosan-based film with curry leaf essential oil as natural insect-repellent food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Zhu K, Chen L, Chen C, Xie J. Preparation and characterization of polyethylene antifogging film and its application in lettuce packaging. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Bu N, Sun R, Huang L, Lin H, Pang J, Wang L, Mu R. Chitosan films with tunable droplet size of Pickering emulsions stabilized by amphiphilic konjac glucomannan network. Int J Biol Macromol 2022; 220:1072-1083. [PMID: 36037908 DOI: 10.1016/j.ijbiomac.2022.08.157] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022]
Abstract
In this work, chitosan (CS) emulsion films were prepared with grapefruit essential oil (GEO) Pickering emulsions (OGEOs) stabilized by amphiphilic octenyl succinic anhydride (OSA) konjac glucomannan (OSA-KGM) network. The droplet size of emulsion was regulated by altering oil content in OGEOs (10 %, 20 %, 30 % and 40 %, w/w). The structural and physicochemical properties of CS films with tunable emulsion droplets (OGEOs) were investigated. The droplet size of OGEOs increased with the increasing content of GEO. FT-IR revealed that the formation of CS-OGEOs films was attributed to hydrogen bonding. CS-OGEOs films with large droplets presented smoother surface, enhanced water resistance, UV-shielding property, mechanical properties, but increased water vapor permeability (WVP) compared with CS-OGEOs films with small droplets. In addition, CS-OGEOs films with large droplets also presented compact film structure, controlled release of GEO, high efficiency of DPPH free radical scavenging and antibacterial activity. To sum up, incorporation of emulsion droplets was a good strategy for improving the structural and physicochemical properties of CS films.
Collapse
Affiliation(s)
- Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Runzhi Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
37
|
Hosseini SF, Kaveh F, Schmid M. Facile fabrication of transparent high-barrier poly(lactic acid)-based bilayer films with antioxidant/antimicrobial performances. Food Chem 2022; 384:132540. [PMID: 35231714 DOI: 10.1016/j.foodchem.2022.132540] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022]
Abstract
Poly(lactic acid) (PLA) has been intended as an encouraging biopolymer for packaging purposes. Nevertheless, PLA-based films suffer from low gas barrier properties, which restrict their applications. Here, we report a facile fabrication of multi-component coating via layer deposition of cinnamaldehyde (CIN)-doped chitosan/poly(vinyl alcohol)/fish gelatin (CPF) on PLA surfaces. Different PLA/CPF ratios (100:0, 77.5:22.5, 55:45, 32.5:67.5, and 0:100) were tested, whereas the PLA55:CPF45 was selected for loading of CIN. The surface and morphology analyses of the bilayers verify that CPF layers are successfully coated on the PLA surfaces. This design improved the mechanical strength and water barrier of CPF films and simultaneously enhanced the ductility of PLA films. By deposition of CIN-doped CPF layer on a PLA substrate, the oxygen permeability decreased from 28.92 to 0.238 cm3 mm/m2 day bar, approximately 122 times lower than that of bare PLA. CIN loadings in the CPF layer endowed bilayer films with antioxidant/antimicrobial activity.
Collapse
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran.
| | - Forouzan Kaveh
- Department of Food Science & Industries, Khazar Institute of Higher Education, P. O. 46315-389, Mazandaran, Mahmoodabad, Iran
| | - Markus Schmid
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str., 51, 72488 Sigmaringen, Germany
| |
Collapse
|
38
|
3D printing of essential oil/β-cyclodextrin/popping candy modified atmosphere packaging for strawberry preservation. Carbohydr Polym 2022; 297:120037. [DOI: 10.1016/j.carbpol.2022.120037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
|
39
|
Zhang R, Zhai X, Wang W, Hou H. Preparation and evaluation of agar/maltodextrin-beeswax emulsion films with various hydrophilic-lipophilic balance emulsifiers. Food Chem 2022; 384:132541. [DOI: 10.1016/j.foodchem.2022.132541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
|
40
|
Chitosan film containing antifungal agent-loaded SLNs for the treatment of candidiasis using a Box-Behnken design. Carbohydr Polym 2022; 283:119178. [DOI: 10.1016/j.carbpol.2022.119178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 01/23/2023]
|
41
|
Influence of Marine Yeast Debaryomyces hansenii on Antifungal and Physicochemical Properties of Chitosan-Based Films. J Fungi (Basel) 2022; 8:jof8040369. [PMID: 35448600 PMCID: PMC9029259 DOI: 10.3390/jof8040369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 01/28/2023] Open
Abstract
Chitosan-based film with and without antagonistic yeast was prepared and its effect against Penicillium italicum was evaluated. The biocompatibility of yeast cells in the developed films was assessed in terms of population dynamics. Furthermore, the impact on physicochemical properties of the prepared films with and without yeast cells incorporated were evaluated in terms of thickness, mechanical properties, color and opacity. Chitosan films with the antagonistic yeast entrapped exhibited strong antifungal activity by inhibiting the mycelial development (55%), germination (45%) and reducing the sporulation process (87%). Chitosan matrix at 0.5% and 1.0% was maintained over 9 days of cell viability. However, at 1.5% of chitosan the population dynamics was strongly affected. The addition of yeast cells only impacted color values such as a*, b*, chroma and hue angle when 1.0% of chitosan concentration was used. Conversely, luminosity was not affected in the presence of yeast cells as well as the opacity. Besides, the addition of antagonistic yeast improved the mechanical resistance of the films. The addition of D. hansenii in chitosan films improve their efficacy for controlling P. italicum, and besides showed desirable characteristics for future use as packaging for citrus products.
Collapse
|
42
|
Preparation of water-in-oil (W/O) cinnamaldehyde microemulsion loaded with epsilon-polylysine and its antibacterial properties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Xia X, Ren M, He WS, Jia C, Zhang X. The preparation of phytosteryl succinyl sucrose esters and improvement of their water solubility and emulsifying properties. Food Chem 2022; 373:131501. [PMID: 34763932 DOI: 10.1016/j.foodchem.2021.131501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Phytosterols have gained much attention due to their outstanding cholesterol-reducing effect, while the insolubility in water limits their application. The aim of this study was to synthesize a novel hydrophilic phytosteryl derivatives-phytosteryl succinyl sucrose esters (PSSEs) and investigated their water solubility and emulsifying properties. PSSEs were synthesized by esterifying phytosterol hemisuccinates with sucrose through a mild chemical reaction. PSSEs were characterized by fourier transform infrared spectroscopy, mass spectroscopy, and nuclear magnetic resonance spectroscopy. The yield of PSSEs exceeded 84% in N,N-dimethylformamide for 36 h of reaction under the selected conditions: 100 mmol/L phytosteryl hemisuccinates, 150 mmol/L sucrose, 110 mmol/L 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochlide, 10 mmol/L 4-dimethylaminopyridine and 10 mmol/L p-toluenesulfonic acid. The water insolubility of phytosterols was overcome and the water solubility of PSSEs achieved 2.13 mg/mL. The emulsifying activity of PSSEs was 2.5 times that of phytosterols, reaching 0.95 mg/mL. PSSEs with better water solubility and emulsification properties could facilitate the widespread use of phytosterols in foods.
Collapse
Affiliation(s)
- Xue Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingxing Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wen-Sen He
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Chengsheng Jia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
44
|
Characterization of konjac glucomannan-based active films loaded with thyme essential oil: Effects of loading approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Hosseini SF, Ghaderi J, Gómez-Guillén MC. Tailoring physico-mechanical and antimicrobial/antioxidant properties of biopolymeric films by cinnamaldehyde-loaded chitosan nanoparticles and their application in packaging of fresh rainbow trout fillets. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107249] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Zhang S, He Z, Xu F, Cheng Y, Waterhouse GI, Sun-Waterhouse D, Wu P. Enhancing the performance of konjac glucomannan films through incorporating zein–pectin nanoparticle-stabilized oregano essential oil Pickering emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107222] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Wang K, Li Y, Sang S, Zhang S, Chen L, Tang J. Preparation and properties of nonionic waterborne epoxy resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.51655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kaijie Wang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Yuanyuan Li
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Shilin Sang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Shijie Zhang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Lilin Chen
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| | - Jialing Tang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
| |
Collapse
|
48
|
LIAN H, SHI J, ZHANG X, PENG Y, MENG W, PEI L. Effects of different kinds of polysaccharides on the properties and inhibition of Monilinia fructicola of the thyme essential oil-chitosan based composite films. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.57420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Huan LIAN
- Shandong Agricultural University, China; All China Federation of Supply and Marketing Co-operatives, China
| | | | | | - Yong PENG
- Shandong Agricultural University, China
| | | | | |
Collapse
|
49
|
Inapurapu SP, Pullakhandam R, Bodiga S, Yaduvanshi PS, Bodiga VL. Physicochemical studies of sunflower oil based vitamin D nanoemulsions. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2016440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Santhi Priya Inapurapu
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| | - Raghu Pullakhandam
- Micronutrient Division, National Institute of Nutrition, Hyderabad, Telangana, India
| | - Sreedhar Bodiga
- Department of Basic and Social Sciences, Forest College and Research Institute, Mulugu, Telangana, India
| | | | - Vijaya Lakshmi Bodiga
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
50
|
Zhai X, Gao S, Xiang Y, Wang A, Li Z, Cui B, Wang W. Cationized high amylose maize starch films reinforced with borax cross-linked nanocellulose. Int J Biol Macromol 2021; 193:1421-1429. [PMID: 34740689 DOI: 10.1016/j.ijbiomac.2021.10.206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
In this study, a novel strategy for modifying nanocellulose (NC) by borax cross-linking was developed, and the obtained borax modified nanocellulose (BNC) was incorporated into cationized high amylose maize starch (CS) films to evaluate the applicability. Cellulose molecules were successfully cross-linked by boron ester bonds, and the original crystal type and basic chemical structure were not changed. Compared with NC, the relative crystallinity of BNC was slightly increased, and the thermal stability was obviously enhanced. Addition of NC and BNC to CS films significantly improved their tensile strength and water resistance. The dispersion of nanocellulose in CS films was effectively improved by borax cross-linking modification. CS/BNC films showed higher mechanical and water resistance properties compared with CS/NC films. Compared with pure CS film, tensile strength of the composite film with 6 wt% BNC increased about 4.0 times, and its water-vapor permeability decreased about 37%. The novel strategy for preparing BNC by using boron ester bonds will provide a potential approach for the development of starch films with desirable properties.
Collapse
Affiliation(s)
- Xiaosong Zhai
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an 271018, China
| | - Shan Gao
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an 271018, China
| | - Yamei Xiang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an 271018, China
| | - Aiyue Wang
- Shandong Xingquan Oil Co. Ltd., Linyi 276600, China
| | - Zisong Li
- Shandong Xingquan Oil Co. Ltd., Linyi 276600, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Wentao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an 271018, China.
| |
Collapse
|