1
|
Dai H, Liu Y, Zheng X, Hu X, Ma L, Wang H, Chen H, Zhang Y. Fabrication and characterization of non-diary whipped creams: Influence of oleogel. Food Chem 2025; 471:142858. [PMID: 39808981 DOI: 10.1016/j.foodchem.2025.142858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/05/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Non-dairy whipped creams (NDWC) are a typical food emulsion system and are gaining popularity among consumers. Oleogels as reasonable alternatives to trans and saturated fats in foods show great potential application in NDWC. Effects of different proportions of oleogel (30 %-70 %) as base oil on the crystallization behavior, appearance, interface and rheological properties of NDWC were evaluated. The base oil made of oleogel and sunflower oil can crystallize at 0-10 °C, showing needle-liked β-crystal crystal structure. A higher oleogel proportion increased solid fat index, fat crystals and fractal dimension. The fat coalescence rate in NDWC gradually increased from 205.88 % to 465.96 % as oleogel ratio increased from 30 % to 70 %, which was beneficial to the network structure formation of NDWC. The increase of oleogel ratio effectively reduced interfacial tension and increased the elastic modulus as well as promoted partial fat coalescence, thus facilitated the formation and stabilization of the NDWC system.
Collapse
Affiliation(s)
- Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yingjie Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xi Zheng
- Chongqing Food Industry Research Institute Co., Ltd, Chongqing 400010, China
| | - Xiyue Hu
- Hanhong College, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
2
|
Xu H, Huang M, Huan H, Cui L, Liu L, Xu X, Chen Y, Wei W, Jin Q, Jin J, Wang X. Plant-based whipping cream: A promising sustainable alternative to dairy products. Adv Colloid Interface Sci 2025; 341:103494. [PMID: 40187090 DOI: 10.1016/j.cis.2025.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/12/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Future food is dedicated to transforming the traditional production model of the food industry, making people and the planet healthier, and addressing the challenges facing humanity. The development of plant-based foods is one of the core contents of future food and an important way to achieve green and low-carbon development of the food industry. A prevailing food trend in the dairy industry is the demand to develop various plant-based alternatives to dairy products. Plant-based whipping cream is a complex emulsion-foam system that can be transformed from an oil-in-water emulsion structure to a triphasic (solid-liquid-gas) foam structure by whipping, which should achieve a subtle balance between emulsion stability, whipping destabilization, and foam re-stabilization. This review aims to understand the science and technology underlying the development of plant-based whipping cream. The initial focus is on the fundamental principle of stabilization and destabilization of plant-based whipping cream, as the development of successful products depends on understanding their physicochemical basis. Three main processing technologies for the manufacture of plant-based whipping cream are then introduced: homogenization, sterilization, and tempering. Besides that, the role of the basic ingredients in plant-based whipping cream is highlighted, including vegetable fats, plant proteins, low-molecular-weight emulsifiers, and thickeners. In order to quantify and compare the quality attributes of different plant-based whipping cream products under standardized conditions, we provide an overview of characterization methods to evaluate emulsion stability, whipping destabilization, and foam re-stabilization of plant-based whipping cream. Subsequently, the legislations and regulations related to plant-based whipping cream products are introduced to cater to their market development. Finally, the current challenges faced by plant-based whipping cream are highlighted. This review aims to provide a guidance for researchers and manufacturers in related industries.
Collapse
Affiliation(s)
- Hua Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingcui Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huilin Huan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Limin Cui
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Longfei Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xianmin Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuhang Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Food Laboratory of Zhongyuan, Luohe, Henan Province, 462300, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Food Laboratory of Zhongyuan, Luohe, Henan Province, 462300, China.
| |
Collapse
|
3
|
Sun J, Yang X, Diao J, Wang Y, Wang C. Exploration of Pea Protein Isolate-Sodium Alginate Complexes as a Novel Strategy to Substitute Sugar in Plant Cream: Synergistic Interactions Between the Two at the Interface. Foods 2025; 14:991. [PMID: 40232005 PMCID: PMC11941406 DOI: 10.3390/foods14060991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
This study aims to explore the feasibility of using pea protein isolate (PPI)/sodium alginate (SA) complex as a sugar substitute to develop low sugar plant fat cream. Firstly, this study analyzed the influence of SA on the structure and physicochemical properties of PPI and evaluated the types of interaction forces between PPI and SA. The addition of SA effectively induces the unfolding and structural rearrangement of PPI, causing structural changes and subunit dissociation of PPI, resulting in the exposure of internal-SH groups. In addition, the addition of SA increased the content of β-folding in PPI, making the structure of PPI more flexible and reducing interfacial tension. The ITC results indicate that the binding between PPI and SA exhibits characteristics of rapid binding and slow dissociation, which is spontaneous and accompanied by heat release. Next, the effect of PPI/SA ratio on the whipping performance and quality of low sugar plant fat creams was studied by using PPI/SA complex instead of 20% sugar in the cream. When using a PPI/SA complex with a mass ratio of 1:0.3 instead of sugar, the stirring performance, texture, and stability of plant fat cream reach their optimum. Finally, the relevant analysis results indicate that the flexibility and interface characteristics of PPI are key factors affecting the quality of cream. This study can provide theoretical support for finding suitable sugar substitute products and developing low sugar plant fat cream.
Collapse
Affiliation(s)
- Jingru Sun
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (J.S.); (X.Y.); (J.D.)
| | - Xiyuan Yang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (J.S.); (X.Y.); (J.D.)
| | - Jingjing Diao
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (J.S.); (X.Y.); (J.D.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Yichang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (J.S.); (X.Y.); (J.D.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| |
Collapse
|
4
|
Dabo KF, Chèné C, Fameau AL, Karoui R. Whipping Creams: Advances in Molecular Composition and Nutritional Chemistry. Molecules 2024; 29:5933. [PMID: 39770022 PMCID: PMC11678082 DOI: 10.3390/molecules29245933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Whipping cream (WC) is an oil-in-water (O/W) emulsion used in food industry that can be transformed into aerated foam. The cream market has expanded significantly, driven by consumer demands for healthier and higher-quality products, leading to significant scientific research and innovation. This review focuses on formulation challenges related to ingredients such as fats, emulsifiers, and stabilizers, and how these components interact to form a stable emulsion and foam structure. Many studies have aimed to enhance the physicochemical, functional, and nutritional characteristics of WC by fine-tuning formulation parameters. A major focus was to address the health concerns linked to the high saturated fat content in milk fat (MF) by developing healthier alternatives. These include modifying the fat content, developing low-fat formulations, and introducing plant-based substitutes for dairy creams. The participation of additives to improve the properties of whipping cream was also investigated in many recent studies. The use of plant proteins, hydrocolloids, and emulsifiers has been explored, highlighting their effectiveness in enhancing emulsifying and foaming properties. This review summarizes recent advancements in whipping cream formulation, emphasizing the role of additives and alternative ingredients in meeting consumer preferences for healthier, more sustainable whipping cream products with enhanced functional, sensory, and nutritional properties.
Collapse
Affiliation(s)
- Khadija Florence Dabo
- Adrianor, 62217 Tilloy-Lès-Mofflaines, France; (K.F.D.); (C.C.)
- University of Artois, University of Lille, University of Littoral Côte d’Opale, University of Picardie Jules Verne, University of Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, 62300 Lens, France;
| | - Christine Chèné
- Adrianor, 62217 Tilloy-Lès-Mofflaines, France; (K.F.D.); (C.C.)
| | - Anne-Laure Fameau
- CNRS, INRAE, Centrale Lille, UMET, University of Lille, 59000 Lille, France
| | - Romdhane Karoui
- University of Artois, University of Lille, University of Littoral Côte d’Opale, University of Picardie Jules Verne, University of Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, 62300 Lens, France;
| |
Collapse
|
5
|
Karaca AC, Boostani S, Assadpour E, Tan C, Zhang F, Jafari SM. Pickering emulsions stabilized by prolamin-based proteins as innovative carriers of bioactive compounds. Adv Colloid Interface Sci 2024; 333:103246. [PMID: 39208623 DOI: 10.1016/j.cis.2024.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
6
|
Hei X, Li S, Liu Z, Wu C, Ma X, Jiao B, Hu H, Zhu J, Adhikari B, Wang Q, Shi A. Characteristics of Pickering emulsions stabilized by microgel particles of five different plant proteins and their application. Food Chem 2024; 449:139187. [PMID: 38604029 DOI: 10.1016/j.foodchem.2024.139187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Pickering emulsions stabilized by protein particles are of great interest for use in real food systems. This study was to investigate the properties of microgel particles prepared from different plant proteins, i.e., soybean protein isolate (SPI), pea protein isolate (PPI), mung bean protein isolate (MPI), chia seed protein isolate (CSPI), and chickpea protein isolate (CPI). MPI protein particles had most desirable Pickering emulsion forming ability. The particles of SPI and PPI had similar particle size (316.23 nm and 294.80 nm) and surface hydrophobicity (2238.40 and 2001.13) and emulsion forming ability, while the CSPI and CPI particle stabilized emulsions had the least desirable properties. The MPI and PPI particle stabilized Pickering emulsions produced better quality ice cream than the one produced by SPI particle-stabilized emulsions. These findings provide insight into the properties of Pickering emulsions stabilized by different plant protein particles and help expand their application in emulsions and ice cream.
Collapse
Affiliation(s)
- Xue Hei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shanshan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chao Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinjin Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne 3083, VIC, Australia
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
7
|
Su Y, Chai XH, Tan CP, Liu YF. Crystallization behavior and compatibility analysis of palm kernel stearin/anhydrous milk fat blends and application. J Food Sci 2024; 89:3194-3207. [PMID: 38660921 DOI: 10.1111/1750-3841.17028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
In this paper, the compatibility, phase behavior, and crystallization properties of the binary blends of palm kernel stearin (PKS) and anhydrous milk fat (AMF) were investigated by analyzing the solid fat content (SFC), thermal properties, polymorphism, and microstructure, with the aim of providing theoretical guidance for the blending of oils. The results showed that the PKS content primarily determined the SFC trend of the binary blends. However, the binary blends demonstrated poor miscibility and eutectic behavior was predominantly observed in the system, particularly at higher temperatures. Only α and β' forms appeared in this blended system. Simultaneously, the addition of PKS elevated the liquid phase transition temperature of the binary blends, considerably significantly increased their crystallization rate when the addition of PKS was more than 20% and increased the density and size of the fat crystals. Finally, the mixing design optimization method was used to get the most suitable ratio of the binary blends in the refrigerated cream system with PKS:AMF to be 0.914:0.086. The cream prepared with the above binary blends was indeed superior in overrun and firmness and had high stability. PRACTICAL APPLICATION: Some fats with special advantages are often limited in their wide application because of their poor crystallization ability. In this paper, the crystallization ability of fats is improved, and their application scenarios are increased through the combination of fats, so as to provide reference for the production of special fats for food.
Collapse
Affiliation(s)
- Yi Su
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Xiu-Hang Chai
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Selangor, Malaysia
| | - Yuan-Fa Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Han W, Chai X, Zaaboul F, Sun Y, Tan CP, Liu Y. Synergistic effect of hydrophilic polyglycerol fatty acid esters and protein on the stability of interfacial membrane in low-fat aerated emulsions with different homogenization conditions. Food Chem 2024; 435:137584. [PMID: 37774617 DOI: 10.1016/j.foodchem.2023.137584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
This study investigates the impact of various chain lengths of hydrophilic polyglycerol fatty acid esters (HPGEs), namely SWA-10D, M-7D and M-10D on protein interactions and their influence on the surface morphology and interfacial properties of low-fat aerated emulsions under different pressures conditions. M-7D and M-10D samples exhibited larger particle sizes, higher ζ-potential and rougher surface compared to SWA-10D sample at 1 % concentration of HPGEs. Consequently, M-7D and M-10D samples demonstrated lower values of G', G'', and higher values tan δ at the oil-water interface as pressure increased, thereby promoting the formation of less viscoelastic structures. M-7D sample, characterized by lower content of α-helix structures, resulted in an observable redshift in the NH and CO groups of the protein. Molecular docking analysis affirmed that M-7D sample exhibited a lower absolute binding energy value, indicating stronger interaction with the protein compared to other samples, ultimately contributing to the unstable interfacial membrane formed.
Collapse
Affiliation(s)
- Wanjun Han
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Xiuhang Chai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Farah Zaaboul
- Food and Biomaterials Group, School of Biosciences, University of Nottingham, LE12 5RD, United Kingdom
| | - Yanwen Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Liu Z, Xu M, Zhou S, Wang J, Huang Z. Enhancing the Thermal Stability of Zein Particle-Stabilized Aeratable Emulsions Through Genipin-Protein Cross-Linking and Its Possible Mechanism of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3707-3718. [PMID: 38268446 DOI: 10.1021/acs.jafc.3c07770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Protein particle-stabilized emulsions often lack thermal stability, impacting their industrial use. This study investigated the effects of genipin (GP)-zein cross-linked particles with varying GP-to-protein weight ratios (0/0.02/0.1:1) on emulsion thermal stability. Enhanced stability was observed at the GP level of 0.1. Heat treatment increased the covalent cross-linking in raw particles and emulsions. Isolated particles from heated emulsions grew in size (micrometer scale) with higher GP levels, unlike heated raw particles (nanoscale). GP-protein cross-linking reduced the droplet-droplet and particle-emulsifier interactions in the heated emulsion. Spectroscopic analysis and electrophoresis revealed that GP-zein cross-linking increased protein structural stability and inhibited nondisulfide and non-GP cross-linking reactions in heated emulsions. The GP-zein bridges between particles at the oil-water interface create strong connections in the particle layer (shell), referred to as "particle-shell locking", enhancing the thermal stability of emulsion significantly. This insight aids the future design of protein-particle-based emulsions, preserving properties like aeratability during thermal processing.
Collapse
Affiliation(s)
- Zelong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Meiyu Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Zhaoxian Huang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. Oleo-foams and emulsion-foams as lipid-based foam systems: a review of their formulation, characterization, and applications. Crit Rev Food Sci Nutr 2023; 65:787-810. [PMID: 38095599 DOI: 10.1080/10408398.2023.2281622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Lipid-based foam systems (LBFs) have grown in popularity recently because of their effectiveness and potential uses. As a result, in order to stabilize them, considerable work has been put into developing more biodegradable and environmentally friendly materials. However, the use of natural stabilizing agents has been constrained due to a lack of thorough knowledge of them. This review offers insightful data that will encourage more studies into the development and use of LBFs. Emulsifiers or gelling agents, as well as new preparation and characterization methods, can be used to increase or prolong the functional performance of LBFs. Special emphasis has been given on the connections between their structures and properties and expanding the range of industries in which they can be applied. In conclusion, it is crucial to gain a deeper understanding of the preparation mechanisms and influencing factors in order to improve the quality of foam products and create novel LBFs.
Collapse
Affiliation(s)
- Behnaz Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
11
|
Pulivarthi MK, Buenavista RM, Bangar SP, Li Y, Pordesimo LO, Bean SR, Siliveru K. Dry fractionation process operations in the production of protein concentrates: A review. Compr Rev Food Sci Food Saf 2023; 22:4670-4697. [PMID: 37779384 DOI: 10.1111/1541-4337.13237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023]
Abstract
The market for plant proteins is expanding rapidly as the negative impacts of animal agriculture on the environment and resources become more evident. Plant proteins offer competitive advantages in production costs, energy requirements, and sustainability. Conventional plant-protein extraction is water and chemical-intensive, posing environmental concerns. Dry fractionation is an energy-efficient and environmentally friendly process for protein separation, preserving protein's native functionality. Cereals and pulses are excellent sources of plant proteins as they are widely grown worldwide. This paper provides a comprehensive review of the dry fractionation process utilized for different seeds to obtain protein-rich fractions with high purity and functionality. Pretreatments, such as dehulling and defatting, are known to enhance the protein separation efficiency. Factors, such as milling speed, mill classifier speed, feed rate, seed type, and hardness, were crucial for obtaining parent flour of desired particle size distribution during milling. The air classification or electrostatic separation settings are crucial in determining the quality of the separated protein. The cut point in air classification is targeted based on the starch granule size of the seed material. Optimization of these operations, applied to different pulses and seeds, led to higher yields of proteins with higher purity. Dual techniques, such as air classification and electrostatic separation, enhance protein purity. The yield of the protein concentrates can be increased by recycling the coarse fractions. Further research is necessary to improve the quality, purity, and yield of protein concentrates to enable more efficient use of plant proteins to meet global protein demands.
Collapse
Affiliation(s)
- Manoj Kumar Pulivarthi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Rania Marie Buenavista
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Lester O Pordesimo
- Stored Product Insect and Engineering Research Unit, CGAHR, USDA-ARS, Manhattan, Kansas, USA
| | - Scott R Bean
- Grain Quality and Structure Research Unit, CGAHR, USDA-ARS, Manhattan, Kansas, USA
| | - Kaliramesh Siliveru
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
12
|
Wei X, Zhang H, Cheong L, Gong J, Xu X, Bi Y. Effects of monoacylglycerols with different saturation degrees on physical and whipping properties of milk fat-based whipping creams. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2468-2476. [PMID: 37424572 PMCID: PMC10326237 DOI: 10.1007/s13197-023-05769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023]
Abstract
Milk fat-based whipping cream is primarily comprised of cream and whole milk. It has melt-in-the-mouth texture and unique milk flavor. However, milk fat-based whipping cream suffers from poor emulsion stability and foam firmness. The effects of monoacylglycerols (MAGs) with different saturation degrees (M1: 98% saturation, M2: 70% saturation and M3: 30% saturation) on emulsion properties (average particle size, viscosity, and emulsion stability) and whipping properties (overrun, firmness, shape retention ability, and foam stability) of milk fat-based whipping creams were investigated in this study. MAGs significantly decreased particle sizes (from 2.84 to 1.16 μm) and enhanced viscosity (from 350 to 490 cP) of the milk fat-based emulsions (emulsion without MAGs: M0, 5.01 μm, 298 cP) (P < 0.05). MAGs increased the stability of the milk fat-based emulsions with lesser phase separation during centrifugation tests and lower changes in particle sizes and viscosities during temperature cycling tests. Emulsion M1 with highest degree of saturation is less likely to destabilize and phase inverse. The decrease sharply in conductivity can be attributed to the entrapment of large amounts of air. Following that, the conductivity of M1 with low variation indicating high whipping resistance and less likely to coalescence and phase separation. Adding MAGs can significantly enhance overrun (M1: 205.3%, M2: 198.5%, M3: 141.4%) as compared to the control sample (M0: 97.9%) (P < 0.05). In emulsions containing MAGs with high degree of saturation (M1 and M2), firmness (M1: 95 g, M2: 109 g) and shape retention ability of the whipped creams were reduced as compared to control emulsion without MAG (M0: 173 g), but the foam stability (M1: 89%, M2: 91%) was enhanced (M0: 81%); M3 (firmness: 507 g; foam stability: 66%) has the contrasted effects. Whipping cream M2 demonstrated the best whipping properties with high overrun (198.46%), good firmness (109 g), shape retention ability and foam stability (91%). Good quality whipping creams can be obtained by selecting suitable MAGs.
Collapse
Affiliation(s)
- Xueli Wei
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou, 450001 China
| | - Hong Zhang
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou, 450001 China
- Wilmar Biotechnology Research and Development Center (Shanghai) Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai, 200137 China
| | - Lingzhi Cheong
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, 315211 China
| | - Jingjing Gong
- Wilmar Biotechnology Research and Development Center (Shanghai) Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai, 200137 China
| | - Xuebing Xu
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou, 450001 China
- Wilmar Biotechnology Research and Development Center (Shanghai) Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai, 200137 China
| | - Yanlan Bi
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou, 450001 China
| |
Collapse
|
13
|
Cui L, Guo J, Meng Z. A review on food-grade-polymer-based O/W emulsion gels: Stabilization mechanism and 3D printing application. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
14
|
Whippable emulsions co-stabilized by protein particles and emulsifiers: The effect of emulsifier type. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
15
|
Guo J, Gu X, Du L, Meng Z. Spirulina platensis protein nanoparticle-based bigels: Dual stabilization, phase inversion, and 3D printing. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Gu X, Du L, Meng Z. Thermal-reversible lacquer wax-based oleofoams in dual stabilization with high ambient stability. Food Res Int 2023; 167:112650. [PMID: 37087239 DOI: 10.1016/j.foodres.2023.112650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
In this study, the effect of the content of the lacquer wax and whipping time on the overrun was explored. It was found that an appropriate amount of wax content and whipping time could promote crystal dual stabilization through the Pickering mechanism and the close packing in the bulk phase. Otherwise, it would result in low overrun caused by high viscous and crystal bridging. The addition of polyglycerol polyricinoleate (PGPR) could effectively enhance the overrun by apace absorbing. At the same time, adding PGPR also improved the contact angle, which was beneficial to the adsorption at the A-O interface. The 8 wt% oleogel was partially substituted by high-melting fat palm stearin (POs) and oleofoams were prepared based on blended fat. POs increased the melting point, structural strength, and β'-form crystal of oleofoams, thus improving the storage and temperature stability. The oleofoam has a maximum overrun of 189% and could maintain the shape of the decorating over 15 d at the ambient temperature, showing great potential in low-fat food applications and other delivery systems.
Collapse
Affiliation(s)
- Xinya Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | - Liyang Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | - Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
17
|
Pickering foams stabilized by protein-based particles: A review of characterization, stabilization, and application. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Han Y, Zhu L, Qi X, Zhang H, Wu G. Characteristics of low‐fat whipped cream containing protein‐based fat replacers. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ya‐Meng Han
- School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Ling Zhu
- School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Xi‐Guang Qi
- School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Hui Zhang
- School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Gang‐Cheng Wu
- School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi 214122 China
| |
Collapse
|
19
|
Cai Y, Zeng D, Huang L, Zhao M, Zhao Q, Van der Meeren P. Emulsifying and whipping properties of mixing polysaccharide dispersions: effect of ratio between insoluble soybean fiber and hydroxypropyl methylcellulose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6707-6717. [PMID: 35620809 DOI: 10.1002/jsfa.12038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The interactions between various food colloids in different systems (e.g., dispersions, emulsions, creams) have a bearing on the processing and characteristics of food systems. Hydrophilic polysaccharides have been proven to have the potential to fabricate the above systems. In the present work, hydroxypropyl methylcellulose (HPMC) was partially replaced by the insoluble soybean fiber (ISF) extracted from defatted okara to prepare mixing dispersions, oil-in-water emulsions and whipped creams. RESULTS The presented work showed that as the proportion of ISF increased, the foaming properties of ISF/HPMC dispersions were enhanced, the absolute value of the ζ-potential and the particle size of the emulsions increased, while the heat stability and centrifugal stability first increased and then decreased. Upon whipping, the loss angle (tan δ) decreased first and then increased, while the overrun, foam stability and cream stability, as well as the elastic modulus (G'), presented the opposite trend. CONCLUSION These results indicated that an appropriate amount (40-60%) of ISF in the ISF/HPMC systems enhanced the foaming and emulsifying capacities of mixtures and the stability of the resultant emulsion; subsequently, the whipping performance and whipped cream network structure were strengthened, suggesting that ISF has great potential for application in whipped cream as a 'green' and safe food ingredient. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongjian Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Di Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Xu H, Yang L, Jin J, Zhang J, Xie P, Chen Y, Shi L, Wei W, Jin Q, Wang X. Elucidation on the destabilization mechanism of whipping creams during static storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Guo J, Cui L, Huang Y, Meng Z. Spirulina platensis protein isolate nanoparticle stabilized O/W Pickering emulsions: Interfacial adsorption and bulk aggregation. Food Res Int 2022; 161:111815. [DOI: 10.1016/j.foodres.2022.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
|
22
|
Air nanobubbles induced reversible self-assembly of 7S globulins isolated from pea (Pisum Sativum L.). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Liu Z, Cao Z, Zhao M, Zhang H, Wang J, Sun B. Synergistic influence of protein particles and low-molecular-weight emulsifiers on the stability of a milk fat-based whippable oil-in-water emulsion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Boukid F. The realm of plant proteins with focus on their application in developing new bakery products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:101-136. [PMID: 35595392 DOI: 10.1016/bs.afnr.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plant proteins are spreading due to growing environmental, health and ethical concerns related to animal proteins. Proteins deriving from cereals, oilseeds, and pulses are witnessing a sharp growth showing a wide spectrum of applications from meat and fish analogues to infant formulations. Bakery products are one of the biggest markets of alternative protein applications for functional and nutritional motives. Fortifying bakery products with proteins can secure a better amino-acids profile and a higher protein intake. Conventional plant proteins (i.e., wheat and soy) dominate the bakery industry, but emerging sources (i.e., pea, chickpea, and faba) are also gaining traction. Each protein brings specific functional properties and nutritional value. Therefore, this chapter gives an overview of the main features of plant proteins and discusses their impact on the quality of bakery products.
Collapse
Affiliation(s)
- Fatma Boukid
- Food Safety and Functionality Programme, Food Industry Area, Institute of Agriculture and Food Research and Technology (IRTA), Monells, Catalonia, Spain.
| |
Collapse
|
25
|
Zeng Y, Zeng D, Liu T, Cai Y, Li Y, Zhao M, Zhao Q. Effects of Glucose and Corn Syrup on the Physical Characteristics and Whipping Properties of Vegetable-Fat Based Whipped Creams. Foods 2022; 11:foods11091195. [PMID: 35563918 PMCID: PMC9102422 DOI: 10.3390/foods11091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of this work is to evaluate the effects of glucose and corn syrup on the physical characteristics and whipping properties of whipped creams. The interfacial protein concentration and apparent viscosity of emulsions increased with an increasing sugar concentration. In whipped creams, a shorter optimum whipping time (top), higher fat coalescence degree, higher firmness and higher stability were detected as sugar concentration increased. The partial coalescence degree, overrun and firmness of whipped cream with 30 wt% glucose reached 76.49%, 306% and 3.82 N, respectively, significantly (p < 0.05) higher than those (67.15%, 235% and 3.19 N) with 30 wt% corn syrup. Compared with glucose at the same sugar concentration, higher interfacial protein concentration and less-shaped aggregates and coalescences were observed for the emulsions upon the addition of corn syrup, which caused a lower degree of fat coalescence and a lower firmness of whipped cream. The differences could be explained by the presence of maltodextrin (MDX) in corn syrup, which protects absorbed protein throughout freezing and retards the formation of a continuous network during whipping. As a result, the addition of sugars could well improve stability of emulsion, firmness and foam stability of whipped cream efficiently. With a 25−30 wt% sugar addition, even if there was a lower partial coalescence degree and firmness compared with glucose, whipped cream with corn syrup exhibited relatively good stability. These results suggest that MDX improves the stability of emulsion and, thus, has a potential use in low-sugar whipped cream.
Collapse
Affiliation(s)
- Yongchao Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
| | - Di Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
| | - Tongxun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
| | - Yongjian Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
| | - Yonghao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-20-8711-2409
| |
Collapse
|
26
|
Li M, He S. Utilization of zein-based particles in Pickering emulsions: A review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2015377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ming Li
- College of Food Science and Engineering, Tonghua Normal University, Tonghua, Jilin, PR China
- Development Engineering Center of Edible Plant Resources of Changbai Mountain, Tonghua Normal University, Tonghua, Jilin, PR China
| | - Shudong He
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| |
Collapse
|
27
|
Ultrasound-modified interfacial properties and crystallization behavior of aerated emulsions fabricated with pH-shifting treated pea protein. Food Chem 2021; 367:130536. [PMID: 34371279 DOI: 10.1016/j.foodchem.2021.130536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
The interfacial properties of pea protein isolate (NPP) were modified by pH12-shifting (BPP) and ultrasound treatment as a substitute for skimmed milk powder (SMP) in ice cream. The physicochemical properties and fat crystallization in emulsions before and after whipping were analyzed. Compared with SMP, the BPP emulsion displayed superior stability with small particle size and high viscosity. Fat clusters were observed in both SMP and BPP emulsions, which may promote the puncture and protrusion of fat crystals within droplets and lead to partial coalescence to allow air bubble entrapment. Aeration activity of BPP in cream was 1.5-fold that of NPP. Although the overrun value was smaller than SMP cream, the BPP cream retained the stable shape and had a slow melting rate due to its interactive dimensional network of fat. Ultrasound treatment was found to promote fat crystallization of emulsions, leading to the improved stability of final products.
Collapse
|
28
|
Zeng D, Cai Y, Liu T, Huang L, Liu P, Zhao M, Zhao Q. Effect of sucrose ester S370 on interfacial layers and fat crystals network of whipped cream. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Boukid F, Rosell CM, Rosene S, Bover-Cid S, Castellari M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:6390-6420. [PMID: 33775185 DOI: 10.1080/10408398.2021.1901649] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumer interest in protein rich diets is increasing, with more attention being paid to the protein source. Despite the occurrence of animal proteins in the human diet, non-animal proteins are gaining popularity around the world due to their health benefits, environmental sustainability, and ethical merit. These sources of protein qualify for vegan, vegetarian, and flexitarian diets. Non-animal proteins are versatile, derived mainly from cereals, vegetables, pulses, algae (seaweed and microalgae), fungi, and bacteria. This review's intent is to analyze the current and future direction of research and innovation in non-animal proteins, and to elucidate the extent (limitations and opportunities) of their applications in food and beverage industries. Prior knowledge provided relevant information on protein features (processing, structure, and techno-functionality) with particular focus on those derived from soy and wheat. In the current food landscape, beyond conventionally used plant sources, other plant proteins are gaining traction as alternative ingredients to formulate animal-free foodstuffs (e.g., meat alternatives, beverages, baked products, snack foods, and others). Microbial proteins derived from fungi and algae are also food ingredients of interest due to their high protein quantity and quality, however there is no commercial food application for bacterial protein yet. In the future, key points to consider are the importance of strain/variety selection, advances in extraction technologies, toxicity assessment, and how this source can be used to create food products for personalized nutrition.
Collapse
Affiliation(s)
- Fatma Boukid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Sara Rosene
- General Mills, Golden Valley, Minnesota, USA
| | - Sara Bover-Cid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| |
Collapse
|
30
|
Advances in food emulsions and foams: reflections on research in the neo-Pickering era. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|