1
|
Guo Y, Liu M, Chuang R, Zhang H, Li H, Xu L, Xia N, Xiao C, Rayan AM, Ghamry M. Mechanistic applications of low-temperature plasma in starch-based biopolymer film: A review. Food Chem 2025; 479:143739. [PMID: 40073561 DOI: 10.1016/j.foodchem.2025.143739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
The substitution of traditional packaging with bio-based edible films has emerged as a new research direction. The starch biopolymer films currently studied by researchers exhibit issues such as inadequate physical properties, barrier performance, mechanical strength, and biological activity. Consequently, a range of advanced techniques are employed to enhance the properties of biopolymer films. Low-temperature plasma stands out as an emerging multi-functional non-thermal green molecular surface modification technology that has been particularly effective in enhancing starch biopolymer films. Furthermore, owing to its non-thermal characteristics, low-temperature plasma is particularly suitable for heat-sensitive materials. Consequently, this study aims to investigate the impact of low-temperature plasma technology on enhancing the properties of biopolymer film substrates, elucidate its mechanisms of action on starch films and starch composite films, refine methods for modifying biopolymer films, and conduct a rational analysis of any contradictions.
Collapse
Affiliation(s)
- Yanli Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Rui Chuang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Lina Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Chaogeng Xiao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Ghamry
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
2
|
Li Y, Tian W, Chen T, Li Y, Zhao R, Li Y, Chi X, Wu D, Du Y, Hu J. Dual-functional Zn@melanin nanoparticles for enhanced antibacterial activity and prolonged fruit preservation. Food Chem 2025; 479:143844. [PMID: 40090199 DOI: 10.1016/j.foodchem.2025.143844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Mitigating food spoilage from microbial infections remains a critical challenge in food preservation. Although Zn2+ ions are used as chemical bactericides, their use alone often requires high doses. A novel nanomaterial, Zn@MNPs, combining photothermal properties with the controlled release of Zn2+, was synthesized through a coordination of Zn2+ with melanin nanoparticles (MNPs) derived from cuttlefish ink. Zn@MNPs were capable of attaching onto the bacterial surfaces, enabling high-efficiency release of Zn2+ under mildly acidic conditions typically associated with bacterial infections. This leads to sustained antibacterial activity, causing bacterial membrane rupture and leakage of intracellular components. Incorporating Zn@MNPs into polyvinyl alcohol (PVA)-based films improved their ability to block UV light and reduce oxygen and water vapor permeability. These films effectively reduced dehydration, preserved nutritional content, and extended fruit shelf life. This study highlights the potential of Zn@MNPs-based PVA films as biodegradable, bioactive packaging materials for enhancing food preservation and safety.
Collapse
Affiliation(s)
- Yangjing Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wei Tian
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuxin Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xuesong Chi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
El-Sheekh MM, Alwaleed EA, Ibrahim A, Saber H. Preparation and characterization of bioplastic film from the green seaweed Halimeda opuntia. Int J Biol Macromol 2024; 259:129307. [PMID: 38199545 DOI: 10.1016/j.ijbiomac.2024.129307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Protein-rich seaweeds are regarded as having commercial significance due to their numerous industrial applications. The green seaweed Halimeda opuntia was used during this study for the preparation of bioplastic film. A thin bioplastic film with better physical and mechanical properties was produced by optimizing the ratio of polyvinyl alcohol (PVA) to seaweed biomass. The films obtained were characterized by their thickness, tensile strength, elongation at break, Young's modulus, moisture absorption resistance, and solubility. To evaluate the composition and potential for chemical reactions of the films, an FTIR spectroscopy examination was conducted. Whereas TG-DTA and AFM were performed on films with high mechanical properties. The bioplastic film produced when algae percent was tripled in PVA concentration had better physical and mechanical characteristics, and the bioplastic films degraded in the environment within a short time. According to the current study, seaweed might serve as an alternative source for the production of bioplastic, which could help minimize the use of non-biodegradable plastics.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | - Eman A Alwaleed
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Aml Ibrahim
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Hani Saber
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| |
Collapse
|
4
|
Sahraeian S, Rashidinejad A, Niakousari M. Enhanced properties of non-starch polysaccharide and protein hydrocolloids through plasma treatment: A review. Int J Biol Macromol 2023; 249:126098. [PMID: 37543265 DOI: 10.1016/j.ijbiomac.2023.126098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Hydrocolloids are important ingredients in food formulations and their modification can lead to novel ingredients with unique functionalities beyond their nutritional value. Cold plasma is a promising technology for the modification of food biopolymers due to its non-toxic and eco-friendly nature. This review discusses the recent published studies on the effects of cold plasma treatment on non-starch hydrocolloids and their derivatives. It covers the common phenomena that occur during plasma treatment, including ionization, etching effect, surface modification, and ashing effect, and how they contribute to various changes in food biopolymers. The effects of plasma treatment on important properties such as color, crystallinity, chemical structure, rheological behavior, and thermal properties of non-starch hydrocolloids and their derivatives are also discussed. In addition, this review highlights the potential of cold plasma treatment to enhance the functionality of food biopolymers and improve the quality of food products. The mechanisms underlying the effects of plasma treatment on food biopolymers, which can be useful for future research in this area, are also discussed. Overall, this review paper presents a comprehensive overview of the current knowledge in the field of cold plasma treatment of non-starch hydrocolloids and their derivatives and highlights the areas that require further investigation.
Collapse
Affiliation(s)
- Shahriyar Sahraeian
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Mehrdad Niakousari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
da Costa DS, dos Santos LN, Ferreira NR, Takeuchi KP, Lopes AS. Mairá-Potato ( Casimirella sp.): Botanical, Food, Pharmacological, and Phytochemical Aspects. Molecules 2023; 28:6069. [PMID: 37630321 PMCID: PMC10458469 DOI: 10.3390/molecules28166069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Millions of people in the world live in food insecurity, so identifying a tuber with characteristics capable of meeting the demand for food and also identifying active compounds that can be used to minimize harm to human health is of great value. The aim was to carry out a review based on systematic review tools and the main objective was to seek information on botanical, food, pharmacological, and phytochemical aspects of Casimirella sp. and propose possible applications. This review showed papers that addressed botanical, food, pharmacological, and phytochemical aspects of the Mairá-potato and presented suggestions for using this tuber allied to the information described in the works found in the Google Academic, Scielo, Science Direct, Scopus, PubMed, and Web of Science databases. This review synthesized knowledge about the Mairá-potato that can contribute to the direction of further research on the suggested technological applications, both on the use of this tuber as a polymeric material and its use as biomaterial, encapsulation, bioactive use, and 3D printing, because this work collected information about this non-conventional food plant (PANC) that shows great potential for use in various areas of study.
Collapse
Affiliation(s)
- Danusa Silva da Costa
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (L.N.d.S.); (N.R.F.); (A.S.L.)
| | - Lucely Nogueira dos Santos
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (L.N.d.S.); (N.R.F.); (A.S.L.)
| | - Nelson Rosa Ferreira
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (L.N.d.S.); (N.R.F.); (A.S.L.)
| | - Katiuchia Pereira Takeuchi
- Department of Food and Nutrition, Faculty of Nutrition, UFMT (Federal University of Mato Grosso), Cuiabá 78060-900, MT, Brazil;
| | - Alessandra Santos Lopes
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (L.N.d.S.); (N.R.F.); (A.S.L.)
| |
Collapse
|
6
|
Zhu Q, Yao S, Wu Z, Li D, Ding T, Liu D, Xu E. Hierarchical structural modification of starch via non-thermal plasma: A state-of-the-art review. Carbohydr Polym 2023; 311:120747. [PMID: 37028874 DOI: 10.1016/j.carbpol.2023.120747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The hierarchical architecture of natural and processed starches with different surface and internal structures determines their final physicochemical properties. However, the oriented control of starch structure presents a significant challenge, and non-thermal plasma (cold plasma, CP) has gradually been used to design and tailor starch macromolecules, though without clear illustration. In this review, the multi-scale structure (i.e., chain-length distribution, crystal structure, lamellar structure, and particle surface) of starch is summarized by CP treatment. The plasma type, mode, medium gas and mechanism are also illustrated, as well as their sustainable food applications, such as in food taste, safety, and packaging. The effects of CP on the chain-length distribution, lamellar structure, amorphous zone, and particle surface/core of starch includes irregularity due to the complex of CP types, action modes, and reactive conditions. CP-induced chain breaks lead to short-chain distributions in starch, but this rule is no longer useful when CP is combined with other physical treatments. The degree but not type of starch crystals is indirectly influenced by CP through attacking the amorphous region. Furthermore, the CP-induced surface corrosion and channel disintegration of starch cause changes in functional properties for starch-related applications.
Collapse
Affiliation(s)
- Qingqing Zhu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
7
|
Cheng Z, Lu X, Hu X, Zhang Q, Ali M, Long C. Dulong People's Traditional Knowledge of Caryota obtusa (Arecaceae): a Potential Starch Plant with Emphasis on Its Starch Properties and Distribution Prediction. ECONOMIC BOTANY 2023; 77:63-81. [PMID: 36811019 PMCID: PMC9934947 DOI: 10.1007/s12231-022-09565-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
The greatest global challenge is to ensure that all people have access to adequate and nutritious food. Wild edible plants, particularly those that provide substitutes for staple foods, can play a key role in enhancing food security and maintaining a balanced diet in rural communities. We used ethnobotanical methods to investigate traditional knowledge on Caryota obtusa, a substitute staple food plant of the Dulong people in Northwest Yunnan, China. The chemical composition, morphological properties, functional, and pasting properties of C. obtusa starch were evaluated. We used MaxEnt modeling to predict the potential geographical distribution of C. obtusa in Asia. Results revealed that C. obtusa is a vital starch species with cultural significance in the Dulong community. There are large areas suitable for C. obtusa in southern China, northern Myanmar, southwestern India, eastern Vietnam, and other places. As a potential starch crop, C. obtusa could substantially contribute to local food security and bring economic benefit. In the future, it is necessary to study the breeding and cultivation of C. obtusa, as well as the processing and development of starch, to solve long-term and hidden hunger in rural areas.
Collapse
Affiliation(s)
- Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081 China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
- Key Laboratory of Ethnomedicine, Ministry of Education, (Minzu University of China), Beijing, 100081 China
| | - Xiaoping Lu
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081 China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
- Key Laboratory of Ethnomedicine, Ministry of Education, (Minzu University of China), Beijing, 100081 China
| | - Xian Hu
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081 China
| | - Qing Zhang
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081 China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
- Key Laboratory of Ethnomedicine, Ministry of Education, (Minzu University of China), Beijing, 100081 China
| | - Maroof Ali
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303 China
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081 China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
- Key Laboratory of Ethnomedicine, Ministry of Education, (Minzu University of China), Beijing, 100081 China
- Institute of National Security Studies, Minzu University of China, Beijing, 100081 China
| |
Collapse
|
8
|
Weligama Thuppahige VT, Moghaddam L, Welsh ZG, Karim A. Investigation of Morphological, Chemical, and Thermal Properties of Biodegradable Food Packaging Films Synthesised by Direct Utilisation of Cassava ( Monihot esculanta) Bagasse. Polymers (Basel) 2023; 15:polym15030767. [PMID: 36772068 PMCID: PMC9921351 DOI: 10.3390/polym15030767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The utilisation of edible sources of starch such as corn, wheat, potato, and cassava has become the common approach to develop biodegradable food packaging. However, the future food security issue from the wide application of such edible starch sources has become a major concern. Consequently, exploring non-edible sources of starch for starch-based biodegradable food packaging and their property enhancement have become one of the common research interests. Although there has been a great potentials of synthesising biodegradable food packaging by direct utilisation of agro-industrial waste cassava bagasse, there have been very limited studies on this. In this context, the current study investigated the potential of developing biodegradable food packaging by directly using cassava bagasse as an alternative matrix. Two film-forming mixtures were prepared by incorporating glycerol (30% and 35%), powdered cassava bagasse and water. The films were hot-pressed at 60 °C, 100 °C, and 140 °C temperatures under 0.28 t pressure for 6 min. The best film-forming mixture and temperature combination was further tested with 0.42 t and 0.84 t pressures, followed by analysing their morphology, functional group availability and the thermal stability. Accordingly, application of 35% glycerol, with 100 °C, 0.42 t temperature and pressure, respectively, were found to be promising for film preparation. The absence of starch agglomerates in film surfaces with less defects suggested satisfactory dispersion and compatibility of starch granules and glycerol. The film prepared under 0.42 t exhibited slightly higher thermal stability. Synthesised prototypes of food packaging and the obtained characterisation results demonstrated the high feasibility of direct utilisation of cassava bagasse as an alternative, non-edible matrix to synthesise biodegradable food packaging.
Collapse
Affiliation(s)
- Vindya Thathsaranee Weligama Thuppahige
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Department of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
| | - Lalehvash Moghaddam
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Zachary G. Welsh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Azharul Karim
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Correspondence: ; Tel.: +61-7-3138-6879; Fax: +61-7-3138-1529
| |
Collapse
|
9
|
Effect of energetic neutrals on the kithul starch retrogradation; Potential utilization for improving mechanical and barrier properties of films. Food Chem 2023; 398:133881. [DOI: 10.1016/j.foodchem.2022.133881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022]
|
10
|
Aaliya B, Sunooj KV, Navaf M, Akhila PP, Sudheesh C, Sabu S, Sasidharan A, Sinha SK, George J. Influence of plasma-activated water on the morphological, functional, and digestibility characteristics of hydrothermally modified non-conventional talipot starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Vonnie JM, Rovina K, Azhar RA, Huda N, Erna KH, Felicia WXL, Nur’Aqilah MN, Halid NFA. Development and Characterization of the Biodegradable Film Derived from Eggshell and Cornstarch. J Funct Biomater 2022; 13:jfb13020067. [PMID: 35735922 PMCID: PMC9224871 DOI: 10.3390/jfb13020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
In the current study, cornstarch (CS) and eggshell powder (ESP) were combined using a casting technique to develop a biodegradable film that was further morphologically and physicochemically characterized using standard methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the morphology of the ESP/CS film, and the surface of the film was found to have a smooth structure with no cracks, a spherical and porous irregular shape, and visible phase separation, which explains their large surface area. In addition, the energy dispersive X-ray (EDX) analysis indicated that the ESP particles were made of calcium carbonate and the ESP contained carbon in the graphite form. Fourier Transform Infrared Spectroscopy indicated the presence of carbonated minerals in the ESP/CS film which shows that ESP/CS film might serve as a promising adsorbent. Due to the inductive effect of the O–C–O bond on calcium carbonate in the eggshell, it was discovered that the ESP/CS film significantly improves physical properties, moisture content, swelling power, water solubility, and water absorption compared to the control CS film. The enhancement of the physicochemical properties of the ESP/CS film was principally due to the intra and intermolecular interactions between ESP and CS molecules. As a result, this film can potentially be used as a synergistic adsorbent for various target analytes.
Collapse
Affiliation(s)
- Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
- Correspondence: ; Tel.: +60-88-320000 (ext. 8713); Fax: +60-88-320993
| | - Rasnarisa Awatif Azhar
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
| | - Kana Husna Erna
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
| | - Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
| | - Md Nasir Nur’Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
| | - Nur Fatihah Abdul Halid
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| |
Collapse
|
12
|
Onyeaka H, Obileke K, Makaka G, Nwokolo N. Current Research and Applications of Starch-Based Biodegradable Films for Food Packaging. Polymers (Basel) 2022; 14:polym14061126. [PMID: 35335456 PMCID: PMC8954184 DOI: 10.3390/polym14061126] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
The use of biodegradable packaging material as an alternative to conventional petrochemical-based polymers is based on the environmental issues associated with conventional materials. This review aims to update the existing knowledge regarding the application of starch-based biodegradable films for food packaging. From the review, it was evident that starch stands out among biopolymers due to its abundance and cost effectiveness. This review is the first of its kind, having reviewed over 100 articles/publications on starch-based biodegradable films, consolidating their current state of research and their applications for food packaging; therefore, this review provides an insight into the utilization of nanomaterials to improve the shelf life of packaging of food.
Collapse
Affiliation(s)
- Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK
- Correspondence: (H.O.); (K.O.)
| | - KeChrist Obileke
- Fort Hare Institute of Technology, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa;
- Department of Physics, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa;
- Correspondence: (H.O.); (K.O.)
| | - Golden Makaka
- Department of Physics, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa;
| | - Nwabunwanne Nwokolo
- Fort Hare Institute of Technology, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa;
| |
Collapse
|
13
|
Aaliya B, Sunooj KV, Rajkumar CBS, Navaf M, Akhila PP, Sudheesh C, George J, Lackner M. Effect of Thermal Pretreatments on Phosphorylation of Corypha umbraculifera L. Stem Pith Starch: A Comparative Study Using Dry-Heat, Heat-Moisture and Autoclave Treatments. Polymers (Basel) 2021; 13:3855. [PMID: 34771410 PMCID: PMC8587339 DOI: 10.3390/polym13213855] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Talipot starch, a non-conventional starch source with a high yield (76%) from the stem pith of talipot palm (Corypha umbraculifera L.) was subjected to three different thermal treatments (dry-heat, heat-moisture and autoclave treatments) prior to phosphorylation. Upon dual modification of starch with thermal treatments and phosphorylation, the phosphorous content and degree of crosslinking significantly increased (p ≤ 0.05) and was confirmed by the increased peak intensity of P=O and P-O-C stretching vibrations compared to phosphorylated talipot starch in the FT-IR spectrum. The highest degree of crosslinking (0.00418) was observed in the autoclave pretreated phosphorylated talipot starch sample. Thermal pretreatment remarkably changed the granule morphology by creating fissures and grooves. The amylose content and relative crystallinity of all phosphorylated talipot starches significantly decreased (p ≤ 0.05) due to crosslinking by the formation of phosphodiester bonds, reducing the swelling power of dual-modified starches. Among all modified starches, dry-heat pretreated phosphorylated starch gel showed an improved light transmittance value of 28.4%, indicating reduced retrogradation tendency. Pasting and rheological properties represented that the thermal pretreated phosphorylated starch formed stronger gels that improved thermal and shear resistance. Autoclave treatment before phosphorylation of talipot starch showed the highest resistant starch content of 48.08%.
Collapse
Affiliation(s)
- Basheer Aaliya
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Kappat Valiyapeediyekkal Sunooj
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Chillapalli Babu Sri Rajkumar
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Muhammed Navaf
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Plachikkattu Parambil Akhila
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Cherakkathodi Sudheesh
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Johnsy George
- Food Engineering and Packaging Division, Defence Food Research Laboratory, Mysore 570011, India;
| | - Maximilian Lackner
- Department Industrial Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
14
|
Sudheesh C, Sunooj KV, Jamsheer V, Sabu S, Sasidharan A, Aaliya B, Navaf M, Akhila PP, George J. Development of Bioplastic Films from γ − Irradiated Kithul (
Caryota uren
s) Starch; Morphological, Crystalline, Barrier, and Mechanical Characterization. STARCH-STARKE 2021. [DOI: 10.1002/star.202000135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cherakkathodi Sudheesh
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | | | - Vattaparambil Jamsheer
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | - Sarasan Sabu
- School of Industrial Fisheries Cochin University of Science and Technology Kochi Kerala 682016 India
| | - Abhilash Sasidharan
- Department of Fish Process and Technology Kerala University of Fisheries and Ocean Studies Kochi Kerala 682506 India
| | - Basheer Aaliya
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | - Muhammed Navaf
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | | | - Johnsy George
- Food Engineering and Packaging Division Defence Food Research Laboratory Mysore Karnataka 570011 India
| |
Collapse
|
15
|
Sudheesh C, Sunooj KV, Navaf M, Bhasha SA, George J, Mounir S, Kumar S, Sajeevkumar VA. Hydrothermal modifications of nonconventional kithul ( Caryota urens) starch: physico-chemical, rheological properties and in vitro digestibility. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2916-2925. [PMID: 32624597 PMCID: PMC7316946 DOI: 10.1007/s13197-020-04323-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Effect of hydrothermal modifications (autoclaving, annealing and heat moisture treatment) on physico-chemical, rheological properties and in vitro digestibility of kithul starch was studied. Annealing and heat moisture treatment decreased swelling index, solubility and increased crystalline properties as compared with autoclaving. Autoclaving, annealing and heat moisture treatment caused significant morphological damages such as large holes and fissures on the kithul starch, in addition, granules changed from oval to donut shape. Heat moisture treatment formed higher number of agglomerated starch granules. Light transmittance decreased after hydrothermal modifications. Autoclaving and annealing increased the pasting viscosities (except break down viscosity) of kithul starch. A significant increase (p ≤ 0.05) in peak temperature, conclusion temperature and enthalpy was found in annealed and heat moisture treated kithul starches. The digestibility of kithul starch decreased with increasing resistant starch after annealing and heat moisture treatment. Autoclaved, annealed and heat moisture treated kithul starches exhibited higher value of storage modulus (G') and loss modulus (G″) than native kithul starch. It entail to higher firmness of modified starch gel. The current study showed that the remarkable changes formed by hydrothermal modifications increased the industrial acceptance of kithul starch.
Collapse
Affiliation(s)
- Cherakkathodi Sudheesh
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014 India
| | | | - Muhammed Navaf
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014 India
| | - Shaik Ameer Bhasha
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014 India
| | - Johnsy George
- Defence Food Research Laboratory, Food Engineering and Packaging Division, Mysore, 570011 India
| | - Sabah Mounir
- Food Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519 Egypt
| | - Sunny Kumar
- Defence Food Research Laboratory, Food Engineering and Packaging Division, Mysore, 570011 India
| | | |
Collapse
|