1
|
Figueiredo M, Sárkány Z, Rocha F, Martins PM. Challenges and Advances in the Encapsulation of Bioactive Ingredients Using Whey Proteins. Foods 2025; 14:691. [PMID: 40002133 PMCID: PMC11854755 DOI: 10.3390/foods14040691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Functional foods represent an emerging trend in the food industry. Fortifying foods with bioactive ingredients results in health benefits and reduces the risk of disease. Encapsulation techniques protect sensitive ingredients from degradation due to heat, light, moisture and other factors. Among encapsulating materials, milk whey proteins are particularly attractive due to their availability, GRAS status and remarkable ligand-binding ability. Whey protein was once considered a by-product in the dairy industry but is now seen as a promising resource given its natural role as a nutrient carrier. This work reviews the encapsulation systems that employ whey proteins in the food industry. The structural features of β-lactoglobulin (β-LG), the main protein constituent of milk whey, are presented in the context of its ligand-binding properties. Different types of encapsulation systems using whey proteins are discussed, focusing on the recent advances in stable formulations of bioactives using whey protein, alone or in hybrid systems. Whey proteins are a valuable asset capable of binding sensitive bioactive compounds such as vitamins, polyphenols and antioxidants and forming stable complexes that can be formulated as nanoparticles, nanofibrils, emulsions and other micro- and nanostructures. Developing scalable, solid and stable encapsulation systems is identified as a main challenge in the field.
Collapse
Affiliation(s)
- Manuel Figueiredo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-180 Porto, Portugal
| | - Zsuzsa Sárkány
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-180 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fernando Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Pedro M. Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-180 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
2
|
Yin X, Wusigale, Cheng H, Van der Meeren P, Liang L. The mechanism of resveratrol stabilization and degradation by synergistic interactions between constituent proteins of whey protein. Food Res Int 2024; 188:114485. [PMID: 38823871 DOI: 10.1016/j.foodres.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Whey protein isolate (WPI) is mainly composed of β-lactoglobulin (β-LG), α-lactalbumin (α-LA) and bovine serum albumin (BSA). The aim of this study was to compare and analyze the influence of WPI and its three main constituent proteins, as well as proportionally reconstituted WPI (R-WPI) on resveratrol. It was found that the storage stability of resveratrol was protected by WPI, not affected by R-WPI, but reduced by individual whey proteins at 45°C for 30 days. The rank of accelerated degradation of resveratrol by individual whey proteins was BSA > α-LA > β-LG. The antioxidant activity, localization of resveratrol and oxidation of carrier proteins were determined by ABTS, H2O2 assay, synchronous fluorescence, carbonyl and circular dichroism. The non-covalent interactions and disulfide bonds between constituent proteins improved the antioxidant activity of the R-WPI-resveratrol complex, the oxidation stability of the carrier and the solvent shielding effect on resveratrol, which synergistically inhibited the degradation of resveratrol in R-WPI system. The results gave insight into elucidating the interaction mechanism of resveratrol with protein carriers.
Collapse
Affiliation(s)
- Xin Yin
- State Key Lab of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Cheng
- State Key Lab of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Li Liang
- State Key Lab of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
3
|
D'Amore T, Chaari M, Falco G, De Gregorio G, Zaraî Jaouadi N, Ali DS, Sarkar T, Smaoui S. When sustainability meets health and innovation: The case of Citrus by-products for cancer chemoprevention and applications in functional foods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 58:103163. [DOI: 10.1016/j.bcab.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
|
4
|
Bustos LF, Vasile FE, Pérez OE. Experimental and in silico approaches for the buffalo whey protein-folic acid complexation elucidation. Molecular changes impacting on protein structure and functionality. Food Res Int 2024; 180:114062. [PMID: 38395554 DOI: 10.1016/j.foodres.2024.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Using a buffalo whey proteins concentrate (BWPC) as a nanocarrier of labile bioactive compounds as vitamins constitutes a very innovative approach with potential application in the food and nutraceutical industries. This work aims to deepen the knowledge of the phenomena occurring in the complexation process of vitamin B9 with BWPC, providing valuable information on the molecular and functional properties of complexes and intervening substances. For such purpose, analytical (SEC-FPLC, Fluorescence spectroscopy, FTIR, DLS, UV-vis spectroscopy) and in-silico methods (molecular docking) were performed to get complementary data. Five types of proteins were identified in the BWPC. Folic acid (FA) interacted with BWPC in buffer pH 7 through H-bonds and hydrophobic interactions, inducing conformational changes and modifying the secondary and tertiary protein structure. The resultant BWPC-FA complexes showed a size distribution in the nanoscale (100-150 nm) with no aggregation. Molecular docking showed that lactoferrin had the highest FA binding affinity. Complexation did not reduce the antioxidant activity of intervening substances. Indeed, the radical scavenging capacity of BWPC-FA was 20 % higher than single BWPC. The obtained results provide relevant data enabling the adding value of the main effluent of buffalo dairy industries.
Collapse
Affiliation(s)
- Leandro Fabián Bustos
- Universidad Nacional del Chaco Austral & CONICET - Instituto de investigaciones en procesos tecnológicos avanzados (INIPTA), Comandante Fernández 755, Presidencia Roque Sáenz Peña, 3700 Chaco, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica & CONICET-Universidad de Buenos Aires, Laboratorio Interdisciplinario de Dinámica Celular y Nano-Herramientas, Intendente Güiraldes 2160, CP 1428 Buenos Aires, Argentina.
| | - Franco Emanuel Vasile
- Universidad Nacional del Chaco Austral & CONICET - Instituto de investigaciones en procesos tecnológicos avanzados (INIPTA), Comandante Fernández 755, Presidencia Roque Sáenz Peña, 3700 Chaco, Argentina.
| | - Oscar Edgardo Pérez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica & CONICET-Universidad de Buenos Aires, Laboratorio Interdisciplinario de Dinámica Celular y Nano-Herramientas, Intendente Güiraldes 2160, CP 1428 Buenos Aires, Argentina.
| |
Collapse
|
5
|
Zhang X, Zhang T, Li S, Zhao R, Li S, Wang C. Mixed whey and pea protein based cold-set emulsion gels induced by calcium chloride: Fabrication and characterization. Int J Biol Macromol 2023; 253:126641. [PMID: 37657583 DOI: 10.1016/j.ijbiomac.2023.126641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The cold-set gels of oil-in-water emulsions stabilized by mixtures of whey protein isolate (WPI) and pea protein isolate (PPI) with mass ratios of 10:0, 7:3, 5:5, 3:7, and 0:10 were investigated to evaluate the possibility of pea protein to replace milk protein. Particle size and surface charge of emulsions increased and decreased with raised PPI content, respectively. The redness and yellowness of emulsion gels were strengthened with elevated pea protein percentage and independent of calcium concentration applied. Considerable differences in water holding capacity were observed between samples with different mixed proteins and high percentage of pea protein gave better water retaining ability. Gradual decreases in hardness and chewiness of emulsion gels were observed at three calcium levels with the increased PPI proportion. FT-IR spectra indicated no new covalent bonds were generated between samples with different whey and pea protein mass ratios. As PPI concentration elevated, the network structure of emulsion gels gradually became loose and disordered. The established cold-set calcium-induced whey/pea protein composite gels may have the potential to be utilized as a new material to encapsulate and deliver environment sensitive bio-active substances.
Collapse
Affiliation(s)
- Xiaoge Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Tiehua Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Siyao Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shuyi Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
6
|
Heyns IM, Ganugula R, Varma T, Allamreddy S, Kumar N, Garg P, Kumar MNVR, Arora M. Rationally Designed Naringenin-Conjugated Polyester Nanoparticles Enable Folate Receptor-Mediated Peroral Delivery of Insulin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45651-45657. [PMID: 37728532 DOI: 10.1021/acsami.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Receptor-mediated transcytosis of nanoparticles is paramount for the effective delivery of various drugs. Here, we report the design and synthesis of highly functional nanoparticles with specific targeting toward the folate receptor (FR) for the peroral delivery of insulin. In doing so, we demonstrate naringenin (NAR), a citrous flavonoid, as a targeting ligand to FR, with a similar affinity as folic acid. The NAR-decorated nanoparticles indicated a 4-fold increase in FR colocalization compared to unfunctionalized nanoparticles. The NAR-conjugated precision polyester allows for high insulin loading and entrapment efficiencies. As a result, insulin-laden NAR-functional nanoparticles offered a 3-fold higher bioavailability in comparison to unfunctionalized nanoparticles. This work generated a promising contribution to folate-receptor-mediated peroral delivery of insulin, utilizing polymeric nanoparticles decorated with a natural ligand, NAR.
Collapse
Affiliation(s)
- Ingrid M Heyns
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
| | - Tanmaykumar Varma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar 160062, Punjab, India
| | - Swetha Allamreddy
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar 160062, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar 160062, Punjab, India
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
- Chemical and Biological Engineering, University of Alabama, SEC 3448, Box 870203, Tuscaloosa, Alabama 35487, United States
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
7
|
Chasquibol N, Gonzales BF, Alarcón R, Sotelo A, Gallardo G, García B, Pérez-Camino MDC. Co-Microencapsulation of Sacha Inchi ( Plukenetia huayllabambana) Oil with Natural Antioxidants Extracts. Foods 2023; 12:foods12112126. [PMID: 37297371 DOI: 10.3390/foods12112126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 06/12/2023] Open
Abstract
Sacha inchi (Plukenetia huayllabambana) oil was co-microencapsulated with natural antioxidant extracts (NAE), such as camu-camu (Myrciaria dubia (HBK) Mc Vaugh) fruit, Añil variety Andean potato (Solanum tuberosum andigenum, and elderberry fruit (Sambucus peruviana). Gum Arabic and the ternary combination of gum Arabic (GA) + maltodextrin (MD) + whey protein isolate (WPI) at different formulations were used as coating materials for the encapsulation process using spray-drying. The moisture content, particle size distribution and morphology, total phenolic content, antioxidant activity, fatty acid and sterol composition, oxidative stability, and shelf-life were evaluated. Co-microcapsules of sacha inchi (P. huayllabambana) oil with camu camu skin extract (CCSE) at 200 ppm encapsulated with GA + MD + WPI had the highest total polyphenol content (4239.80 µg GAE/g powder), antioxidant activity (12,454.00 µg trolox/g powder), omega-3 content (56.03%), β-sitosterol (62.5%), greater oxidative stability (Oxidation Onset temperature of 189 °C), higher shelf-life (3116 h), and smaller particle sizes (6.42 μm). This research enhances the knowledge to obtain microcapsules containing sacha inchi (P. huayllabambana) oil with natural antioxidant extracts that could be used for the development of functional foods. Further research is needed to study the potential interactions and their influence between the bioactive components of the microcapsules and the challenges that may occur during scale-up to industrial production.
Collapse
Affiliation(s)
- Nancy Chasquibol
- Grupo de Investigación en Alimentos Funcionales, Carrera de Ingeniería Industrial, Instituto de Investigación Científica, Universidad de Lima, Av. Javier Prado Este 4600, Fundo Monterrico Chico, Surco, Lima 15023, Peru
| | - Billy Francisco Gonzales
- Grupo de Investigación en Alimentos Funcionales, Carrera de Ingeniería Industrial, Instituto de Investigación Científica, Universidad de Lima, Av. Javier Prado Este 4600, Fundo Monterrico Chico, Surco, Lima 15023, Peru
| | - Rafael Alarcón
- Grupo de Investigación en Alimentos Funcionales, Carrera de Ingeniería Industrial, Instituto de Investigación Científica, Universidad de Lima, Av. Javier Prado Este 4600, Fundo Monterrico Chico, Surco, Lima 15023, Peru
| | - Axel Sotelo
- Grupo de Investigación en Alimentos Funcionales, Carrera de Ingeniería Industrial, Instituto de Investigación Científica, Universidad de Lima, Av. Javier Prado Este 4600, Fundo Monterrico Chico, Surco, Lima 15023, Peru
| | - Gabriela Gallardo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Gabriel de Aristizabal, B1686 William C. Morris, Buenos Aires C1033AAE, Argentina
| | - Belén García
- Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Campus Universidad Pablo de Olavide Ed. 46, Crtra. Sevilla-Utrera km 1, 41013 Sevilla, Spain
| | - María Del Carmen Pérez-Camino
- Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Campus Universidad Pablo de Olavide Ed. 46, Crtra. Sevilla-Utrera km 1, 41013 Sevilla, Spain
| |
Collapse
|
8
|
Cheng H, Chen W, Jiang J, Khan MA, Wusigale, Liang L. A comprehensive review of protein-based carriers with simple structures for the co-encapsulation of bioactive agents. Compr Rev Food Sci Food Saf 2023; 22:2017-2042. [PMID: 36938993 DOI: 10.1111/1541-4337.13139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/28/2023] [Accepted: 02/21/2023] [Indexed: 03/21/2023]
Abstract
The rational design and fabrication of edible codelivery carriers are important to develop functional foods fortified with a plurality of bioactive agents, which may produce synergistic effects in increasing bioactivity and functionality to target specific health benefits. Food proteins possess considerable functional attributes that make them suitable for the delivery of a single bioactive agent in a wide range of platforms. Among the different types of protein-based carriers, protein-ligand nanocomplexes, micro/nanoparticles, and oil-in-water (O/W) emulsions have increasingly attracted attention in the codelivery of multiple bioactive agents, due to the simple and convenient preparation procedure, high stability, matrix compatibility, and dosage flexibility. However, the successful codelivery of bioactive agents with diverse physicochemical properties by using these simple-structure carriers is a daunting task. In this review, some effective strategies such as combined functional properties of proteins, self-assembly, composite, layer-by-layer, and interfacial engineering are introduced to redesign the carrier structure and explore the encapsulation of multiple bioactive agents. It then highlights success stories and challenges in the co-encapsulation of multiple bioactive agents within protein-based carriers with a simple structure. The partition, protection, and release of bioactive agents in these protein-based codelivery carriers are considered and discussed. Finally, safety and application as well as challenges of co-encapsulated bioactive agents in the food industry are also discussed. This work provides a state-of-the-art overview of protein-based particles and O/W emulsions in co-encapsulating bioactive agents, which is essential for the design and development of novel functional foods containing multiple bioactive agents.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanwen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiang Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Zhao T, Yang B, Ji S, Luo J, Liu Y, Zhong Y, Lu B. Effects of the structure and interaction force of phytosterol/whey protein isolate self-assembly complex on phytosterol digestion properties. Food Chem 2023; 403:134311. [DOI: 10.1016/j.foodchem.2022.134311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
|
10
|
Ma L, Gao T, Cheng H, Li N, Huang W, Liang L. Encapsulation of Folic Acid and α-Tocopherol in Lysozyme Particles and Their Bioaccessibility in the Presence of DNA. Antioxidants (Basel) 2023; 12:antiox12030564. [PMID: 36978812 PMCID: PMC10045426 DOI: 10.3390/antiox12030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Protein particles have been reported as the potential carriers for the co-encapsulation of bioactive components. In this study, lysozyme, a basic protein, was used to simultaneously encapsulate folic acid and α-tocopherol at pH 4.0. The encapsulation efficiency and loading capacity of folic acid or α-tocopherol increased with its respective concentration. Folic acid had no influence on the encapsulation of α-tocopherol. However, the encapsulation of folic acid was improved by α-tocopherol below 40 μg/mL but reduced by α-tocopherol at higher concentrations. The encapsulation by lysozyme shielded folic acid, α-tocopherol, or both partially from the attack of 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation. No masking effect of lysozyme encapsulation on α-tocopherol was found in DPPH antioxidant activity assay. Furthermore, the DNA coating was used to improve the dispersion of lysozyme with folic acid and α-tocopherol. The lysozyme/DNA particles with folic acid and α-tocopherol showed a homogenous size distribution of 180-220 nm with ζ-potential values between -33 and -36 mV. The release and bioaccessibility of folic acid in lysozyme/DNA with α-tocopherol were similar to that of folic acid alone, while the release of α-tocopherol was delayed and its bioaccessibility was improved by encapsulation in lysozyme/DNA with folic acid. The data gathered here would provide guidance for the use of lysozyme-based co-encapsulating carriers in the development of functional foods.
Collapse
Affiliation(s)
- Lingling Ma
- State Key Lab. of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tiecheng Gao
- Fujian Zunjin Health Science and Technology Co., Ltd., and IBF International Inc., Quanzhou 362200, China
| | - Hao Cheng
- State Key Lab. of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ning Li
- Fujian Zunjin Health Science and Technology Co., Ltd., and IBF International Inc., Quanzhou 362200, China
| | - Weining Huang
- State Key Lab. of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Liang
- State Key Lab. of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Ramalho R, de Souza NAA, Moreira TFM, De Oliveira A, Perini HF, Furlaneto MC, Leimann FV, Furlaneto-Maia L. Antibacterial efficacy of Enterococcus microencapsulated bacteriocin on Listeria monocytogenes, Listeria innocua and Listeria ivanovi. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:262-271. [PMID: 36618045 PMCID: PMC9813327 DOI: 10.1007/s13197-022-05611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
This study focused on the microencapsulation of enterocin from Enterococcus durans (E. durans MF5) in whey powder (WP) using a spray-drying technique followed by the evaluation of how complexation can preserve the enterocin structure and antimicrobial activity against food-borne pathogens. Crude enterocin samples (1 and 5%) were microencapsulated in 10% WP. The antimicrobial activity of unencapsulated (crude) enterocin and microencapsulated enterocin was tested against the target bacteria Salmonella Typhimurium, Escherichia coli, Listeria monocytogenes, Listeria innocua, and Listeria ivanovi. The microencapsulation yields were 31.66% and 34.16% for concentrations of 1 and 5% enterocin, respectively. There was no significant difference between these concentrations. Microencapsulated enterocin was efficient for up to 12 h of cocultivation with Listeria sp., and the concentration required to inhibit the growth of target bacteria presented values of 6400 AU/mL (arbitrary unit). Microencapsulated enterocin demonstrated enhanced efficacy against Listeria species and E. coli when compared with crude enterocin (p < 0.05). Fourier transform-infrared spectroscopy and differential scanning calorimetry results confirmed the presence of enterocin in the microparticles. Scanning electron microscopy showed cell damage of the target bacteria. The results showed that complexation with WP preserved enterocin antimicrobial activity during spray-drying, indicating its potential use as a food preservative.
Collapse
Affiliation(s)
- Regiane Ramalho
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
| | | | - Thaysa Fernandes Moya Moreira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
| | - Anielle De Oliveira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
| | - Hugo Felix Perini
- Department of Microbiology, State University of Londrina, C.P. 6001, Londrina, Paraná 86051990 Brazil
| | - Márcia Cristina Furlaneto
- Department of Microbiology, State University of Londrina, C.P. 6001, Londrina, Paraná 86051990 Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Luciana Furlaneto-Maia
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Londrina (UTFPR-LD), Av Dos Pioneiros 3131, Londrina, Paraná CEP 86036-370 Brazil
| |
Collapse
|
12
|
Zaher S, Soliman ME, Elsabahy M, Hathout RM. Protein nanoparticles as natural drugs carriers for cancer therapy. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00668-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Pea protein based nanocarriers for lipophilic polyphenols: Spectroscopic analysis, characterization, chemical stability, antioxidant and molecular docking. Food Res Int 2022; 160:111713. [DOI: 10.1016/j.foodres.2022.111713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023]
|
14
|
Nanocarriers for β-Carotene Based on Milk Protein. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Insights into whey protein-based carriers for targeted delivery and controlled release of bioactive components. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Wang C, Cui B, Sun Y, Wang C, Guo M. Preparation, stability, antioxidative property and in vitro release of cannabidiol (CBD) in zein-whey protein composite nanoparticles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Resveratrol Stabilization and Loss by Sodium Caseinate, Whey and Soy Protein Isolates: Loading, Antioxidant Activity, Oxidability. Antioxidants (Basel) 2022; 11:antiox11040647. [PMID: 35453332 PMCID: PMC9030250 DOI: 10.3390/antiox11040647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
The interaction of protein carrier and polyphenol is variable due to their environmental sensitivity. In this study, the interaction between resveratrol and whey protein isolate (WPI), sodium caseinate (SC) and soy protein isolate (SPI) during storage were systematically investigated from the aspects of polyphenol loading, antioxidant activity and oxidability. It was revealed that resveratrol loaded more in the SPI core and existed both in the core of SC micelles and on the particle surface, while WPI and resveratrol mainly formed in complexes. The loading capacity of the three proteins ranked in order SC > SPI > WPI. ABTS assay showed that the antioxidant activity of the protein carriers in the initial state was SC > SPI > WPI. The results of sulfhydryl, carbonyl and amino acid analysis showed that protein oxidability was SPI > SC > WPI. WPI, with the least oxidation, improved the storage stability of resveratrol, and the impact of SC on resveratrol stability changed from a protective to a pro-degradation effect. Co-oxidation occurred between SPI and resveratrol during storage, which refers to covalent interactions. The data gathered here suggested that the transition between the antioxidant and pro-oxidative properties of the carrier is the primary factor to investigate its protective effect on the delivered polyphenol.
Collapse
|
18
|
Qi X, Xu D, Zhu J, Wang S, Peng J, Gao W, Cao Y. Interaction of ovalbumin with lutein dipalmitate and their effects on the color stability of marigold lutein esters extracts. Food Chem 2022; 372:131211. [PMID: 34601423 DOI: 10.1016/j.foodchem.2021.131211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023]
Abstract
In this study, the interaction of ovalbumin with lutein dipalmitate and the effect of ovalbumin on marigold lutein esters extracts were investigated. Lutein dipalmitate quenched the fluorescence of ovalbumin by static quenching. Binding and thermodynamic parameters proved that lutein dipalmitate bound to ovalbumin spontaneously by van der Waals force and hydrogen bond, and the complex stoichiometry was 1:1. Through three-dimensional fluorescence spectroscopy, Fourier transform infrared spectroscopy and circular dichroism experiments, the conformation of ovalbumin was unfolded, and alteration in the ovalbumin secondary structure induced by lutein dipalmitate was observed. The results of transmission electron microscopy and particle size revealed that there were spherical and nano-sized aggregates in the ovalbumin-lutein dipalmitate system, indicating the lutein dipalmitate not only could bind to ovalbumin at molecular level, but also promote the aggregation of ovalbumin. Additionally, the addition of ovalbumin had a positive effect on the stability of marigold lutein esters extracts.
Collapse
Affiliation(s)
- Xin Qi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China
| | - Jinjin Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China
| | - Shaojia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China.
| | | | - Wei Gao
- Chenguang Biotech Group Co., Ltd., Hebei, China.
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China.
| |
Collapse
|
19
|
Yin X, Dong H, Cheng H, Ji C, Liang L. Sodium caseinate particles with co-encapsulated resveratrol and epigallocatechin-3-gallate for inhibiting the oxidation of fish oil emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Gan C, Liu Q, Zhang Y, Shi T, He WS, Jia C. A novel phytosterols delivery system based on sodium caseinate-pectin soluble complexes: Improving stability and bioaccessibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Zhang X, Lu Y, Zhao R, Wang C, Wang C, Zhang T. Study on simultaneous binding of resveratrol and curcumin to β-lactoglobulin: Multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107331] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Hu F, Sun DS, Wang KL, Shang DY. Nanomedicine of Plant Origin for the Treatment of Metabolic Disorders. Front Bioeng Biotechnol 2022; 9:811917. [PMID: 35223819 PMCID: PMC8873594 DOI: 10.3389/fbioe.2021.811917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic disorders are major clinical challenges of health that are progressing globally. A concurrence of metabolic disorders such as obesity, insulin resistance, atherogenic dyslipidemia, and systematic hypertension leads to metabolic syndrome. Over the past years, the metabolic syndrome leads to a five- and two-fold rise in diabetes mellitus type II and cardiovascular diseases. Natural products specifically plant extracts have insulin-sensitizing, anti-inflammatory, and antioxidant properties and are also considered as an alternative option due to few adverse effects. Nanotechnology is one of the promising strategies, which improves the effectiveness of treatment and limits side effects. This review mainly focuses on plant extract-based nanosystems in the management of the metabolic syndrome. Numerous nano-drug delivery systems, i.e., liposomes, hydrogel nanocomposites, nanoemulsions, micelles, solid lipid, and core–shell nanoparticles, have been designed using plant extracts. It has been found that most of the nano-formulations successfully reduced oxidative stress, insulin resistance, chronic inflammation, and lipid profile in in vitro and in vivo studies as plant extracts interfere with the pathways of metabolic syndrome. Thus, these novel plant-based nanosystems could act as a promising candidate for clinical applications.
Collapse
Affiliation(s)
- Fang Hu
- Medical Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Dong-Sheng Sun
- Department of Geriatric Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Kai-Li Wang
- Department of Cardiology, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Dan-Ying Shang
- Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Dan-Ying Shang,
| |
Collapse
|
23
|
Liang Y, Hou D, Ni Z, Cao M, Cai L. Preparation, characterization of naringenin, β-cyclodextrin and carbon quantum dot antioxidant nanocomposites. Food Chem 2021; 375:131646. [PMID: 34848084 DOI: 10.1016/j.foodchem.2021.131646] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
In this work, naringenin loaded β-cyclodextrin and carbon quantum dots composite nanoparticles were successfully fabricated. The results showed that incorporation of carbon quantum dots not only enhanced antioxidant activities of nanoparticles but also improved encapsulation efficiency of naringenin. Further, the formation of composite nanoparticles was confirmed by a series of characterization methods. The zeta-potential and Fourier transform infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form nanoparticles. X-Ray Diffraction experiment revealed that the material state of the formed naringenin-β-CD-CQDs nanoparticles is amorphous in opposition to the crystalline state of naringenin, β-CD and naringenin-β-CD inclusion complex. Finally, antioxidant activity analyses against DPPH, ABTS+ and Fe2+ chelating, showed an enhanced antioxidant activity of the formed composite nanoparticles compared to their constituents. These results indicated that naringenin can be effectively entrapped in β-cyclodextrin and carbon quantum dots, forming composite nanoparticles with improved antioxidant properties.
Collapse
Affiliation(s)
- Yan Liang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Dongyuan Hou
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zan Ni
- WenZhou Institute For Food and Drug Control, Wenzhou 325028, China.
| | - Minjie Cao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luyun Cai
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Caballero S, Li YO, McClements DJ, Davidov-Pardo G. Encapsulation and delivery of bioactive citrus pomace polyphenols: a review. Crit Rev Food Sci Nutr 2021; 62:8028-8044. [PMID: 33983085 DOI: 10.1080/10408398.2021.1922873] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Citrus pomace consists of the peel, pulp, and membrane tissues remaining after juice expression. Globally, around one million tons of citrus pomace are generated annually, which contains a variety of bioactive constituents that could be used as value-added functional ingredients in foods. However, the polyphenols in citrus pomace are not currently being utilized to their full potential, even though they can be used as nutraceuticals in functional foods and beverages. Citrus phenolics face significant roadblocks to their successful incorporation into these products. In particular, they have poor water solubility, chemical stability, and bioavailability. This review describes the diverse range of colloidal systems that have been developed to encapsulate and deliver citrus phenolics. Examples of the application of these systems for the encapsulation, protection, and delivery of polyphenols from citrus pomace are given. The use of colloidal delivery systems has been shown to improve the stability, dispersibility, and bioaccessibility of encapsulated polyphenols from citrus pomace. The selection of an appropriate delivery system determines the handling, storage, shelf life, encapsulation efficiency, dispersibility, and gastrointestinal fate of the citrus polyphenols. Furthermore, the purity, solubility, and chemical structure of the polyphenols are key factors in delivery system selection.
Collapse
Affiliation(s)
- Sarah Caballero
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, California, USA
| | - Yao Olive Li
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, California, USA
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gabriel Davidov-Pardo
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, California, USA
| |
Collapse
|
25
|
Encapsulation of Hydrophobic and Low-Soluble Polyphenols into Nanoliposomes by pH-Driven Method: Naringenin and Naringin as Model Compounds. Foods 2021; 10:foods10050963. [PMID: 33924950 PMCID: PMC8146953 DOI: 10.3390/foods10050963] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
Naringenin and naringin are a class of hydrophobic polyphenol compounds and both have several biological activities containing antioxidant, anti-inflammatory and anti-tumor properties. Nevertheless, they have low water solubility and bioavailability, which limits their biological activity. In this study, an easy pH-driven method was applied to load naringenin or naringin into nanoliposomes based on the gradual reduction in their water solubility after the pH changed to acidity. Thus, the naringenin or naringin can be embedded into the hydrophobic region within nanoliposomes from the aqueous phase. A series of naringenin/naringin-loaded nanoliposomes with different pH values, lecithin contents and feeding naringenin/naringin concentrations were prepared by microfluidization and a pH-driven method. The naringin-loaded nanoliposome contained some free naringin due to its higher water solubility at lower pH values and had a relatively low encapsulation efficiency. However, the naringenin-loaded nanoliposomes were predominantly nanometric (44.95–104.4 nm), negatively charged (−14.1 to −19.3 mV) and exhibited relatively high encapsulation efficiency (EE = 95.34% for 0.75 mg/mL naringenin within 1% w/v lecithin). Additionally, the naringenin-loaded nanoliposomes still maintained good stability during 31 days of storage at 4 °C. This study may help to develop novel food-grade colloidal delivery systems and apply them to introducing naringenin or other lipophilic polyphenols into foods, supplements or drugs.
Collapse
|
26
|
Naringenin Nano-Delivery Systems and Their Therapeutic Applications. Pharmaceutics 2021; 13:pharmaceutics13020291. [PMID: 33672366 PMCID: PMC7926828 DOI: 10.3390/pharmaceutics13020291] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Naringenin (NRG) is a polyphenolic phytochemical belonging to the class of flavanones and is widely distributed in citrus fruits and some other fruits such as bergamot, tomatoes, cocoa, and cherries. NRG presents several interesting pharmacological properties, such as anti-cancer, anti-oxidant, and anti-inflammatory activities. However, the therapeutic potential of NRG is hampered due to its hydrophobic nature, which leads to poor bioavailability. Here, we review a wide range of nanocarriers that have been used as delivery systems for NRG, including polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanosuspensions, and nanoemulsions. These nanomedicine formulations of NRG have been applied as a potential treatment for several diseases, using a wide range of in vitro, ex vivo, and in vivo models and different routes of administration. From this review, it can be concluded that NRG is a potential therapeutic option for the treatment of various diseases such as cancer, neurological disorders, liver diseases, ocular disorders, inflammatory diseases, skin diseases, and diabetes when formulated in the appropriate nanocarriers.
Collapse
|
27
|
The Efficacy of Cholesterol-Based Carriers in Drug Delivery. Molecules 2020; 25:molecules25184330. [PMID: 32971733 PMCID: PMC7570546 DOI: 10.3390/molecules25184330] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Several researchers have reported the use of cholesterol-based carriers in drug delivery. The presence of cholesterol in cell membranes and its wide distribution in the body has led to it being used in preparing carriers for the delivery of a variety of therapeutic agents such as anticancer, antimalarials and antivirals. These cholesterol-based carriers were designed as micelles, nanoparticles, copolymers, liposomes, etc. and their routes of administration include oral, intravenous and transdermal. The biocompatibility, good bioavailability and biological activity of cholesterol-based carriers make them potent prodrugs. Several in vitro and in vivo studies revealed cholesterol-based carriers potentials in delivering bioactive agents. In this manuscript, a critical review of the efficacy of cholesterol-based carriers is reported.
Collapse
|