1
|
Liang X, Duan X, Du Y, Tang Z, Ma Z, Zhu N, Yang A, Tang Y. Combining porous starch and polyoxyethylene hydrogenated castor oil RH40 to enhance the solubility, stability, and bioavailability of bisdemethoxycurcumin. Int J Biol Macromol 2025; 309:143189. [PMID: 40246090 DOI: 10.1016/j.ijbiomac.2025.143189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/24/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Bisdemethoxycurcumin (BDC) is an important ingredient derived from the food spice turmeric. Although BDC exhibits various pharmacological effects, it is characterized by poor water solubility and limited stability under light. Considering that the high specific surface area of porous starch (PS) renders it an ideal carrier for the encapsulation of active compounds, and polyoxyethylene‑hydrogenated castor oil RH40 (RH40) is an effective solubilizer for BDC, the current study optimized the PS/RH40/BDC formulation to combine these advantages. Consequently, a PS/RH40/BDC ratio of 10:3:1 was identified as optimal (RH-PS/BDC). Characterization using scanning electron microscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and stability testing indicated that BDC was amorphously encapsulated within the RH-PS system, thereby leading to enhanced stability and solubility. Furthermore, cellular uptake experiments revealed a significant increase of RH-PS/BDC. In terms of the enhancement mechanism, RH40 can reduce cell membrane fluidity and open tight junctions between intestinal epithelial cells, thereby facilitating BDC absorption. In vivo pharmacodynamic analysis confirmed that RH-PS/BDC effectively inhibited LPS-induced cerebral neuritis. Overall, this study demonstrates the role of PS in combination with RH40 in enhancing the stability and bioavailability of BDC. This simple and efficient preparation strategy is promising for future research and product development.
Collapse
Affiliation(s)
- Xuewei Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xuehui Duan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yan Du
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ning Zhu
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China.
| | - Andong Yang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Yixuan Tang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
2
|
Tian F, Xu S, Gan M, Chen B, Luan Q, Cai L. Bionic cell wall models: Utilizing TEMPO-oxidized cellulose nanofibers for fucoxanthin delivery systems. Carbohydr Polym 2025; 348:122850. [PMID: 39567111 DOI: 10.1016/j.carbpol.2024.122850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Fucoxanthin (FX) has various excellent biological properties but suffers from poor bioavailability. In this work, we build a bionic cell wall model using TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)-oxidized cellulose. The bionic cell wall enhances the environmental stability of the liposomes and serves as a pH-responsive mechanism. The coating processes protect the structure of liposomes and fucoxanthin under the acidic conditions of the stomach. The bionic cell wall disperses and releases the fucoxanthin in simulated intestinal fluid (SIF). Overall, the protective and release capabilities highlight the potential of cellulose in a bionic cell wall model and provide diversity for the structural design of carriers for delivering functional bioactive components.
Collapse
Affiliation(s)
- Fang Tian
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China.
| | - Shuyi Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China.
| | - Miaoyu Gan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| | - Baihui Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| | - Qian Luan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China; School of Chemical and Biological Engineering, NingboTech University, Ningbo 315100, China.
| | - Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China; School of Chemical and Biological Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
3
|
Davoudi Z, Azizi MH, Barzegar M, Bernkop-Schnürch A. Porous Starch-inulin Loaded Quercetin Microcapsules: Characterization, Antioxidant Activity, in-vitro Release, and Storage Stability. J Pharm Sci 2024; 113:1228-1238. [PMID: 37992869 DOI: 10.1016/j.xphs.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Quercetin (Q) has many potential health benefits, but its low stability limits its use in functional foods and pharmaceuticals. The low stability of quercetin is a challenge that needs to be addressed to fully realize its therapeutic potential. The purpose of this study was therefore to design a proper carrier based on porous starch (PS) and inulin (IN) in order to improve the stability of Q. The scanning electron microscopy (SEM) images denoted that the Q molecules were adsorbed in the PS pores and partially adhered to the surface of the granules. Both types of the wall material could remarkably enhance the protection of Q against thermal and light degradation. The retention index of Q under different environmental conditions was higher for the PS:IN-Q than PS-Q. The results of Fourier transform infrared spectroscopy (FT-IR) revealed that Q interacted with the wall materials through non-covalent bonds. X-ray diffraction (XRD) also confirmed the encapsulation of Q in the wall materials. The bonding between Q and the hydrogen groups of starch compacted the crystalline regions and increased the relative crystallinity in PS-Q and PS:IN-Q. The DPPH and ABTS scavenging activities of the microcapsules containing the PS and IN were higher than those of free Q. Examination of the in-vitro release profile indicated that the Q release rate was lower from the PS:IN-Q microcapsules (21.6%) than from the PS-Q ones (33.7%). Our findings highlight the significant potential of this novel biopolymer mixture (PS/IN) as a promising wall material for the protection and delivery of bioactive compounds.
Collapse
Affiliation(s)
- Zahra Davoudi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran; Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Mohammad Hossein Azizi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
4
|
Sorasitthiyanukarn FN, Muangnoi C, Rojsitthisak P, Rojsitthisak P. Stability and biological activity enhancement of fucoxanthin through encapsulation in alginate/chitosan nanoparticles. Int J Biol Macromol 2024; 263:130264. [PMID: 38368987 DOI: 10.1016/j.ijbiomac.2024.130264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
A response surface methodology based on the Box-Behnken design was employed to develop fucoxanthin (FX) delivery nanocarrier from alginate (ALG) and chitosan (CS). The FX-loaded ALG/CS nanoparticles (FX-ALG/CS-NPs) were fabricated using oil-in-water emulsification and ionic gelation. The optimal formulation consisted of an ALG:CS mass ratio of 0.015:1, 0.71 % w/v Tween™ 80, and 5 mg/mL FX concentrations. The resulting FX-ALG/CS-NPs had a size of 227 ± 23 nm, a zeta potential of 35.3 ± 1.7 mV, and an encapsulation efficiency of 81.2 ± 2.8 %. These nanoparticles exhibited enhanced stability under simulated environmental conditions and controlled FX release in simulated gastrointestinal fluids. Furthermore, FX-ALG/CS-NPs showed increased in vitro oral bioaccessibility, gastrointestinal stability, antioxidant activity, anti-inflammatory effect, and cytotoxicity against various cancer cells. The findings suggest that ALG/CS-NPs are effective nanocarriers for the delivery of FX in nutraceuticals, functional foods, and pharmaceuticals.
Collapse
Affiliation(s)
- Feuangthit Niyamissara Sorasitthiyanukarn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Pranee Rojsitthisak
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Gundogdu S, Saglam O, Isikber AA, Bozkurt H, Unal H. Pesticide Nanoformulations Based on Sunlight-Activated Controlled Release of Abamectin. ACS OMEGA 2024; 9:10380-10390. [PMID: 38463308 PMCID: PMC10918824 DOI: 10.1021/acsomega.3c08015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 03/12/2024]
Abstract
A controlled release system that enables the sunlight-triggered release of a model agrochemical, abamectin (abm), is presented. The release system consists of polydopamine functionalized halloysite nanotubes (HNT-PDA) utilized as photothermal nanocarriers to encapsulate 25 wt % abm and 37 wt % lauric acid (LA), a phase change material, that acts as a heat-activable gatekeeper stopping or facilitating the abm release. When exposed to sunlight for 20 min at 1 and 3 sun light density, the temperature of the photothermal nanocarriers reaches 51 and 122 °C, respectively, which triggers the melting of LA and the consequent release of abm from the nanocarriers. Abm was shown to be released gradually over a period of 10 days when nanohybrids were exposed to sunlight for 6 h per day and to remain stable and kill Myzus persicae (Sulzer) (Hemiptera: Aphididae), green peach aphids, at a mortality rate of over 70% for at least 10 days. Aqueous dispersions of the LA/abm@HNT-PDA nanohybrids were studied in terms of their potential as aqueous sprayable pesticide nanoformulations and presented over 30% suspensibility, 36 mg/cm2 foliar retention, strong rainwater resistance, and a 50% mortality rate for M. persicae at a concentration of 9 mg/mL. The proposed sunlight-activated controlled release system based on photothermal, LA-functionalized HNT-PDA nanocarriers holds great potential as controlled release pesticide nanoformulations.
Collapse
Affiliation(s)
- Selin
Oyku Gundogdu
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research Center, Sabanci
University, Istanbul 34956, Turkey
| | - Ozgur Saglam
- Faculty
of Agriculture, Namık Kemal University, Tekirdağ 59030, Turkey
| | - Ali Arda Isikber
- Agriculture
Faculty, Plant Protection Department, Kahramanmaraş
Sütçü Imam University, Kahramanmaraş 46100, Turkey
| | - Huseyin Bozkurt
- Agriculture
Faculty, Plant Protection Department, Kahramanmaraş
Sütçü Imam University, Kahramanmaraş 46100, Turkey
| | - Hayriye Unal
- SUNUM
Nanotechnology Research Center, Sabanci
University, Istanbul 34956, Turkey
| |
Collapse
|
6
|
Li J, Li Y, Su W, Zhang X, Liang D, Tan M. In vivo anti-obesity efficacy of fucoxanthin/HP-β-CD nanofibers in high-fat diet induced obese mice. Food Chem 2023; 429:136790. [PMID: 37467668 DOI: 10.1016/j.foodchem.2023.136790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/14/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Fucoxanthin (Fx) has poor water solubility and bioavailability, which limits its application in the food industry. To improve the physicochemical properties of Fx, hydroxypropyl-β-cyclodextrin (HP-β-CD) encapsulated Fx nanofibers (Fx/HP-β-CD nanofibers) were fabricated via electrospinning without using polymer. Molecular docking analysis showed the Fx/HP-β-CD nanofibers contained Fx and HP-β-CD at 1:2. Morphological analysis revealed the nanofibers were homogeneous without beads, having a diameter around 499 nm. The thermostability of Fx was significantly improved after encapsulationg by HP-β-CD. Animal studies showed that there was a 14% decrease of body weight, 11% white adipose tissue reduction and 9% lower of liver triglyceride for the mice treated with Fx/HP-β-CD nanofibers as compared with that of Fx treated mice. The total cholesterol was reduced by 23% in mice serum after treatment with Fx/HP-β-CD as compared with that of Fx. Interestingly, the Fx/HP-β-CD in this study could attenuate the testicular histopathology in obese mice.
Collapse
Affiliation(s)
- Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Duo Liang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
7
|
Fernandes V, Mamatha BS. Fucoxanthin, a Functional Food Ingredient: Challenges in Bioavailability. Curr Nutr Rep 2023; 12:567-580. [PMID: 37642932 DOI: 10.1007/s13668-023-00492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Fucoxanthin is an orange-red xanthophyll carotenoid found in brown seaweeds and known for its many bioactive properties. In recent years, the bioactive properties of fucoxanthin have been widely explored, making it a compound of immense interest for various health applications like anti-cancer, anti-tumour, anti-diabetic and anti-obesity properties. However, the poor bioavailability and instability of fucoxanthin in the gastrointestinal tract have major limitations. Encapsulation is a promising approach to overcome these challenges by enclosing fucoxanthin in a protective layer, such as liposomes or nano-particles. Encapsulation can improve the stability of fucoxanthin by protecting it from exposure to heat, pH, illumination, gastric acids and enzymes that can accelerate its degradation. RECENT FINDINGS Studies have shown that lipid-based encapsulation systems such as liposomes or nano-structured lipid carriers may solubilise fucoxanthin and enhance its bioavailability (from 25 to 61.2%). In addition, encapsulation can also improve the solubility of hydrophobic fucoxanthin, which is important for its absorption and bioavailability. This review highlights the challenges involved in the absorption of fucoxanthin in the living system, role of micro- and nano-encapsulation of fucoxanthin and their potential to enhance intestinal absorption.
Collapse
Affiliation(s)
- Vanessa Fernandes
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Food Safety and Nutrition, Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, 575 018, Karnataka, India
| | - Bangera Sheshappa Mamatha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Food Safety and Nutrition, Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, 575 018, Karnataka, India.
| |
Collapse
|
8
|
Wang C, Bai Y, Yin W, Qiu B, Jiang P, Dong X, Qi H. Nanoencapsulation Motivates the High Inhibitive Ability of Fucoxanthin on H 2O 2-Induced Human Hepatocyte Cell Line (L02) Apoptosis via Regulating Lipid Metabolism Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37026562 DOI: 10.1021/acs.jafc.3c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study reports an encapsulation system for fucoxanthin (FX) through simple affinity binding with gelatin (GE) and then coating with chitosan oligosaccharides (COS). The effects of FX before and after encapsulation on the human hepatocyte cell line (L02) were investigated. FX-GE and FX-GE-COS nanocomplexes exhibited a spherical shape with diameters of 209 ± 6 to 210 ± 8 nm. FX-GE-COS nanocomplexes were found to perform the best with the highest encapsulation efficiency (EE, 83.88 ± 4.39%), improved FX stability, and enhanced cellular uptake on the nanoscale. The cytotoxicity and cell mitochondrial damage of H2O2 exposure to L02 cells decreased with the increase of free-FX and FX-GE-COS nanocomplexes. FX-GE-COS nanocomplexes' intervention decreased the intracellular ROS and inhibited the apoptosis of L02 cells that was induced by H2O2 exposure in a concentration-dependent manner. Lipidomic analysis revealed that FX-GE-COS nanocomplexes could regulate the lipid metabolism disturbed by H2O2 and protected the mitochondrial function of L02 cells. These results suggested that nanoencapsulation enhanced the antioxidant activity of FX to L02 cells, and the constructed FX-GE-COS nanocomplexes have the potential to be an antioxidant nutritional dietary supplement.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| | - Ying Bai
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| | - Wei Yin
- Dalian Gaishi Food Co., Ltd., Dalian 116047, People's Republic of China
| | - Bixiang Qiu
- Fujian Yida Food Co., Ltd., Fuzhou 350500, People's Republic of China
| | - Pengfei Jiang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| |
Collapse
|
9
|
Shahabi N, Soleimani S, Ghorbani M. Investigating functional properties of halloysite nanotubes and propolis used in reinforced composite film based on soy protein/basil seed gum for food packaging application. Int J Biol Macromol 2023; 231:123350. [PMID: 36681220 DOI: 10.1016/j.ijbiomac.2023.123350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the effect of halloysite nanotubes (HNTs) on the physicochemical characteristics of the soy protein isolated/basil seed gum (SPI/BSG) film activated with propolis (PP). The obtained results of scanning electron microscope (SEM), thermal gravimetric analysis (TGA), and tensile investigations illustrated that the addition of HNTs as nanofiller led to positive changes in the morphology, thermal stability, and mechanical characteristics of SPI/BSG films. The barrier properties of films considerably decreased with incorporation of HNTs. Furthermore, the encapsulation of PP as bioactive agent into the produced films significantly increased (P < 0.05) the antioxidant potential of the samples in DPPH radical-scavenging activity assays. The antibacterial effects of film also significantly increased (P < 0.05) after the encapsulation of PP. In conclusion, the produced films illustrated acceptable efficiency for usage in food packaging system.
Collapse
Affiliation(s)
- Nasim Shahabi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Sajad Soleimani
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Development and characterization of a fucoidan-based nanoemulsion using Nigella sativa oil for improvement of anti-obesity activity of fucoxanthin in an obese rat model. Int J Biol Macromol 2023; 235:123867. [PMID: 36870664 DOI: 10.1016/j.ijbiomac.2023.123867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The anti-obesity activity of encapsulated fucoxanthin in fucoidan-based nanoemulsion was investigated. Then, high-fat diet (HFD) induced-obese rats were fed along with different treatments including administration of encapsulated fucoxanthin (10 mg/kg and 50 mg/kg/day), fucoidan (70 mg/kg), Nigella sativa oil (250 mg/kg), metformin (200 mg/kg), and free form of fucoxanthin (50 mg/kg) by oral gavage daily for 7 weeks. The study discovered that fucoidan-based nanoemulsions with a low and high dose of fucoxanthin had droplet size in the range of 181.70-184.87 nm and encapsulation efficacy of 89.94-91.68 %, respectively. Also exhibited 75.86 % and 83.76 % fucoxanthin in vitro release. The TEM images and FTIR spectera confirmed the particle size and encapsulation of fucoxanthin, respectively. Moreover, in vivo results revealed that encapsulated fucoxanthin reduced body and liver weight compared with a HFD group (p < 0.05). Biochemical parameters (FBS, TG, TC, HDL, LDL) and liver enzymes (ALP, AST, and ALT) were decreased after fucoxanthin and fucoidan administration. According to the histopathological analysis, fucoxanthin and fucoidan attenuated lipid accumulation in the liver.
Collapse
|
11
|
Recent advances in delivery systems of fucoxanthin. Food Chem 2023; 404:134685. [DOI: 10.1016/j.foodchem.2022.134685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
12
|
Wang C, Wang E, Bai Y, Lu Y, Qi H. Encapsulated fucoxanthin improves the structure and functional properties of fermented yogurt during cold storage. Food Chem 2023; 419:136076. [PMID: 37004366 DOI: 10.1016/j.foodchem.2023.136076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Fucoxanthin (FX) extracted from Undaria pinnatifida by an ultrasonic-assisted extraction (UAE) procedure was successfully added to the fermented yogurt through a stably nanoencapsulation. The physicochemical characteristics, texture analysis, rheological testing, sensory evaluation, simulated digestion analysis, and 16SrDNA sequencing analysis were used to evaluate the effect of encapsulated-FX on the function, structure and stability of the fermented yogurt during 7 days cold storage. Encapsulated-FX with a highly water dispersion, changed the microstructure of yogurt, making it more uniform and denser, enhanced the antioxidant activity, increased the stability of milk protein in simulated gastric environment in vitro and promoted the absorption of protein small molecule fragments in the intestine, and inhibited the growth of harmful bacteria during cold storage. This study provided a simple strategy for the production of FX-fortified yogurt by using an effective nanoencapsulation technology, and promoted the extraction and application of active ingredients of edible brown algae.
Collapse
|
13
|
Novel high internal phase oleogels-in-water pickering emulsions stabilized solely by whey protein isolate for 3D printing and fucoxanthin delivery. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
14
|
Kai Y, Liu Y, Li H, Yang H. Wakame replacement alters the metabolic profile of wheat noodles after in vitro digestion. Food Res Int 2023; 164:112394. [PMID: 36737976 DOI: 10.1016/j.foodres.2022.112394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The development of nutritional noodles of high quality has become a new hotspot of research in the area of food science. Since wakame is edible seaweed rich in dietary fiber and proteins and rarely found in ordinary noodle, this study investigated the release of metabolites, the texture quality, and the rheological properties of wakame noodle, as well as the mechanism by which extruded wakame flours can influence noodle texture and viscoelasticity through digestion. Basically, nuclear magnetic resonance spectra were applied to identify the 46 metabolites including amino acids, saccharides, fatty acids, and other metabolites. Both PCA and OPLS-DA model showed fit goodness and good predictivity, which were assessed the increasing release of most metabolites. Structural studies discussed the effects on the enhancement of interlinkage with gluten matrix and protein matrix, which were validated via the decreasing instantaneous compliance J0 (1.64 × 10-5 to 0.16 × 10-5 Pa-1). Wakame addition best matched the physiochemical properties of noodle, in terms of chewiness (99.10 vs 122.66 g.mm), gumminess (281.98 vs. 323.44 g), and gel strength (132.65 vs 173.95 kPa•s-1). Beyond the functional characteristics it contributes benefits like reduction of diet-related diabetes. As a consequence, the creation of personalized nutritious, healthy noodles will be an innovative route from a scientific viewpoint and an application standpoint.
Collapse
Affiliation(s)
- Yi Kai
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Yi Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongliang Li
- Guangzhou Welbon Biological Technology Co., Ltd, Guangzhou, Guangdong 523660, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
15
|
Oliyaei N, Moosavi-Nasab M, Tanideh N, Iraji A. Multiple roles of fucoxanthin and astaxanthin against Alzheimer's disease: Their pharmacological potential and therapeutic insights. Brain Res Bull 2023; 193:11-21. [PMID: 36435362 DOI: 10.1016/j.brainresbull.2022.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is the most devastating neurodegenerative disorder affecting the elderly. The exact pathology of AD is not yet fully understood and several hallmarks such as the deposition of amyloid-β, tau hyperphosphorylation, and neuroinflammation, as well as mitochondrial, metal ions, autophagy, and cholinergic dysfunctions are known as pathologic features of AD. Since no definitive treatment has been proposed to target AD to date, many natural products have shown promising preventive potentials and contributed to slowing down the disease progression. Algae is a promising source of novel bioactive substances known to prevent neurodegenerative disorders including AD. In this context, fucoxanthin and astaxanthin, natural carotenoids abundant in algae, has shown to possess neuroprotective properties through antioxidant, and anti-inflammatory characteristics in modulating the symptoms of AD. Fucoxanthin and astaxanthin exhibit anti-AD activities by inhibition of AChE, BuChE, BACE-1, and MAO, suppression of Aβ accumulation. Also, fucoxanthin and astaxanthin inhibit apoptosis induced by Aβ1-42 and H2O2-induced cytotoxicity, and modulate the antioxidant enzymes (SOD and CAT), through inhibition of the ERK pathway. Moreover, cellular and animal studies on the beneficial effects of fucoxanthin and astaxanthin against AD were also reviewed. The potential role of fucoxanthin and astaxanthin exhibits great efficacy for the management of AD by acting on multiple targets.
Collapse
Affiliation(s)
- Najmeh Oliyaei
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Falsafi SR, Wang Y, Ashaolu TJ, Sharma M, Rawal S, Patel K, Askari G, Javanmard SH, Rostamabadi H. Biopolymer Nanovehicles for Oral Delivery of Natural Anticancer Agents. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202209419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 01/06/2025]
Abstract
AbstractCancer is the second leading cause of death throughout the world. Nature‐inspired anticancer agents (NAAs) that are a gift of nature to humanity have been extensively utilized in the alleviation/prevention of the disease due to their numerous pharmacological activities. While the oral route is an ideal and common way of drug administration, the application of NAAs through the oral pathway has been extremely limited owing to their inherent features, e.g., poor solubility, gastrointestinal (GI) instability, and low bioavailability. With the development of nano‐driven encapsulation strategies, polymeric vehicles, especially those with natural origins, have demonstrated a potent platform, which can professionally shield versatile NAAs against GI barricades and safely deliver them to the site of action. In this review, the predicament of orally delivering NAAs and the encapsulation strategy solutions based on biopolymer matrices are summarized. Proof‐of‐concept in vitro/in vivo results are also discussed for oral delivery of these agents by various biopolymer vehicles, which can be found so far from the literature. Last but not the least, the challenges and new opportunities in the field are highlighted.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Yong Wang
- School of Chemical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development Duy Tan University Da Nang 550000 Viet Nam
- Faculty of Environmental and Chemical Engineering Duy Tan University Da Nang 550000 Viet Nam
| | - Minaxi Sharma
- Laboratoire de Chimie verte et Produits Biobasés Haute Ecole Provinciale de Hainaut‐Condorcet Département AgroBioscience et Chimie 11, Rue de la Sucrerie 7800 ATH Belgium
- Department of Applied Biology University of Science and Technology Ri‐Bhoi Meghalaya 793101 India
| | - Shruti Rawal
- Department of Pharmaceutical Technology L.J. Institute of Pharmacy L J University Ahmedabad 382210 India
- Department of Pharmaceutics Institute of Pharmacy Nirma University S.G. Highway, Chharodi Ahmedabad Gujarat 382481 India
| | - Kaushika Patel
- Department of Pharmaceutical Technology L.J. Institute of Pharmacy L J University Ahmedabad 382210 India
| | - Gholamreza Askari
- Department of Community Nutrition School of Nutrition and Food Science Nutrition and Food Security Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center Cardiovascular Research Institute Isfahan University of Medical Isfahan 81746‐73461 Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| |
Collapse
|
17
|
Encapsulation of fucoxanthin in fatty acid-bovine serum albumin micelles to improve the stability, bioavailability, and bioefficacy. Colloids Surf B Biointerfaces 2022; 220:112951. [DOI: 10.1016/j.colsurfb.2022.112951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
|
18
|
Zhang Z, Wei Z, Xue C. Delivery systems for fucoxanthin: Research progress, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4643-4659. [PMID: 36377728 DOI: 10.1080/10408398.2022.2144793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fucoxanthin is a special kind of keto-carotenoid found only in algae. The unique structure of fucoxanthin endows it with extraordinary biological activities, which are of great significance to improve food quality and enhance human health. However, due to its highly unsaturated structure, fucoxanthin also suffers from some limitations, such as instability, poor water solubility and low bioavailability. Therefore, although its content is relatively abundant, its applications in the food industry are extremely scarce. In recent years, there have been many reports on the preparation and characterization of delivery systems for fucoxanthin. These well-designed delivery systems can efficaciously alleviate the instability of fucoxanthin under adverse conditions, thereby improving its oral bioavailability. Thus, this review emphatically summarizes the delivery systems that are widely used to encapsulate, protect and release fucoxanthin. Besides, the influence of delivery systems on the absorption of fucoxanthin by intestinal epithelial cells is highlighted. The applications and future development trends of delivery systems for fucoxanthin are also discussed. The extraction of fucoxanthin, development of novel delivery systems, sensory evaluation and toxicity studies, and industrial production may be promising research directions in the future. Overall, this review provides guidance for the development of fucoxanthin-loaded delivery systems.
Collapse
Affiliation(s)
- Zimo Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
19
|
Preparation of Fucoxanthin Nanoemulsion Stabilized by Natural Emulsifiers: Fucoidan, Sodium Caseinate, and Gum Arabic. Molecules 2022; 27:molecules27196713. [PMID: 36235250 PMCID: PMC9573593 DOI: 10.3390/molecules27196713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023] Open
Abstract
This study was proposed to investigate the possibility of O/W nanoemulsion stabilization via natural emulsifiers as a delivery system for fucoxanthin. Nanoemulsions were prepared using ultrasonic treatment (150 W, amplitude 80%, 10 min) with different levels (0.5%, 1%, and 2% wt) of fucoidan, gum Arabic, and sodium caseinate as natural emulsifires and they were compared with tween 80. Then, the creaming index, stability, encapsulation efficacy, Fourier-transform infrared (FT-IR) spectroscopy, and in vitro release were evaluated. The best stability and lowest creaming index were observed at 2% wt of emulsifiers. Nanoemulsions with droplet sizes (113.27−127.50 nm) and zeta potentials (−32.27 to −58.87 mV) were prepared. The droplet size of nanoemulsions was reduced by increasing the emulsifier concentration, and the best nanoemulsion stability after 15 days of storage was in the following order: tween 80 > sodium caseinate > fucoidan > gum Arabic. The encapsulation efficacy of nanoemulsions stabilized by sodium caseinate, fucoidan, and gum Arabic were 88.51 ± 0.11%, 79.32 ± 0.09%, and 60.34 ± 0.13%, respectively. The in vitro gastrointestinal fucoxanthin release of nanoemulsion stabilized with tween 80, sodium caseinate, fucoidan, and gum Arabic were 85.14 ± 0.16%, 76.91 ± 0.34%, 71.41 ± 0.14%, and 68.98 ± 0.36%, respectively. The release of fucoxanthin from nanoemulsions followed Fickian diffusion. The FTIR also confirmed the encapsulation of fucoxanthin.
Collapse
|
20
|
Feng H, Li M, Xing Z, Ouyang XK, Ling J. Efficient delivery of fucoxanthin using metal–polyphenol network-coated magnetic mesoporous silica. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Silva A, Cassani L, Grosso C, Garcia-Oliveira P, Morais SL, Echave J, Carpena M, Xiao J, Barroso MF, Simal-Gandara J, Prieto MA. Recent advances in biological properties of brown algae-derived compounds for nutraceutical applications. Crit Rev Food Sci Nutr 2022; 64:1283-1311. [PMID: 36037006 DOI: 10.1080/10408398.2022.2115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increasing demand for nutraceuticals in the circular economy era has driven the research toward studying bioactive compounds from renewable underexploited resources. In this regard, the exploration of brown algae has shown significant growth and maintains a great promise for the future. One possible explanation could be that brown algae are rich sources of nutritional compounds (polyunsaturated fatty acids, fiber, proteins, minerals, and vitamins) and unique metabolic compounds (phlorotannins, fucoxanthin, fucoidan) with promising biological activities that make them good candidates for nutraceutical applications with increased value-added. In this review, a deep description of bioactive compounds from brown algae is presented. In addition, recent advances in biological activities ascribed to these compounds through in vitro and in vivo assays are pointed out. Delivery strategies to overcome some drawbacks related to the direct application of algae-derived compounds (low solubility, thermal instability, bioavailability, unpleasant organoleptic properties) are also reviewed. Finally, current commercial and legal statuses of ingredients from brown algae are presented, considering future therapeutical and market perspectives as nutraceuticals.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Stephanie L Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Javier Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - M Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
22
|
Oliyaei N, Moosavi-Nasab M, Tanideh N. WITHDRAWN: Preparation of fucoxanthin nanoemulsion stabilized by natural emulsifiers: fucoidan, sodium caseinate and gum Arabic. Heliyon 2022. [DOI: 10.1016/j.heliyon.2022.e09970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Oliyaei N, Moosavi-Nasab M, Mazloomi SM. Therapeutic activity of fucoidan and carrageenan as marine algal polysaccharides against viruses. 3 Biotech 2022; 12:154. [PMID: 35765662 PMCID: PMC9233728 DOI: 10.1007/s13205-022-03210-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022] Open
|
24
|
Sathyan S, Nisha P. Optimization and Characterization of Porous Starch from Corn Starch and Application Studies in Emulsion Stabilization. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Investigation of the optimal fabrication of a single-carrier encapsulated fucoxanthin based on colloidal nanoparticles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Siddiqui SA, Bahmid NA, Taha A, Khalifa I, Khan S, Rostamabadi H, Jafari SM. Recent advances in food applications of phenolic-loaded micro/nanodelivery systems. Crit Rev Food Sci Nutr 2022; 63:8939-8959. [PMID: 35426751 DOI: 10.1080/10408398.2022.2056870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current relevance of a healthy diet in well-being has led to a surging interest in designing novel functional food products enriched by biologically active molecules. As nature-inspired bioactive components, several lines of research have revealed the capability of polyphenolic compounds (phenolics) in the medical intervention of different ailments, i.e., tumors, cardiovascular and inflammatory diseases. Phenolics typically possess antioxidant and antibacterial properties and, due to their unique molecular structure, can offer superior platforms for designing functional products. They can protect food ingredients from oxidation and promote the physicochemical attributes of proteins and carbohydrate-based materials. Even though these properties contribute to the inherent benefits of bioactive phenolics as important functional ingredients in the food industry, the in vitro/in vivo instability, poor solubility, and low bioavailability are the main factors restricting their food/pharma applicability. Recent advances in the encapsulation realm are now offering efficient platforms to overcome these limitations. The application of encapsulation field may offer protection and controlled delivery of phenolics in food formulations. Here, we review recent advances in micro/nanoencapsulation of phenolics and highlight efficient carriers from this decade, which have been utilized successfully in food applications. Although further development of phenolic-containing formulations promises to design novel functional food formulations, and revolutionize the food industry, most of the strategies found in the scientific literature are not commercially applicable. Moreover, in vivo experiments are extremely crucial to corroborate the efficiency of such products.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nur Alim Bahmid
- National Research and Innovation Agency, Jakarta, Indonesia
- Agricultural Product Technology Department, Sulawesi Barat University, Majene, Indonesia
| | - Ahmed Taha
- Center for Physical Sciences and Technology, State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Hadis Rostamabadi
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Mahdi Jafari
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
27
|
Bai Y, Chen X, Qi H. Characterization and bioactivity of phlorotannin loaded protein-polysaccharide nanocomplexes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Liang D, Su W, Zhao X, Li J, Hua Z, Miao S, Tan M. Microfluidic Fabrication of pH-Responsive Nanoparticles for Encapsulation and Colon-Target Release of Fucoxanthin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:124-135. [PMID: 34963047 DOI: 10.1021/acs.jafc.1c05580] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the stability of fucoxanthin in the gastrointestinal tract is an important approach to enhance its oral bioavailability. The study proposed a new microfluidic device allowing for the synthesis of a structurally well-defined nanoscale delivery system with a uniform size for encapsulation and colon-target release of fucoxanthin. The rapid mixing in the microfluidic channel ensured that the mixing time was shorter than the aggregation time, thus realizing the controllable control of the coprecipitation of fucoxanthin and shellac polymer. In vitro digestion tests showed that a pH stimulus-responsive release of fucoxanthin from FX/SH NPs was observed under alkaline pH conditions. The fluorescence colocalization imaging indicated that FX/SH NPs did not affect the intestine function and had a protective effect on Caco-2 cells damaged by H2O2 by enhancing their antioxidant capacity. Overall, this work illustrated the promise of using a microfluidic approach to fabricate the biomimetic nanodelivery system for better biocompatibility and targeting efficacy.
Collapse
Affiliation(s)
- Duo Liang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xue Zhao
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Zheng Hua
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Song Miao
- Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork P61C996, Ireland
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
29
|
Wang C, Ren J, Song H, Chen X, Qi H. Characterization of whey protein-based nanocomplex to load fucoxanthin and the mechanism of action on glial cells PC12. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods 2021; 10:foods10092181. [PMID: 34574290 PMCID: PMC8467936 DOI: 10.3390/foods10092181] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
The accumulation of high amounts of petro-based plastics is a growing environmental devastation issue, leading to the urgent need to innovate eco-safe packaging materials at an equivalent cost to save the environment. Among different substitutes, starch-based types and their blends with biopolymers are considered an innovative and smart material alternative for petrol-based polymers because of their abundance, low cost, biodegradability, high biocompatibility, and better-quality film-forming and improved mechanical characteristics. Furthermore, starch is a valuable, sustainable food packaging material. The rising and growing importance of designing starch-based films from various sources for sustainable food packaging purposes is ongoing research. Research on "starch food packaging" is still at the beginning, based on the few studies published in the last decade in Web of Science. Additionally, the functionality of starch-based biodegradable substances is technically a challenge. It can be improved by starch modification, blending starch with other biopolymers or additives, and using novel preparation techniques. Starch-based films have been applied to packaging various foods, such as fruits and vegetables, bakery goods, and meat, indicating good prospects for commercial utilization. The current review will give a critical snapshot of starch-based films' properties and potential applicability in the sustainable smart (active and intelligent) new packaging concepts and discuss new challenges and opportunities for starch bio composites.
Collapse
|
31
|
Oliyaei N, Moosavi‐Nasab M. Ultrasound‐assisted extraction of fucoxanthin from
Sargassum angustifolium
and
Cystoseira indica
brown algae. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Najme Oliyaei
- Seafood Processing Research Group School of Agriculture Shiraz University Shiraz Iran
- Department of Food Science and Technology School of Agriculture Shiraz University Shiraz Iran
| | - Marzieh Moosavi‐Nasab
- Seafood Processing Research Group School of Agriculture Shiraz University Shiraz Iran
- Department of Food Science and Technology School of Agriculture Shiraz University Shiraz Iran
| |
Collapse
|
32
|
Li D, Zhang Q, Huang L, Chen Z, Zou C, Ma Y, Cao MJ, Liu GM, Liu Y, Wang Y. Fabricating hydrophilic particles with oleic acid and bovine serum albumin to improve the dispersibility and bioaccessibility of fucoxanthin in water. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106752] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Oliyaei N, Moosavi‐Nasab M, Tamaddon AM, Tanideh N. Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin-nicotinamide-induced type 2 diabetic mice. Food Sci Nutr 2021; 9:3521-3529. [PMID: 34262712 PMCID: PMC8269564 DOI: 10.1002/fsn3.2301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 11/30/2022] Open
Abstract
This work aimed to study the antidiabetic effect of encapsulated fucoxanthin with porous starch (PS) in streptozotocin and nicotinamide-induced type 2 diabetic mice. Fucoxanthin was extracted and purified from Sargassum angustifolium and encapsulated in porous starch (PS). Diabetic mice groups were gavaged daily with fucoxanthin (400 mg/kg), either free or encapsulated into PS, and metformin (50 mg/kg) for three weeks. The results exhibited that the fucoxanthin and fucoxanthin-loaded PS markedly prevented the weight gain in treated groups (p < .05). Moreover, both free and encapsulated fucoxanthin could decrease the fasting blood glucose and increase the plasma insulin level similar to metformin (p < .05). In addition, total cholesterol, triglyceride, and low-density lipoprotein were lower in the treated groups. These results confirm antiobesity effect of fucoxanthin by regulating lipid profile parameters. Moreover, the histopathology evaluation of pancreatic tissue in diabetic mice exhibited that oral administration of metformin and fucoxanthin caused regeneration of pancreatic beta cells. This study revealed the healthy effect of seaweed pigment as a suitable bioactive compound which can be used in functional foods for natural diabetes therapy.
Collapse
Affiliation(s)
- Najme Oliyaei
- Seafood Processing Research GroupSchool of AgricultureShiraz UniversityShirazIran
- Department of Food Science and TechnologySchool of AgricultureShiraz UniversityShirazIran
| | - Marzieh Moosavi‐Nasab
- Seafood Processing Research GroupSchool of AgricultureShiraz UniversityShirazIran
- Department of Food Science and TechnologySchool of AgricultureShiraz UniversityShirazIran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug DeliverySchool of PharmacyShiraz University of Medical ScienceShirazIran
| | - Nader Tanideh
- Stem Cells Technology Research CenterDepartment of PharmacologySchool of MedicinShiraz University of Medical SciencesShirazIran
| |
Collapse
|
34
|
Starch-based materials encapsulating food ingredients: Recent advances in fabrication methods and applications. Carbohydr Polym 2021; 270:118358. [PMID: 34364603 DOI: 10.1016/j.carbpol.2021.118358] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Encapsulation systems have gained significant interest in designing innovative foods, as they allow for the protection and delivery of food ingredients that have health benefits but are unstable during processing, storage and in the upper gastrointestinal tract. Starch is widely available, cheap, biodegradable, edible, and easy to be modified, thus highly suitable for the development of encapsulants. Much efforts have been made to fabricate various types of porous starch and starch particles using different techniques (e.g. enzymatic hydrolysis, aggregation, emulsification, electrohydrodynamic process, supercritical fluid process, and post-processing drying). Such starch-based systems can load, protect, and deliver various food ingredients (e.g. fatty acids, phenolic compounds, carotenoids, flavors, essential oils, irons, vitamins, probiotics, bacteriocins, co-enzymes, and caffeine), exhibiting great potentials in developing foods with tailored flavor, nutrition, sensory properties, and shelf-life. This review surveys recent advances in different aspects of starch-based encapsulation systems including their forms, manufacturing techniques, and applications in foods.
Collapse
|
35
|
Pinto L, Bonifacio MA, De Giglio E, Santovito E, Cometa S, Bevilacqua A, Baruzzi F. Biopolymer hybrid materials: Development, characterization, and food packaging applications. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100676] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Zheng X, Qiu C, Long J, Jiao A, Xu X, Jin Z, Wang J. Preparation and characterization of porous starch/β-cyclodextrin microsphere for loading curcumin: Equilibrium, kinetics and mechanism of adsorption. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Li Q, Ren T, Perkins P, Hu X, Wang X. Applications of halloysite nanotubes in food packaging for improving film performance and food preservation. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
da Silva GLP, Morais LCDA, Olivato JB, Marini J, Ferrari PC. Antimicrobial dressing of silver sulfadiazine-loaded halloysite/cassava starch-based (bio)nanocomposites. J Biomater Appl 2021; 35:1096-1108. [PMID: 33611961 DOI: 10.1177/0885328221995920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(Bio)nanocomposites have been studied for biomedical applications, including the treatment of wounds. However, wound infection is one of the main problems of wound care management, and the use of wound dressings with antibacterial agents is essential. This work focused on developing and characterizing silver sulfadiazine-loaded halloysite/cassava starch-based (bio)nanocomposites potentially suitable as antimicrobial dressing. Silver sulfadiazine was complexed inside the halloysite nanotubes lumen, and the drug-loaded nanotubes were incorporated in thermoplastic starch dispersion, forming the (bio)nanocomposites. The silver sulfadiazine-loaded halloysite and the (bio)nanocomposite were characterized by zeta potential, scanning electron microscopy, X-ray diffraction, and infrared spectroscopy. The dressing properties of (bio)nanocomposites (water vapor permeability and mechanical stability) and their antimicrobial efficacy by Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were also evaluated. Physicochemical studies suggested the silver sulfadiazine-loaded halloysite complexation (zeta potential of -38.9 mV) and its interactions with the starch forming the nanocomposites. The silver sulfadiazine-loaded halloysite/starch-based (bio)nanocomposites possessed a homogeneous and organized structure. Also, they had mechanical properties to be used as a dressing (13.73 ± 3.09 MPa and 3.17 ± 1.28% of elongation at break), and its permeability (6.18 ± 0.43 (10-13) g.Pa-1.s-1.m-1) could be able to maintain the environmental moisture at the wound surface. Besides that, the (bio)nanocomposites acted against the studied bacteria, being a potential contact antimicrobial and biodegradable wound dressing. Finally, the developed (bio)nanocomposites are semi-occlusive and good candidates for dry wounds to be widely in vitro and in vivo tested as controlled silver sulfadiazine delivery dressing.
Collapse
Affiliation(s)
| | | | - Juliana Bonametti Olivato
- Department of Materials Engineering, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Juliano Marini
- Department of Materials Engineering, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | | |
Collapse
|
39
|
Sui Y, Gu Y, Lu Y, Yu C, Zheng J, Qi H. Fucoxanthin@Polyvinylpyrrolidone Nanoparticles Promoted Oxidative Stress-Induced Cell Death in Caco-2 Human Colon Cancer Cells. Mar Drugs 2021; 19:92. [PMID: 33562511 PMCID: PMC7915087 DOI: 10.3390/md19020092] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/06/2023] Open
Abstract
Fucoxanthin (FX), a natural carotenoid found in seaweed with multiple functional activities, is unstable with a poor water solubility that limits its utilization. This study aimed to improve FX's stability and bioavailability via the nano-encapsulation of FX in polyvinylpyrrolidone (PVP)-coated FX@PVP nanoparticles (NPs). The FX@PVP NPs were evaluated in terms of their morphology, stability, encapsulation efficiency (EE), loading capacity (LC), and in vitro release to optimize the encapsulation parameters, and a 1:8 FX:PVP ratio was found to perform the best with the highest EE (85.50 ± 0.19%) and LC (10.68 ± 0.15%) and improved FX stability. In addition, the FX@PVP NPs were shown to effectively deliver FX into Caco-2 cancer cells, and the accumulation of FX in these cancer cells showed pro-oxidative activities to ameliorate H2O2-induced damage and cell death. The FX@PVP NPs could potentially become a new therapeutical approach for targeted cancer treatment.
Collapse
Affiliation(s)
- Yue Sui
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.S.); (Y.G.); (Y.L.)
| | - Yue Gu
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.S.); (Y.G.); (Y.L.)
| | - Yujing Lu
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.S.); (Y.G.); (Y.L.)
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Jie Zheng
- Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Hang Qi
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.S.); (Y.G.); (Y.L.)
| |
Collapse
|
40
|
Shao M, Li S, Tan CP, Kraithong S, Gao Q, Fu X, Zhang B, Huang Q. Encapsulation of caffeine into starch matrices: Bitterness evaluation and suppression mechanism. Int J Biol Macromol 2021; 173:118-127. [PMID: 33444656 DOI: 10.1016/j.ijbiomac.2021.01.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/13/2020] [Accepted: 01/07/2021] [Indexed: 01/13/2023]
Abstract
In this study, caffeine (CA) was encapsulated into food-grade starch matrices, including swelled starch (SS), porous starch (PS), and V-type starch (VS). The bitterness of the microcapsules and suppression mechanisms were investigated using an electronic tongue, molecular dynamics (MD) simulation and the in vitro release kinetics of CA. All the CA-loaded microcapsules showed a lower bitterness intensity than the control. The MD results proved that the weak interactions between starch and CA resulted in a moderate CA release rate for SS-CA microcapsules. The PS-CA microcapsule presented the longest CA release, up to 40 min, whereas the VS-CA microcapsule completely released CA in 9 min. The CA release rate was found to be related to the microcapsule structure and rehydration properties. A low CA bitterness intensity could be attributed to a delay in the CA release rate and resistance to erosion of the microcapsules. The results of this work are valuable for improving starch-based microcapsules (oral-targeted drug-delivery systems) by suppressing the bitterness of alkaloid compounds.
Collapse
Affiliation(s)
- Miao Shao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Guangzhou 511363, China
| | - Songnan Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Supaluck Kraithong
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Gao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Guangzhou 511363, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Guangzhou 511363, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
41
|
Xiao H, Zhao J, Fang C, Cao Q, Xing M, Li X, Hou J, Ji A, Song S. Advances in Studies on the Pharmacological Activities of Fucoxanthin. Mar Drugs 2020; 18:E634. [PMID: 33322296 PMCID: PMC7763821 DOI: 10.3390/md18120634] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoxanthin is a natural carotenoid derived mostly from many species of marine brown algae. It is characterized by small molecular weight, is chemically active, can be easily oxidized, and has diverse biological activities, thus protecting cell components from ROS. Fucoxanthin inhibits the proliferation of a variety of cancer cells, promotes weight loss, acts as an antioxidant and anti-inflammatory agent, interacts with the intestinal flora to protect intestinal health, prevents organ fibrosis, and exerts a multitude of other beneficial effects. Thus, fucoxanthin has a wide range of applications and broad prospects. This review focuses primarily on the latest progress in research on its pharmacological activity and underlying mechanisms.
Collapse
Affiliation(s)
- Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Chang Fang
- Test Center for Agri‐Products Quality of Jinan, Jinan 250316, China;
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Xia Li
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Junfeng Hou
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| |
Collapse
|
42
|
Wang C, Chen X, Nakamura Y, Yu C, Qi H. Fucoxanthin activities motivate its nano/micro-encapsulation for food or nutraceutical application: a review. Food Funct 2020; 11:9338-9358. [PMID: 33151231 DOI: 10.1039/d0fo02176h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fucoxanthin is a xanthophyll carotenoid abundant in marine brown algae. The potential therapeutic effects of fucoxanthin on tumor intervention have been well documented, which have aroused great interests in utilizing fucoxanthin in functional foods and nutraceuticals. However, the utilization of fucoxanthin as a nutraceutical in food and nutrient supplements is currently limited due to its low water solubility, poor stability, and limited bioaccessibility. Nano/micro-encapsulation is a technology that can overcome these challenges. A systematic review on the recent progresses in nano/micro-delivery systems to encapsulate fucoxanthin in foods or nutraceuticals is warranted. This article starts with a brief introduction of fucoxanthin and the challenges of oral delivery of fucoxanthin. Nano/micro-encapsulation technology is then covered, including materials and strategies for constructing the delivery system. Finally, future prospective has been discussed on properly designed oral delivery systems of fucoxanthin for managing cancer. Natural edible materials such as whey protein, casein, zein, gelatin, and starch have been successfully utilized to fabricate lipid-based, gel-based, or emulsion-based delivery systems, molecular nanocomplexes, and biopolymer nanoparticles with the aid of advanced processing techniques, such as freeze-drying, high pressure homogenization, sonication, anti-solvent precipitation, coacervation, ion crosslinking, ionic gelation, emulsification, and enzymatic conjugation. These formulated nano/micro-capsules have proven to be effective in stabilizing and enhancing the bioaccessibility of fucoxanthin. This review will inspire a surge of multidisciplinary research in a broader community of foods and motivate material scientists and researchers to focus on nano/micro-encapsulated fucoxanthin in order to facilitate the commercialization of orally-deliverable tumor intervention products.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| | | | | | | | | |
Collapse
|
43
|
Bai Y, Sun Y, Gu Y, Zheng J, Yu C, Qi H. Preparation, Characterization and Antioxidant Activities of Kelp Phlorotannin Nanoparticles. Molecules 2020; 25:E4550. [PMID: 33027947 PMCID: PMC7582861 DOI: 10.3390/molecules25194550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Phlorotannins are a group of major polyphenol secondary metabolites found only in brown algae and are known for their bioactivities and multiple health benefits. However, they can be oxidized due to external factors and their bioavailability is low due to their low water solubility. In this study, the potential of utilizing nanoencapsulation with polyvinylpyrrolidone (PVP) to improve various activities of phlorotannins was explored. Phlorotannins encapsulated by PVP nanoparticles (PPNPS) with different loading ratios were prepared for characterization. Then, the PPNPS were evaluated for in vitro controlled release of phlorotannin, toxicity and antioxidant activities at the ratio of phlorotannin to PVP 1:8. The results indicated that the PPNPS showed a slow and sustained kinetic release of phlorotannin in simulated gastrointestinal fluids, they were non-toxic to HaCaT keratinocytes and they could reduce the generation of endogenous reactive oxygen species (ROS). Therefore, PPNPS have the potential to be a useful platform for the utilization of phlorotannin in both pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Ying Bai
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China; (Y.B.); (Y.S.); (Y.G.)
| | - Yihan Sun
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China; (Y.B.); (Y.S.); (Y.G.)
| | - Yue Gu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China; (Y.B.); (Y.S.); (Y.G.)
| | - Jie Zheng
- Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China;
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China; (Y.B.); (Y.S.); (Y.G.)
| |
Collapse
|
44
|
Lauer MK, Smith RC. Recent advances in starch‐based films toward food packaging applications: Physicochemical, mechanical, and functional properties. Compr Rev Food Sci Food Saf 2020; 19:3031-3083. [DOI: 10.1111/1541-4337.12627] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Moira K. Lauer
- Department of Chemistry Clemson University Clemson South Carolina USA
| | - Rhett C. Smith
- Department of Chemistry Clemson University Clemson South Carolina USA
| |
Collapse
|
45
|
Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Fazaeli M. Double encapsulation of fucoxanthin using porous starch through sequential coating modification with maltodextrin and gum Arabic. Food Sci Nutr 2020; 8:1226-1236. [PMID: 32148828 PMCID: PMC7020259 DOI: 10.1002/fsn3.1411] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023] Open
Abstract
This study aims to assess the effect of gum Arabic (GA), maltodextrin (MD), or their combination as a coating agent at different ratios (1/3, 1/5, and 1/7 w/w) to encapsulate fucoxanthin. For this purpose, fucoxanthin was initially extracted and purified from Sargassum angustifolium brown seaweed and then loaded into porous starch (PS). The fucoxanthin-loaded PS samples were further contributed in another encapsulation process using the coating materials. All samples were evaluated in terms of encapsulation efficiency, Fourier-transform infrared (FTIR) spectroscopy and stability under light, dark and low or high temperature (4 and 50°C) exposure over a certain time period. Purification of fucoxanthin was verified through HPLC and NMR spectroscopy. It was shown that the subsequent coating with MD + GA (1/7 w/w) caused an enhanced encapsulation of fucoxanthin-loaded PS, reaching to about 96%. In addition, the stability of fucoxanthin-loaded PS was greatly influenced by light and high temperature exposure and decreased from 85% to 58% using the GA-coated material (1/3 w/w). First-order kinetic model was found to be fitted well on thermal degradation data of fucoxanthin. Interestingly, the mixture of MD + GA (1/7 w/w) exhibited the highest fucoxanthin prevention at the end of the storage period. Conclusively, the findings of this study can provide simple and facile protocol for food chemists in protecting the food ingredients using encapsulation process.
Collapse
Affiliation(s)
- Najme Oliyaei
- Seafood Processing Research Group School of Agriculture Shiraz University Shiraz Iran
- Department of Food Science and Technology School of Agriculture Shiraz University Shiraz Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Group School of Agriculture Shiraz University Shiraz Iran
- Department of Food Science and Technology School of Agriculture Shiraz University Shiraz Iran
| | - Ali Mohammad Tamaddon
- School of Pharmacy and Research Center for Nanotechnology in Drug Delivery Shiraz University of Medical Science Shiraz Iran
| | - Mahboubeh Fazaeli
- Department of Food Science and Technology School of Agriculture Shiraz University Shiraz Iran
| |
Collapse
|