1
|
Huang LJ, Fang MJ, Tao H, Wang HL. Synthesis and characteristics of type 3 resistant waxy corn starch by removal of starch granule surface proteins and heat-moisture treatment. Food Chem 2025; 472:142958. [PMID: 39874702 DOI: 10.1016/j.foodchem.2025.142958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
The type 3 resistant waxy corn starch (RS3) was synthesized by removing starch granule surface proteins and subjecting it to heat-moisture treatment at -20°C, 4°C, and 25°C. Upon applying the dual modification, a significant reduction in particle size and in vitro digestion was observed, while the gelatinization enthalpy, relative crystallinity, and resistant starch content increased. Notably, RS3 treated at 4°C demonstrated the lowest digestion rate of 3.00 × 10-4 min-1 among all groups, and its relative crystallinity achieved a peak of 32.65%. Moreover, the gelatinization enthalpy and resistant starch content increased from 0.29 J/g and 77.9% to 0.79 J/g and 83.84%, respectively. These findings indicate that 4°C is the optimal retrogradation temperature for producing dual-modified RS3 with enhanced digestion resistance.
Collapse
Affiliation(s)
- Li-Jiao Huang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Meng-Jia Fang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| |
Collapse
|
2
|
Dai Z, Lin Z, Gao L, Bereka TY, Xu D, Wu F, Zhang J, Xu X, Peng C. A comparative study of starch granule-associated proteins/lipids on short-term and long-term retrogradation of normal and waxy corn starches. Int J Biol Macromol 2025; 302:140479. [PMID: 39889986 DOI: 10.1016/j.ijbiomac.2025.140479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
To evaluate the contribution of starch granule-associated proteins/lipids (SGAPs/SGALs) to the short- and long-term retrogradation of starch, a comparative study was conducted using normal and waxy corn starches. Following the removal of SGAPs, peak viscosity (3504.71 cP) and breakdown viscosity (1659.20 cP) significantly increased, while pasting temperature (74.31 °C) significantly decreased, compared to SGALs-removed (3131.00 cP, 1229.80 cP, 75.46 °C) and native normal corn starches (2704.40 cP, 794.60 cP, 79.30 °C). Rheological profiles further revealed that the removal of SGAPs/SGALs effectively promoted the short-term retrogradation of amylose, as evidenced by larger hysteresis rings and higher consistency indices (K) in the SGAPs/SGALs-removed starch gel. While SGAPs removal also greatly facilitated amylopectin recrystallization and double helix structure aggregation than removal of SGALs, thereby significantly increased the retrogradation enthalpy (from 6.48 to 7.37 J g-1) and gel hardness (from 461.26 gf to 518.31 gf) in normal corn starch after 14 days of storage, while no notable differences were observed in their corresponding waxy counterparts after both treatments. In conclusion, SGAPs showed significant superiority over SGALs in accelerating both short- and long-term retrogradation of normal corn starch, while both had minimal impact on waxy corn starch.
Collapse
Affiliation(s)
- Zhen Dai
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ziyan Lin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Liyuan Gao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tizazu Yirga Bereka
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Fengfeng Wu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Junhui Zhang
- Beijing Key Laboratory of Nutrition& Health and Food Safety, Beijing 102209, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Chifang Peng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
3
|
Zhang J, Liu Y, Wang P, Zhao Y, Zhu Y, Xiao X. The Effect of Protein-Starch Interaction on the Structure and Properties of Starch, and Its Application in Flour Products. Foods 2025; 14:778. [PMID: 40077481 PMCID: PMC11899337 DOI: 10.3390/foods14050778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Grains are an energy source for human beings, and the two main components-starch and protein-determine the application of grains in food. The structure and properties of starch play a decisive role in determining processing characteristics, nutritional properties, and application in grain-based foods. The interaction of proteins with starch greatly affects the structure, physicochemical, and digestive properties of the starch matrix. Scientists have tried to apply this effect to create foods tailored to specific needs. Therefore, studying the effect of protein on the structure and properties of starch in the starch-protein complexes will help in designing personalized and improved starch-based food. This paper reviews the latest research about the effects of endogenous and exogenous proteins on the structure and properties of starch, as well as factors influencing the interaction between protein and starch. This includes investigations of the chain and aggregation structure of proteins with starch, as well as assessments of impacts on thermal properties, rheology, gel texture properties, hydration properties, aging, and digestion. In addition, particular examples illustrating the effects of protein-starch interaction on starch properties in various foods are discussed, providing a reference for designing starch-protein foods that are rich in terms of nutrition and easier to process.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (Y.L.); (P.W.); (Y.Z.); (Y.Z.)
| |
Collapse
|
4
|
Lin Q, Zhao W, Liang W, Wang X, Zeng J, Gao H, Li W. Ion type-based formation rules and functional properties of polysaccharide-starch aerogels with chitooligosaccharide, xanthan gum, and locust bean gum: A comparative study. Food Res Int 2025; 202:115674. [PMID: 39967144 DOI: 10.1016/j.foodres.2025.115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025]
Abstract
Polysaccharide ion types may play a regulatory role in the functionalization development of starch-polysaccharide-based gels, although the relevant mechanisms remain to be elucidated. This study provides a simple and effective strategy for developing gels suitable for different adsorption scenarios by adding different ratios and ion types of polysaccharides. The addition of locust bean gum (LBG, neutral charge) and xanthan gum (XG, -/negative charge) increased the viscosity of wheat gels, with XG increasing more significantly at the same addition. Meanwhile, chito oligosaccharides (COS, +/positive charge) decreased the viscosity of wheat gels. SEM showed that the gels' pore size became larger after adding polysaccharides. FT-IR results showed that adding all three polysaccharides resulted in a more disordered structure and a decrease in the hardness of the gels. However, due to the different charges, the adsorption property results showed that adding the anionic polysaccharide XG increased the methylene blue adsorption capacity dramatically, while COS showed the opposite trend. The obtained results are expected to facilitate the high-value processing and utilization of polysaccharide resources and the on-demand construction of gel materials with promising textural or adsorption performance in food processing or industrial manufacture.
Collapse
Affiliation(s)
- Qian Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wei Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
5
|
Liang W, Zhao W, Lin Q, Liu X, Zeng J, Gao H, Li W. Deciphering the structure-function-quality improvement role of starch gels by wheat bran insoluble dietary fibers obtained from different fermentation patterns and its potential mechanisms. Food Chem 2024; 460:140641. [PMID: 39094343 DOI: 10.1016/j.foodchem.2024.140641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Insoluble dietary fiber (IDF) isolated through co-fermented bran from probiotics may improve starch gel-based foods. This work aimed to elucidate the comprehensive impact of different IDF samples (CK, unfermented; NF, natively fermented; YF, yeast fermented; LF, Lactobacillus plantarum fermented; and MF, mix-fermented) and their addition ratios (0.3-0.9%) on gel structure-property function. Results indicated that IDF introduction altered the starch pasting behavior (decreased the viscosity and advanced the pasting time). Also, YF, LF, and MF showed less effect on gel multiscale morphology (SEM and CLSM); however, their excessively high ratio resulted in network structure deterioration. Moreover, FT-IR, XRD, and Raman characterization identified the composite gels interaction mechanisms mainly by hydrogen bonding forces, van der Waals forces, water competition, and physical entanglement. This modulation improved the composite gel water distribution, rheological/stress-strain behavior, textural properties, color, stability, and digestive characteristics. The obtained findings may shed light on the construction and development of whole-grain gel-based food products with new perspectives.
Collapse
Affiliation(s)
- Wei Liang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qian Lin
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
6
|
Du J, Qi Y, Hamadou AH, Qian JY, Xu B. Modulation of retrogradation properties by removal and retention of starch granule-associated lipids: A case study on buckwheat and wheat starches. Food Res Int 2024; 196:115122. [PMID: 39614584 DOI: 10.1016/j.foodres.2024.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
The objective of this research was to investigate the influence of starch granule-associated lipids (SGALs) on retrogradation properties of buckwheat and wheat starches. According to the results, the removal of SGALs led to remarkable increase in the retrogradation enthalpy change of all starches and the strength of starch gels, as well as the density and short-range ordered structure of starch aggregates. The strength of starch gel experienced a rise from 3139.39 g to 3718.18 g in Tartary buckwheat, 2924.12 g to 3551.13 g in common buckwheat, and 1887.55 g to 2555.24 g in wheat, respectively. The removal of SGALs contributed to a decrease in the thermal stability of starches and an augmentation of amylose leaching during gelatinization process, which would strengthen the hydrogen bond interaction between starch molecules during cooling process, and promoting the rearrangement of the order structure of starch molecules. In general, these results indicated that the retention of SGALs could limit amylose leaching, then inhibited rearrangement and recrystallization of dissolved starch molecules, and ultimately delayed the short-term and long-term retrogradation process. This work further supplemented theoretical knowledge about SGALs in buckwheat and wheat starches, also provided a new perspective for regulating the physicochemical properties of starches.
Collapse
Affiliation(s)
- Jin Du
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Alkassoumi Hassane Hamadou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
7
|
Yang Z, Li J, Ji Z, Sang S, Xu X. Effects of wheat starch content on its flour and frozen dough bread. Food Chem X 2024; 23:101513. [PMID: 38911471 PMCID: PMC11192979 DOI: 10.1016/j.fochx.2024.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/25/2024] Open
Abstract
The refined wheat flour was mixed with different types of wheat starch in different addition levels, their microstructure, chemical bonds in the dough and baking characteristics of 0-8 weeks frozen dough bread were studied. With the increase of A-Type starch granules and whole wheat starch, the pores of gluten network first decreased and then increased. Conversely, an increase in B-Type starch granules consistently reduced gluten network porosity. With the increase of whole wheat starch, the content of free sulfhydryl group and hydrophobic interaction decreased gradually. Minimal additions of B-Type granules were found to enhance the specific volume of fresh bread, whereas increased quantities improved the specific volume of frozen dough bread. The addition of a small quantity of A- or B-Type granules enhances the freezing stability of bread. This study provides effective information for elucidating the effects of wheat starch on the frozen dough and bread properties in protein-starch matrix.
Collapse
Affiliation(s)
- Zixuan Yang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
- Hubei Key Laboratory for processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Jinling Li
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
- Hubei Key Laboratory for processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Zhili Ji
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
- Hubei Key Laboratory for processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Department of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, PR China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
8
|
Liu J, Zhao W, Zhang A, Zhang X, Li P, Liu J. Effects of cereal flour types and sourdough on dough physicochemical properties and steamed bread quality. J Food Sci 2024; 89:5434-5448. [PMID: 39169539 DOI: 10.1111/1750-3841.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Coarse cereals have been promoted for their health benefits, and sourdough is used to improve their steamed bread sensory acceptance. However, grains vary in dough physiochemical properties and steamed bread-making performance. This study investigated the effects of yeast and sourdough fermentation on the biochemical, textural, and flavor properties of dough and steamed bread of eight grain types. Results indicated that sourdough dough had a lower pH and higher total titrable acidity compared with yeast group. The texture of sourdough-steamed bread was significantly improved with reduced hardness and enhanced springiness. Microstructure revealed that sourdough resulted in starch surface corrosion and less amylopectin recrystallization. Aldehydes, alcohols, and esters are more dominant in sourdough group than yeast group. Foxtail millet and sorghum steamed breads exhibited the highest performances in texture, flavor, and sensory evaluation. This could provide a theoretical basis for producing coarse cereal products with desirable quality.
Collapse
Affiliation(s)
- Junli Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P. R. China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P. R. China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P. R. China
| | - Xiaodi Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P. R. China
| | - Pengliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P. R. China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
9
|
Hu N, Qi W, Zhu J, Li S, Zheng M, Zhao C, Liu J. Postharvest ripening of newly harvested corn: Weakened interactions between starch and protein. Food Chem 2024; 451:139450. [PMID: 38670018 DOI: 10.1016/j.foodchem.2024.139450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
The effects of postharvest ripening of corn on the mechanisms of starch and protein interactions were investigated using molecular dynamics and several chemical substances. Sodium dodecyl sulfate (SDS) treatment all significantly affected the starch content, molecular weight of proteins, relative crystallinity, pasting characteristics and dynamic viscoelasticity in samples before and after postharvest ripening. In the corn that had not undergone postharvest ripening, there were also significant electrostatic interactions and hydrogen bonds between starch and protein. In addition, molecular dynamics had demonstrated that the forces between starch and protein in corn were mainly hydrophobic interactions, electrostatic interaction, and hydrogen bonds. Compared with zein, corn glutelin was more tightly bound to starch. The binding energy of starch to both proteins was reduced in after postharvest-ripened corn. This study laid a rationale for investigating the change mechanism of corn postharvest ripening quality and improving processing property and edible quality of corn.
Collapse
Affiliation(s)
- Nannan Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; School of Life Science, Changchun Sci-Tech University, Changchun, Jilin 130600, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Weihua Qi
- School of Life Science, Changchun Sci-Tech University, Changchun, Jilin 130600, China
| | - Jinying Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Sheng Li
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
10
|
Tao H, Huang LJ, Li SQ, Lu F, Cai WH, Wang HL. Insight into the promoted recrystallization and water distribution of bread by removing starch granule - surface and - associated proteins during storage. Food Chem 2024; 446:138829. [PMID: 38442681 DOI: 10.1016/j.foodchem.2024.138829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
The influence of starch granule surface proteins (SGSPs) and starch granule-associated proteins (SGAPs) on bread retrogradation was investigated in a reconstituted dough system. The removal of both SGSPs and SGAPs resulted in poor bread qualities, decreasing specific volume and crumb porosity, leading to more baking loss and compact crumb structure. Particularly, removing SGSPs was effective in promoting the bread retrogradation. After 7 days of storage, the hardness of bread without SGSPs showed an increase of 353.34 g than the bread without SGAPs. Proton population and relaxation times exhibited that the absence of SGSPs significantly decreased the content of bound water from 11.51 % to 7.03 %, indicating lower water-holding capacity due to the loosen gelling structure. Compared to the control group, bread without SGSPs accelerated the starch recrystallinity by a reduction in soluble starch content, thereby increasing the retrogradation enthalpy and relative crystallinity through promoting the molecular reassociation in starch.
Collapse
Affiliation(s)
- Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Li-Jiao Huang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Shuo-Qian Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Fan Lu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Wan-Hao Cai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
11
|
Tao H, Fang XH, Cai WH, Zhang S, Wang HL. Retrogradation behaviors of damaged wheat starch with different water contents. Food Chem X 2024; 22:101258. [PMID: 38444557 PMCID: PMC10912606 DOI: 10.1016/j.fochx.2024.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The retrogradation behaviors of five damaged wheat starches (DS) after milling 0, 30, 60, 90, and 120 min with different water contents (33, 50, 60 %) were evaluated. Milling treatment increased DS content and developed an agglomeration of small particles. After 7 days of storage, the recrystallinity and long-range ordered structure of starch pastes were increased with the contents of DS and water. This process led to a lower setback viscosity and poor leaching of amylose. LF-NMR indicated a conversion from tightly bound water and free water to weakly bound water. During storage, DS12 with 60 % water content had the highest retrogradation tendency where the retrogradation enthalpy increased by 1.5 J/g and 2.2 J/g compared with DS0 with 60 % and DS12 with 33 % water content. DS with higher water content promoted the water mobility and made the starch molecular chains migrated conveniently. These changes facilitated the recrystallinity process during retrogradation period.
Collapse
Affiliation(s)
- Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiao-Han Fang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
| | - Wan-Hao Cai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
12
|
Chen X, Zhu L, Zhang H, Wu G, Cheng L, Zhang Y. A review of endogenous non-starch components in cereal matrix: spatial distribution and mechanisms for inhibiting starch digestion. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38920118 DOI: 10.1080/10408398.2024.2370487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
As compared with exogenous components, non-starch components (NSCS), such as proteins, lipids, non-starch polysaccharides (NSPs), and polyphenols, inherently present in cereals, are more effective at inhibiting starch digestibility. Existing research has mostly focused on complex systems but overlooked the analysis of the in-situ role of the NSCS. This study reviews the crucial mechanisms by which endogenous NSCS inhibit starch digestion, emphasizing the spatial distribution-function relationship. Starch granules are filled with pores/channels-associated proteins and lipids, embedding in the protein matrix, and maintained by endosperm cell walls. The potential starch digestion inhibition of endogenous NSCS is achieved by altering starch gelatinization, molecular structure, digestive enzyme activity, and accessibility. Starch gelatinization is constrained by endogenous NSCS, particularly cell wall NSPs and matrix proteins. The stability of the starch crystal structure is enhanced by the proteins and lipids distributed in the starch granule pores and channels. Endogenous polyphenols greatly inhibit digestive enzymes and participate in the cross-linking of NSPs in the cell wall space, which together constitute a physical barrier that hinders amylase diffusion. Additionally, the spatial entanglement of NSCS and starch under heat and non-heat processing conditions reduces starch accessibility. This review provides novel evidence for the health benefits of whole cereals.
Collapse
Affiliation(s)
- Xiaoyu Chen
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
13
|
Prisby R, Luchini A, Liotta LA, Solazzo C. Wheat-Based Glues in Conservation and Cultural Heritage: (Dis)solving the Proteome of Flour and Starch Pastes and Their Adhering Properties. J Proteome Res 2024; 23:1649-1665. [PMID: 38574199 PMCID: PMC11077587 DOI: 10.1021/acs.jproteome.3c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/24/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Plant-based adhesives, such as those made from wheat, have been prominently used for books and paper-based objects and are also used as conservation adhesives. Starch paste originates from starch granules, whereas flour paste encompasses the entire wheat endosperm proteome, offering strong adhesive properties due to gluten proteins. From a conservation perspective, understanding the precise nature of the adhesive is vital as the longevity, resilience, and reaction to environmental changes can differ substantially between starch- and flour-based pastes. We devised a proteomics method to discern the protein content of these pastes. Protocols involved extracting soluble proteins using 0.5 M NaCl and 30 mM Tris-HCl solutions and then targeting insoluble proteins, such as gliadins and glutenins, with a buffer containing 7 M urea, 2 M thiourea, 4% CHAPS, 40 mM Tris, and 75 mM DTT. Flour paste's proteome is diverse (1942 proteins across 759 groups), contrasting with starch paste's predominant starch-associated protein makeup (218 proteins in 58 groups). Transformation into pastes reduces proteomes' complexity. Testing on historical bookbindings confirmed the use of flour-based glue, which is rich in gluten and serpins. High levels of deamidation were detected, particularly for glutamine residues, which can impact the solubility and stability of the glue over time. The mass spectrometry proteomics data have been deposited to the ProteomeXchange, Consortium (http://proteomecentral.proteomexchange.org) via the MassIVE partner repository with the data set identifier MSV000093372 (ftp://MSV000093372@massive.ucsd.edu).
Collapse
Affiliation(s)
- Rocio Prisby
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, Virginia 20110, United States
| | - Alessandra Luchini
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, Virginia 20110, United States
| | - Lance A. Liotta
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, Virginia 20110, United States
| | - Caroline Solazzo
- Independent
Researcher for Museum Conservation Institute, Smithsonian Institution, 4210 Silver Hill Road, Suitland, Maryland 20746, United States
| |
Collapse
|
14
|
Du J, Qi Y, Liu S, Xu B. Potential relation between starch granule-associated proteins and retrogradation properties of buckwheat starch. Int J Biol Macromol 2024; 265:130686. [PMID: 38460638 DOI: 10.1016/j.ijbiomac.2024.130686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
To elucidate the effect of starch granule-associated proteins (SGAPs) on retrogradation properties of buckwheat starch, the retrogradation properties of Tartary buckwheat starch (TBS) and common buckwheat starch (CBS) before and after removal of SGAPs were systematically investigated, with wheat starch (WS) as reference. A significant decrease in gel strength of starches and density of starch aggregates were observed after removing SGAPs. The results were in line with the changes in retrogradation enthalpy of starches and short-range ordered structure of starch aggregates. After removing SGAPs, the retrogradation enthalpy of TBS decreased from 4.16 J/g to 3.74 J/g, CBS decreased from 4.05 J/g to 3.35 J/g and WS decreased from 3.27 J/g to 2.81 J/g, respectively. Taken together the results of LF-NMR, FTIR and rheological analysis, it can be concluded that SGAPs could promote the hydrogen bond interactions between starch molecules by competitively binding with water molecules, enhancing the rearrangement of starch molecules and forming a more ordered structure. Overall, the study suggested that the presence of SGAPs could enhanced the interaction between starch molecules chains, thus accelerated the retrogradation process. The research results provide more information about SGAPs in buckwheat starch and support further study for manipulation of starch properties.
Collapse
Affiliation(s)
- Jin Du
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Shuyi Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
15
|
Zhang L, Meng Q, Zhao G, Ye F. Comparison of milling methods on the properties of common buckwheat flour and the quality of wantuan, a traditional Chinese buckwheat food. Food Chem X 2023; 19:100845. [PMID: 37780324 PMCID: PMC10534221 DOI: 10.1016/j.fochx.2023.100845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
The microstructural and techno-functional properties of buckwheat flour and its processability for making wantuan, as affected by different milling methods, were investigated. Results showed that the particle sizes (d(0.5)) of the flours made by stone-milling (SM), hammer-milling (HM), laboratory grinding with steaming pretreatment for 5 min (LG-5) and 10 min (LG-10) were 95.5, 111.5, 35.4 and 41.1 μm, respectively. Moreover, SM and HM flours had less liberated starch granules and 20.84%-24.32% higher relative crystallinity than LG-10 flour. Slurries of laboratory-grinded flours showed excellent suspension stability. LG-10 flour had lowest pasting viscosities but greatest storage modulus and loss modulus. Color differences among the wantuan made from different flours were not visibly perceived (ΔE < 5). Wantuan made from LG-5 flour exhibited highest textual quality due to its greatest resilience (0.376), good springiness (0.933) and accepted chewiness (1093.31). Concluding, steaming prior to grinding could improve the qualities of buckwheat flour for wantuan making.
Collapse
Affiliation(s)
- Lei Zhang
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
- Westa College, Southwest University, Chongqing 400715, People’s Republic of China
| | - Qifan Meng
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People’s Republic of China
| |
Collapse
|
16
|
Shah A, Wang Y, Tao H, Zhang W, Cao S. Insights into the structural characteristics and in vitro starch digestibility on parboiled rice as affected by ultrasound treatment in soaking process. Food Chem X 2023; 19:100816. [PMID: 37780351 PMCID: PMC10534151 DOI: 10.1016/j.fochx.2023.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 10/03/2023] Open
Abstract
This study investigated ultrasound treatment as a protective parboiling technology for producing low GI rice. Indica and Japonica rice with different amylose contents were subjected to different ultrasound times (15 min, 30 min, and 60 min) and amplitudes (30, 60, and 100%) under soaking conditions for parboiling applications. Starch granules merged and lost their shape when ultrasound treatment time and amplitudes were increased up to 15 min and 30%, respectively. It increased the crystallinity, gelatinization temperatures and decreased pasting viscosity, promoting more resistant starch. The predicted glycemic index (GI) was reduced from 62.9 and 57.6 to 51.3 and 47.1 for Japonica and Indica, respectively. These results suggested that ultrasound soaking is a promising physical method to produce parboiled rice with a lower GI by promoting the formation of amylose chains and decreasing enzyme penetration efficiency.
Collapse
Affiliation(s)
- Alia Shah
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yunchun Wang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Han Tao
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shuqing Cao
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
17
|
Ma Y, Sang S, Wu F, Xu X. Insight into the thermal stability, structural change and rheological property of wheat gluten treated by superheated steam during hydration. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
18
|
Scott G, Awika JM. Effect of protein-starch interactions on starch retrogradation and implications for food product quality. Compr Rev Food Sci Food Saf 2023; 22:2081-2111. [PMID: 36945176 DOI: 10.1111/1541-4337.13141] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Starch retrogradation is a consequential part of food processing that greatly impacts the texture and acceptability of products containing both starch and proteins, but the effect of proteins on starch retrogradation has only recently been explored. With the increased popularity of plant-based proteins in recent years, incorporation of proteins into starch-based products is more commonplace. These formulation changes may have unforeseen effects on ingredient functionality and sensory outcomes of starch-containing products during storage, which makes the investigation of protein-starch interactions and subsequent impact on starch retrogradation and product quality essential. Protein can inhibit or promote starch retrogradation based on its exposed residues. Charged residues promote charge-dipole interactions between starch-bound phosphate and protein, hydrophobic groups restrict amylose release and reassociation, while hydrophilic groups impact water/molecular mobility. Covalent bonds (disulfide linkages) formed between proteins may enhance starch retrogradation, while glycosidic bonds formed between starch and protein during high-temperature processing may limit starch retrogradation. With these protein-starch interactions in mind, products can be formulated with proteins that enhance or delay textural changes in starch-containing products. Future work to understand the impact of starch-protein interactions on retrogradation should focus on integrating the fields of proteomics and carbohydrate chemistry. This interdisciplinary approach should result in better methods to characterize mechanisms of interaction between starch and proteins to optimize their food applications. This review provides useful interpretations of current literature characterizing the mechanistic effect of protein on starch retrogradation.
Collapse
Affiliation(s)
- Gabrielle Scott
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| | - Joseph M Awika
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
19
|
Assessment of order of helical structures of retrograded starch by Raman spectroscopy. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Tao H, Lu F, Zhu XF, Wang HL, Xu XM. Freezing-induced loss of wheat starch granule-associated proteins affected dough quality: From water distribution, rheological properties, microstructure, and gluten development. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Zou J, Li Y, Wang F, Su X, Li Q. Relationship between structure and functional properties of starch from different cassava (Manihot esculenta Crantz) and yam (Dioscorea opposita Thunb) cultivars used for food and industrial processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Bai J, Dong M, Li J, Tian L, Xiong D, Jia J, Yang L, Liu X, Duan X. Effects of egg white on physicochemical and functional characteristics of steamed cold noodles (a wheat starch gel food). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Feng S, Xing JJ, Guo XN, Zhu KX. Nonlinear rheological properties of Chinese cold skin noodle (liangpi) and wheat starch gels by large amplitude oscillatory shear (LAOS). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
The conformational rearrangement and microscopic properties of wheat gluten following superheated steam treatment. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Controlling starch surface characteristics - Impact on dough formation in a reconstituted dough system. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
An insight into the rheology and texture assessment: The influence of sprouting treatment on the whole wheat flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Zhang J, Zhu XF, Lu F, Yang Z, Tao H, Xu Y, Wang HL. Physical modification of waxy maize starch: Combining SDS and freezing/thawing treatments to modify starch structure and functionality. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2022.100263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Chen P, Xie QT, Wang RM, Wang SY, Cheng JS, Zhang B. Effects of pullulanase enzymatic hydrolysis on the textural of acorn vermicelli and its influencing mechanism on the quality. Food Res Int 2022; 156:111294. [DOI: 10.1016/j.foodres.2022.111294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/29/2023]
|
29
|
Ma S, Wang Z, Tian X, Sun B, Huang J, Yan J, Bao Q, Wang X. Effect of synergistic fermentation of Lactobacillus plantarum and Saccharomyces cerevisiae on thermal properties of wheat bran dietary fiber-wheat starch system. Food Chem 2022; 373:131417. [PMID: 34710698 DOI: 10.1016/j.foodchem.2021.131417] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022]
Abstract
A synergistic fermentation system was constructed using single strains of Lactobacillus plantarum and Saccharomyces cerevisiae cultured separately; wheat starches containing different wheat bran dietary fiber (WBDF) levels (0, 3, 6, 9 & 12%) were fermented in this system. The thermal properties of materials were measured by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and rapid viscosity analysis (RVA). The results showed that WBDF may alter the thermal behavior of starch by forming hydrogen bonds with the leached starch chains and limit the available water of starch. The viscosity properties (peak, trough, and final viscosity) and setback decreased, and they were negatively correlated with the WBDF levels. In addition, dynamic rheological measurements showed that the addition of WBDF significantly enhanced the elasticity of fermented starch gels while slightly improving the mechanical strength, and 6% level of WBDF had the largest contribution. This study provides some data for the production of high dietary fiber fermented flour products, both common and gluten-free.
Collapse
Affiliation(s)
- Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoling Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jihong Huang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Jingyao Yan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Qingdan Bao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
30
|
Li Y, Peng Z, Wu D, Shu X. Improving hydrophilicity of wheat starch via sodium dodecyl sulphate treatment. STARCH-STARKE 2022. [DOI: 10.1002/star.202200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Li
- State Key Laboratory of Rice Biology Key Laboratory of the Ministry of Agriculture for Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310058 P. R. China
| | - Zhangchi Peng
- State Key Laboratory of Rice Biology Key Laboratory of the Ministry of Agriculture for Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310058 P. R. China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology Key Laboratory of the Ministry of Agriculture for Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310058 P. R. China
- Hainan Institute of Zhejiang University Yazhou Bay Science and Technology City Yazhou District Sanya 572025 P. R. China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology Key Laboratory of the Ministry of Agriculture for Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310058 P. R. China
- Hainan Institute of Zhejiang University Yazhou Bay Science and Technology City Yazhou District Sanya 572025 P. R. China
| |
Collapse
|
31
|
Ma M, Zhu H, Liu Z, Sui Z, Corke H. Removal of starch granule-associated proteins alters the physicochemical properties of diverse small granule starches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Xu E, Wang J, Tang J, Ruan S, Ma S, Qin Y, Wang W, Tian J, Zhou J, Cheng H, Liu D. Heat-induced conversion of multiscale molecular structure of natural food nutrients: A review. Food Chem 2022; 369:130900. [PMID: 34496317 DOI: 10.1016/j.foodchem.2021.130900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/17/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022]
Abstract
Thermal process is the most important way of treating foods. Heat energy inputted into the natural food system induces the depolymerization of multi-scale structures of matrix, and causes the intramolecular and intermolecular interactions of different nutrients. It attacks and breaks the original polymeric molecule structures and the functional properties of macronutrients such as carbohydrates, proteins and lipids. Micronutrients such as vitamins and other novel functional ingredients are also thermally converted. The heat-induced conversions of nutrients are slightly or totally with discrepancy in simple-, simulated- and real-food systems, respectively. Thus, this review aims to extensively summarize the heat-induced structural characteristics, thermal conversion pathways and pyrolysis mechanism of nutrients both in simple and complex food matrices. The structural change of each nutrient and its thermal reaction kinetics depend on the molecule structure and polymeric characteristic of the unit substances in the system.
Collapse
Affiliation(s)
- Enbo Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jingyi Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Junyu Tang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China; Ningbo Institute of Technology, Zhejiang University, Ningbo, China
| | - Shaolong Ruan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China; Ningbo Institute of Technology, Zhejiang University, Ningbo, China
| | - Shuohan Ma
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yu Qin
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China; Ningbo Institute of Technology, Zhejiang University, Ningbo, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jianwei Zhou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China; Ningbo Institute of Technology, Zhejiang University, Ningbo, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
33
|
Huang J, Wang Z, Fan L, Ma S. A review of wheat starch analyses: Methods, techniques, structure and function. Int J Biol Macromol 2022; 203:130-142. [PMID: 35093434 DOI: 10.1016/j.ijbiomac.2022.01.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 01/23/2022] [Indexed: 01/31/2023]
Abstract
Wheat starch has received much attention as an important source of dietary energy for humans, an interesting carbohydrate and a polymeric material. The understanding of the structure and function of wheat starch has always been accompanied by newer technological tools. On the one hand, the general knowledge of wheat starch is constantly being enriched. On the other hand, an increasing number of studies are trying to add new insights to what is already known from two frontier perspectives, namely, wheat starch supramolecular structures and wheat starch fine structures (CLDs). This review describes the structure and function of wheat starch from the perspective of wheat starch analysis techniques (instruments).
Collapse
Affiliation(s)
- Jihong Huang
- College of Food and Medicine, Xuchang University, Xuchang, Henan 461000, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Ling Fan
- College of Food and Medicine, Xuchang University, Xuchang, Henan 461000, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| |
Collapse
|
34
|
Ruan S, Tang J, Qin Y, Wang J, Yan T, Zhou J, Gao D, Xu E, Liu D. Mechanical force-induced dispersion of starch nanoparticles and nanoemulsion: Size control, dispersion behaviour, and emulsified stability. Carbohydr Polym 2022; 275:118711. [PMID: 34742436 DOI: 10.1016/j.carbpol.2021.118711] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
High amylose starch nanoparticles (HS-SNPs) were rapidly synthesised by high-speed circumferential force of homogenisation (3000 and 15,000 rpm) during nanoprecipitation. Morphology and dynamic light scattering analyses showed that HS-SNPs fabricated by stronger circumferential shearing were excellent stabilisers in smaller sizes (20-50 nm). Their aggregates were liable to separate in the aqueous phase with the nano effect under either homogenisation over 6 min or ultrasonication in 2 min. SNP-based nanoemulsion (<200 nm) of high-water fraction was achieved, though the high hydrophilicity of the SNPs were identified by the contact angle. For homogenisation (with 100-2000 nm emulsion size), only time prolongation led to a better dispersion of SNP aggregates. Ultrasonication with periodic cavitation could disintegrate SNP aggregates into micro-aggregates for a stable emulsion system in a short period. In contrast, long-term ultrasound caused simultaneous re-agglomeration and solubilisation of the SNPs, leading to weakened interface barriers and decreased storage stability.
Collapse
Affiliation(s)
- Shaolong Ruan
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Junyu Tang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yu Qin
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jingyi Wang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jianwei Zhou
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - De Gao
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
35
|
Ma M, Chen X, Zhou R, Li H, Sui Z, Corke H. Surface microstructure of rice starch is altered by removal of granule-associated proteins. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Wang Z, Yan J, Ma S, Tian X, Sun B, Huang J, Li L, Wang X, Bao Q. Effect of wheat bran dietary fiber on structural properties of wheat starch after synergistic fermentation of Lactobacillus plantarum and Saccharomyces cerevisiae. Int J Biol Macromol 2021; 190:86-92. [PMID: 34474052 DOI: 10.1016/j.ijbiomac.2021.08.179] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 11/15/2022]
Abstract
This study investigated the changes in the structure of wheat starch after synergistic fermentation of Lactobacillus plantarum and Saccharomyces cerevisiae at different wheat bran dietary fiber (WBDF) levels. The results showed that WBDF was slightly resistant to the decrease in acidity within the fermentation system. The amylose content decreased from 32.12% to 19.92% (P < 0.05), amylose/amylopectin ratio decreased from 0.47 to 0.25 (P < 0.05), and relative crystallinity decreased from 12.17% to 9.40% (P < 0.05) in the samples containing WBDF compared with the control. Scanning electron microscopy showed more eroded starch as the WBDF level increased. Fourier-transform infrared spectroscopy revealed a decrease in the starch-hydrogen binding absorbance in the 3600-3000 cm-1 wavemumber; and the 1047/1022 and 995/1022 cm-1 data indicated an increase in the degree of order and degree of double helix of the samples containing WBDF. The results of the study might help understand the interaction between dietary fibers and starch during fermentation and guide the production of fermented high-fiber flour products.
Collapse
Affiliation(s)
- Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jingyao Yan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Xiaoling Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jihong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Li Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Qingdan Bao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
37
|
Li XM, Meng R, Xu BC, Zhang B. Investigation of the fabrication, characterization, protective effect and digestive mechanism of a novel Pickering emulsion gels. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106708] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Pan Y, Li XM, Meng R, Zhang B. Stability and bioaccessibility of curcumin emulsions stabilized by casein hydrolysates after maleic anhydride acylation and pullulan glycation. J Dairy Sci 2021; 104:8425-8438. [PMID: 33985779 DOI: 10.3168/jds.2020-19613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
The effects of maleic anhydride (MA) acylation and pullulan glycation on casein hydrolysates (CH) and the physicochemical stability of modified or unmodified CH-stabilized emulsions were explored. Compared with casein, the solubility of CH was improved, and CH1 (hydrolysis degree 4%) exhibited the optimal emulsifying properties. After the acylation of MA, degrees of acylation (DA) increased with increasing addition of MA. Fourier-transform infrared spectroscopy revealed that a covalent bond was formed between MA and CH1. The results of pullulan glycation indicated that the degree of glycation decreased with increasing DA. Acylation combined with glycation effectively reduced the surface hydrophobicity of CH. Results of analysis of physicochemical stability and gastrointestinal fate of curcumin in emulsions revealed that CH modified by MA acylation and pullulan glycation played a positive role in enhancing the stability and bioaccessibility of curcumin loaded in emulsions.
Collapse
Affiliation(s)
- Yi Pan
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Xiao-Min Li
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Ran Meng
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Bao Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P. R. China.
| |
Collapse
|
39
|
Pan Y, Li XM, Meng R, Xu BC, Zhang B. Investigation of the Formation Mechanism and Curcumin Bioaccessibility of Emulsion Gels Based on Sugar Beet Pectin and Laccase Catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2557-2563. [PMID: 33617251 DOI: 10.1021/acs.jafc.0c07288] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, modified whey protein hydrolysates (WPH) were obtained after succinic anhydride succinylation and linear dextrin glycation, and emulsion gels were prepared on the basis of unmodified/modified WPH stabilized emulsions with sugar beet pectin (SBP) addition and laccase-catalyzed cross-linking. The influences of emulsifier types and SBP contents on the texture of emulsion gels were estimated. The texture and rheological properties of emulsion gels were characterized. An ideal gel emulsion was formed when the SBP content was 3% (w/w). A uniform network was observed in emulsion gels stabilized by W-L, W-L-S, and W-S-L. In addition, the effect of the emulsifier type on the bioaccessibility of curcumin encapsulated in emulsion gels was investigated and the W-S-L stabilized emulsion gel exhibited the highest curcumin bioaccessibility (65.57%). This study provides a theoretical basis for the development of emulsion gels with different textures by SBP addition and laccase cross-linking as encapsulation delivery systems.
Collapse
Affiliation(s)
- Yi Pan
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Xiao-Min Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Ran Meng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
40
|
Tao H, Zhu XF, Nan BX, Jiang RZ, Wang HL. Effect of extruded starches on the structure, farinograph characteristics and baking behavior of wheat dough. Food Chem 2021; 348:129017. [PMID: 33582448 DOI: 10.1016/j.foodchem.2021.129017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 01/03/2021] [Indexed: 11/25/2022]
Abstract
Extruded wheat starch (ES) was obtained by a single-screw extruder to determine its effect on the farinograph, structural properties and baking behaviors of wheat dough. XRD analysis showed that increasing extrusion temperature made the crystalline peaks less pronounced due to the partial gelatinization. In terms of FTIR results, the molecular order of extruded starch was lower than that of native starch. The dough development time was decreased from 3.2 min to 2.7 min while the stability time was increased from 14.4 min to 15.5 min, as 70 ES were added. It was accompanied with increasing levels of α-helix and β-turn transferred from the decreased content of random coil and β -sheet. These effects in bread were to increase loaf volume and reduced loaf hardness. These results indicated that extruded starch had a good potential for producing a high-quality bread.
Collapse
Affiliation(s)
- Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Xue-Feng Zhu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Bing-Xu Nan
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Rong-Zhen Jiang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|