1
|
Yang X, Wang K, Zhong Y, Cui W, Jia X, Yin L. Synthesis, characterization and application of sugar beet pectin-ferulic acid conjugates in the study of lipid, DNA and protein oxidation. Int J Biol Macromol 2025; 307:141358. [PMID: 39986518 DOI: 10.1016/j.ijbiomac.2025.141358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
In this study, ferulic acid (FA) was enzymatically grafted onto sugar beet pectin (SBP) via laccase catalysis. Structural characterization of sugar beet pectin-ferulic acid conjugates (SFC) with varying substitution degrees was performed using UV-vis, FT-IR, and NMR analyses. Mechanistic analyses revealed that phenolic hydroxyl groups (-OH) on FA reacted with carboxyl groups (-COOH) of SBP via enzymatic catalysis, forming covalent linkages. Additionally, amide bond formation between FA's carboxyl groups and amino groups (-NH₂) of pectin-associated proteins was observed. Compared to unmodified pectin, SFC exhibited reduced crystallinity, lower apparent viscosity, and smoother surfaces, whereas thermal stability and in vitro antioxidant capacity were markedly improved. Notably, SFC with high substitution (>159.60 ± 0.60 mg/g) effectively inhibited malondialdehyde (92.18 %) and peroxide (61.29 %) formation in linoleic acid oxidation systems, while demonstrating DNA (66.07 %) and protein (17.79 %) oxidation inhibition through reduced carbonyl generation. These findings highlight SFC's potential as a multifunctional antioxidant in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Xudong Yang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Kun Wang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuang Zhong
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weining Cui
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xin Jia
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Lijun Yin
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Shang X, Geng X, Lei H, Tan J, Xie C. Preparation and properties of hydrogels with different forms of nanocellulose and low methoxyl pectin. Food Sci Biotechnol 2025; 34:629-636. [PMID: 39958173 PMCID: PMC11822154 DOI: 10.1007/s10068-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 02/18/2025] Open
Abstract
Different proportions of cellulose nanofibers (CNFs)/cellulose nanocrystals (CNCs) and low methoxyl (LM) pectin were used to prepare hydrogels. By analyzing the apparent morphology, gel strength, rheological characteristics, microstructure, and interaction between cellulose and LM pectin, the characteristics of hydrogels created by the combination of different forms of nanocellulose and LM pectin were compared. At the same concentration, the strength of hydrogel formed by the combination of CNCs and LM pectin was higher than hydrogel formed by the combination of CNFs and LM pectin, which was consistent with the gel structure. The gel formed by the combination of LM pectin and CNFs had stronger viscoelasticity than the gel formed by the combination of LM pectin and CNCs. When the ratio of LM pectin to CNFs/CNCs is 0.5/0.5, a better gel network structure is formed, and the viscoelastic properties of the gel formed at this concentration under shock conditions are better protected. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01684-z.
Collapse
Affiliation(s)
- Xiaolan Shang
- College of Life Science, Langfang Normal University, Langfang, 065000 People’s Republic of China
- Hebei Key Laboratory of Animal Diversity, Langfang, 065000 People’s Republic of China
- Langfang Key Laboratory of Food Nutrition and Safety, Langfang, People’s Republic of China
- Langfang Key Laboratory of Microbial Fermentation, Langfang, People’s Republic of China
| | - Xiaojin Geng
- College of Life Science, Langfang Normal University, Langfang, 065000 People’s Republic of China
- Technology Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000 People’s Republic of China
| | - Huiping Lei
- College of Life Science, Langfang Normal University, Langfang, 065000 People’s Republic of China
| | - Jing Tan
- College of Life Science, Langfang Normal University, Langfang, 065000 People’s Republic of China
| | - Chunyan Xie
- College of Life Science, Langfang Normal University, Langfang, 065000 People’s Republic of China
- Langfang Key Laboratory of Food Nutrition and Safety, Langfang, People’s Republic of China
- Langfang Key Laboratory of Microbial Fermentation, Langfang, People’s Republic of China
- Technology Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000 People’s Republic of China
| |
Collapse
|
3
|
Lei H, Liu X, Zhao W, Lin S, Lin J, Li J, Zeng X, Han Z. Sea Bass Fish Head Broth Treated by Thermo-Ultrasonication: Improving the Nutritional Properties and Emulsion Stability. Foods 2024; 13:2498. [PMID: 39200425 PMCID: PMC11354003 DOI: 10.3390/foods13162498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
This work investigated the underlying mechanism of thermo-ultrasonic treatment to improve the nutritional properties and emulsion stability of sea bass fish head broth. The effects of ultrasonication on the processing of fish broth were compared with boiling water treatment. The nutritional properties of fish broth mainly include protein, fat, total sugar, 5'-nucleotide and free amino acid content. To achieve a similar effect of nutrient extraction, the thermo-ultrasonic treatment required a shorter time (30 min) than boiling water (120 min). The water-soluble protein, fat and total sugar contents were at their maximum at 120 min of the thermo-ultrasonic treatment. In particular, the fat content increased with the time of thermo-ultrasonic treatment from 0.58% to 2.70%. The emulsion structure of the fish soup was characterized by measuring its color and particle size, using optical microscopy and confocal laser scanning microscopy, and determining its storage stability. Thermo-ultrasonic treatment reduced the particle size of the fish broth emulsion and the fat globules became smaller and more homogeneous. Ultrasonication not only accelerated the nutritional and flavor content of the fish head broth, but also reduced the particle size and enhanced the stability of the emulsified system of the fish broth. The fish head tissue was more severely disrupted by the cavitation effect of an ultrasound, and nutrients migrated more and faster. This was mainly due to the cavitation and mechanical breaking force of the ultrasound on the fish head tissue and the fat globules of the fish broth. Altogether, these findings suggest that the thermo-ultrasonic treatment technique is useful for processing nutrient-rich, storage-stable and ready-to-eat fish head broth.
Collapse
Affiliation(s)
- Huanqing Lei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (X.L.); (J.L.)
| | - Xinling Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (X.L.); (J.L.)
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| | - Jiawei Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (X.L.); (J.L.)
| | - Jian Li
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (J.L.); (X.Z.)
| | - Xinan Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (J.L.); (X.Z.)
- Preparatory Office, Yangjiang Applied Undergraduate College, Yangjiang 529500, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (X.L.); (J.L.)
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (J.L.); (X.Z.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| |
Collapse
|
4
|
Liu T, Meng H, Guo X, Liu Y, Zhang J. Influences of different ultrasonic treatment intensities on the molecular chain conformation and interfacial behavior of sugar beet pectin. Int J Biol Macromol 2024; 275:133643. [PMID: 38964680 DOI: 10.1016/j.ijbiomac.2024.133643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
In this study, the effects of different ultrasonic treatment intensities (57, 170, and 283 W/cm2) on the chemical composition, molecular chain characteristics, crystal structure, micromorphology, interfacial adsorption behavior and emulsifying properties of sugar beet pectin (SBP) were investigated. Ultrasonic treatment did not change the types of SBP monosaccharides, but it had impacts on their various monosaccharide contents. Moreover, the feruloylated, acetyl, and methoxy groups of SBP also undergo varying degrees of changes. The increase in ultrasonic treatment intensity led to transition in the molecular chain conformation of SBP from rigid semi-flexible chains to flexible chains, accompanied by modification in its crystal structure. Microstructural analysis of SBP confirmed the significant change in molecular chain conformation. Modified SBP could form an elastic interfacial film with higher deformation resistance on the oil-water interface. The SBP sample modified with 170 W/cm2 exhibited better emulsifying properties owing to its better interfacial adsorption behavior. Moreover, the emulsions prepared with modified SBP exhibited better stability capability under different environmental stresses (pH value, salt ion concentration, heating temperature and freeze-thaw treatment). The results revealed that the ultrasonic technology is useful to improve the emulsifying properties of SBP.
Collapse
Affiliation(s)
- Ting Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Yibo Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
5
|
Yan J, Jia X, Qu Y, Yan W, Li Y, Yin L. Development of sorghum arabinoxylan-soy protein isolate composite nanoparticles for delivery of curcumin: Effect of polysaccharide content on stability and in vitro digestibility. Int J Biol Macromol 2024; 262:129867. [PMID: 38309400 DOI: 10.1016/j.ijbiomac.2024.129867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The purpose of this study was to fabricate composite nanoparticles using soy protein isolate (SPI) and sorghum bran arabinoxylan (AX) for the delivery of curcumin (Cur). The influences of AX concentrations on the physicochemical characteristic, stability and bioaccessibility of curcumin were investigated. The findings showed that the encapsulation efficiency of curcumin obviously increased upon incorporating AX in comparison to SPI-Cur particles. Hydrogen bonds and hydrophobic interactions were the primary driving forces for the formation of SPI-Cur-AX nanoparticles (SCA). SCA nanoparticles with 1.00 % AX exhibited a uniform size with orderly distribution, suggesting its remarkable physical stability due to the strengthened electrostatic repulsion. However, excessive AX led to aggregation of particles, a noticeable increase in size, and subsequently, a reduction in stability. Due to the heightened free radical scavenging capacity of sorghum AX, SCA nanoparticles exhibited superior antioxidant capabilities. Compared to free curcumin, encapsulation within composite particles significantly enhanced the retention rate and bioaccessibility of curcumin. This improvement was attributed to the potent emulsification ability of AX, which coordinated with bile salt to promote the transfer of curcumin into micelles. The research provides an effective strategy for developing food-grade delivery carriers aimed at enhancing dispersibility, stability and bioaccessibility of the fat-soluble bioactives.
Collapse
Affiliation(s)
- Jinxin Yan
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuanyuan Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wenjia Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuanyuan Li
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, Zhejiang, PR China; Department of Food Science, College of Agriculture and Life Sciences, Cornell University, NY, 14456, USA.
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Ni Y, Li J, Fan L. Tannic acid-enriched nanocellulose hydrogels improve physical and oxidative stability of high-internal-phase Pickering emulsions. Int J Biol Macromol 2024; 259:128796. [PMID: 38104679 DOI: 10.1016/j.ijbiomac.2023.128796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
A cellulose suspension and tannic acid (TA) were co-sonicated to prepare TA-incorporated nanocellulose hydrogels with the aim of improving the physical and oxidative stability of high-internal-phase emulsions (HIPEs). Cellulose nanocrystal (CNC) hydrogels were used to stabilize HIPEs, relying on the interfacial adsorption behavior of CNCs and the reversible gelation properties of hydrogels. TA was incorporated due to its ability to improve emulsification performance and antioxidant properties. Introducing TA enhanced the gel strength of hydrogels by decreasing the interfibrillar distance. The utilization of CNC-TA hydrogels effectively improved physical properties of HIPEs. This improvement included a reduction in droplet size from the initial 103.41 μm to 39.66 μm, an enhancement of the gel structure, and an improvement in storage stability. A denser and orderly interfacial structure was formed in CNCs-TA hydrogel stabilized HIPEs due to anchoring TA at the interface driven by the hydrogen-bonding interaction between CNCs and TA. This densely interfacial layer with good antioxidant activity markedly enhanced the oxidative stability of emulsions, as evidenced by the low level of oxidation products in HIPEs. This study has the potential to extend the utilization of CNC-stabilized emulsions to new applications in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yang Ni
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Yuan Y, Chen C, Guo X, Li B, He N, Wang S. Noncovalent interactions between biomolecules facilitated their application in food emulsions' construction: A review. Compr Rev Food Sci Food Saf 2024; 23:e13285. [PMID: 38284579 DOI: 10.1111/1541-4337.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024]
Abstract
The use of biomolecules, such as proteins, polysaccharides, saponins, and phospholipids, instead of synthetic emulsifiers in food emulsion creation has generated significant interest among food scientists due to their advantages of being nontoxic, harmless, edible, and biocompatible. However, using a single biomolecule may not always meet practical needs for food emulsion applications. Therefore, biomolecules often require modification to achieve ideal interfacial properties. Among them, noncovalent interactions between biomolecules represent a promising physical modification method to modulate their interfacial properties without causing the health risks associated with forming new chemical bonds. Electrostatic interactions, hydrophobic interactions, and hydrogen bonding are examples of noncovalent interactions that facilitate biomolecules' effective applications in food emulsions. These interactions positively impact the physical stability, oxidative stability, digestibility, delivery characteristics, response sensitivity, and printability of biomolecule-based food emulsions. Nevertheless, using noncovalent interactions between biomolecules to facilitate their application in food emulsions still has limitations that need further improvement. This review introduced common biomolecule emulsifiers, the promotion effect of noncovalent interactions between biomolecules on the construction of emulsions with different biomolecules, their positive impact on the performance of emulsions, as well as their limitations and prospects in the construction of biomolecule-based emulsions. In conclusion, the future design and development of food emulsions will increasingly rely on noncovalent interactions between biomolecules. However, further improvements are necessary to fully exploit these interactions for constructing biomolecule-based emulsions.
Collapse
Affiliation(s)
- Yi Yuan
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Congrong Chen
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Xinyi Guo
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Ni He
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
8
|
Lv D, Chen F, Yin L, Zhang P, Rashid MT, Yu J. Wheat bran arabinoxylan-soybean protein isolate emulsion-filled gels as a β-carotene delivery carrier: Effect of polysaccharide content on textural and rheological properties. Int J Biol Macromol 2023; 253:126465. [PMID: 37619689 DOI: 10.1016/j.ijbiomac.2023.126465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
This study aimed to investigate the effects of different wheat bran arabinoxylan (WBAX) concentrations (1, 2, 3, and 4 wt%) on the structural and physicochemical properties of WBAX-soybean protein isolate (SPI) emulsion-filled gels (EFGs) prepared using laccase and heat treatment. The properties of the various gels as well as their microstructure, rheology, and in vitro digestion behaviors were investigated. Results showed that WBAX-SPI EFGs with a 3 wt% WBAX concentration had a smooth and uniform appearance, high water holding capacity (98.5 ± 0.2 %), and enhanced mechanical properties. Rheological experiments suggested that a stronger and closer gel network was formed at 3 wt% WBAX concentration. Fourier transform infrared spectroscopy showed that laccase and heat treatment not only catalyzed the intramolecular crosslinking of WBAX and SPI, respectively, but also promoted the interaction between WBAX and SPI. Confocal laser scanning microscopy revealed that the WBAX gel network was interspersed within the SPI network. The interactions contributing to the gelation analysis revealed that chemical (disulfide bond) and physical (hydrogen bond and hydrophobic) interactions promoted the formation of denser EFGs. Furthermore, the WBAX-SPI EFGs provided a β-carotene bioaccessibility of 21.8 ± 0.6 %. Therefore, our study suggests that WBAX-SPI EFGs hold promising potential for industrial applications in the delivery of β-carotene.
Collapse
Affiliation(s)
- Dingyang Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Lijun Yin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Penglong Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Muhammad Tayyab Rashid
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Jingyan Yu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
9
|
Lu S, Zhou Y, Hu X, Wang T, Xu B, Cui R, Ma T, Song Y. Tailoring the optical and mechanical properties of cellulose nanocrystal film by sugar alcohols and its pH/humidity-responsive behavior. Int J Biol Macromol 2023; 253:127316. [PMID: 37820913 DOI: 10.1016/j.ijbiomac.2023.127316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Cellulose nanocrystals (CNC) have gained widespread attention in intelligent food packaging because of their iridescent optical properties. Here, we report a CNC composite film employing CNC, sugar alcohols (e.g., maltol, erythritol, mannitol, sorbitol, and xylitol) and natural pigment anthocyanins, which has a special iridescent color that can be used as a pH and humidity sensor. The effects of five sugar alcohols with different addition ratios on the structural, optical, and mechanical properties of the CNC films were investigated. The results demonstrated that the addition of sugar alcohol made composite films exhibiting a red-shift of λmax, a more uniform color in visual observation, and a larger pitch. Among them, the CNC-mannitol composite film with a ratio of 10:1 exhibited the best mechanical properties, possessing a tensile stress strength of 57 MPa and toughness of 137 J/m3. Subsequently, anthocyanins were incorporated to this composite film, which showed a marked color change along with the pH from 2 to 12 and exhibited a reversible color change from red to transparent upon a relative humidity change from 35 % to 85 %. Overall, such multi-environment-responsive iridescent films with excellent mechanical properties have a great potential for use in intelligent food packaging applications.
Collapse
Affiliation(s)
- Shuyu Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yuxing Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xinna Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Tianhui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Bo Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ranran Cui
- Guangxi Qingqing Biotech Co., Ltd, Guangxi, Fangchenggang 538000, China
| | - Tao Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Yi Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
10
|
Lv D, Chen F, Yang X, Yin L, Rashid MT, Li Y. Spontaneous gelation behaviors and mechanism of Ficus awkeotsang Makino pectin. Int J Biol Macromol 2023; 247:125712. [PMID: 37422243 DOI: 10.1016/j.ijbiomac.2023.125712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Ficus awkeotsang Makino (jelly fig) can produce edible gels by rubbing its seeds in water at room temperature in which pectin is considered as the main gelling component. However, the spontaneous gelation mechanism of Ficus awkeotsang Makino (jelly fig) pectin (JFSP) is still unclear. This study aimed to reveal the structure, physicochemical properties, and spontaneous gelation behaviors and mechanism of JFSP. JFSP was first obtained by water extraction and alcohol precipitation method, with a pectin yield of 13.25 ± 0.42 % (w/w), weight-average molar mass (Mw) of 111.26 kDa, and methoxylation degree (DM) of 26.8 %. Analysis of monosaccharide compositions showed that JFSP was composed of 87.8 % galactose acid, indicating a high percentage of galacturonic acid blocks. Measurement on the gelling capacity suggested that JFSP gels can be easily formed by simply dispersing the pectin in water at room temperature without adding any co-solutes or metal ions. Gelation force analysis indicated that hydrogen bonding, hydrophobic interactions, and electrostatic interactions were the main factors contributing to gel formation. At 1.0 % (w/v) of pectin concentration, JFSP gels exhibited relatively high gel hardness (72.75 ± 1.15 g) and good thermal and freeze-thawing stability. Overall, these findings highlight the potential application of JFSP as a promising commercial pectin resource.
Collapse
Affiliation(s)
- Dingyang Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Japan
| | - Lijun Yin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, PO Box 40, 17 Qinghuadonglu, Haidian, Beijing 100083, PR China
| | - Muhammad Tayyab Rashid
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yafei Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
11
|
Lei H, Liao Z, Wang L, Zeng X, Han Z. Pulsed Electric Field-Assisted Enzymatic and Alcoholic-Alkaline Production of Porous Granular Cold-Water-Soluble Starch: A Carrier with Efficient Zeaxanthin-Loading Capacity. Foods 2023; 12:3189. [PMID: 37685122 PMCID: PMC10487166 DOI: 10.3390/foods12173189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
In this study, porous starch was modified using pulsed electric field (PEF) pretreatment and alcoholic-alkaline treatment to prepare porous granular cold-water-soluble starch (P-GCWSS). The soluble porous starch has high adsorption capability and high cold water solubility, allowing effective encapsulation of zeaxanthin and improving zeaxanthin's water solubility, stability, and bioavailability. The physical and chemical properties of GCWSS and complex were investigated using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results showed that the cold water solubility of the pulsed electric field-treated porous granular cold-water-soluble starch (PEF-P-GCWSS) increased by 12.81% compared to granular cold-water-soluble starch (GCWSS). The pulsed electric field treatment also increased the oil absorption of PEF-P-GCWSS was improved by 15.32% compared to porous granular cold-water-soluble starch (P-GCWSS). PEF-P-GCWSS was effective in encapsulating zeaxanthin, which provided a good protection for zeaxanthin. The zeaxanthin-saturated solubility in water of PPG-Z was increased by 56.72% compared with free zeaxanthin. The zeaxanthin embedded in PEF-P-GCWSS was able to be released slowly during gastric digestion and released rapidly during intestinal digestion.
Collapse
Affiliation(s)
- Huanqing Lei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (Z.L.)
| | - Zhongjuan Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (Z.L.)
| | - Langhong Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.W.); (X.Z.)
| | - Xinan Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.W.); (X.Z.)
- Preparatory Office of Yangjiang Applied Undergraduate College, Yangjiang 529500, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (Z.L.)
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.W.); (X.Z.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| |
Collapse
|
12
|
Lin J, Meng H, Guo X, Tang Z, Yu S. Natural Aldehyde-Chitosan Schiff Base: Fabrication, pH-Responsive Properties, and Vegetable Preservation. Foods 2023; 12:2921. [PMID: 37569191 PMCID: PMC10418757 DOI: 10.3390/foods12152921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of the present work was to fabricate Schiff base compounds between chitosan and aldehydes and use the resultant aldehyde-chitosan Schiff bases for broccoli preservation. Using an element analyzer, the degree of substitution was calculated as 68.27-94.65%. The aldehyde-chitosan Schiff bases showed acidic sensitivity to rapid hydrolysis for releasing aldehyde at a buffer solution of pH 4-6, in which more than 39% of the aldehydes were released within 10 h. The release of aldehydes endows the aldehyde-chitosan Schiff bases with a better antibacterial activity at pH 5 than at pH 7. In a simulated CO2 (5-15%) atmosphere with high humidity (92%), the hydrolysis of imine bonds (C=N) was triggered and continuously released aldehyde, even without direct contact with the aqueous phase. The application of aldehyde-chitosan Schiff bases significantly extended the shelf life of broccoli from 4 d to 5-7 d and decreased the weight loss of broccoli during storage. In summary, the fabrication of aldehyde-chitosan Schiff bases and the strategy of using pH-response imine bond (C=N) hydrolysis (thus releasing aldehyde to kill microorganisms) were feasible for use in developing EO-incorporated intelligent food packages for vegetable preservation.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (J.L.)
| | - Hecheng Meng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (J.L.)
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Zhongsheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521011, China
| | - Shujuan Yu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (J.L.)
| |
Collapse
|
13
|
Lin JW, Jiang GL, Liang CX, Li YM, Chen XY, Zhang XT, Tang ZS. Laccase-Induced Gelation of Sugar Beet Pectin-Curcumin Nanocomplexes Enhanced by Genipin Crosslinking. Foods 2023; 12:2771. [PMID: 37509863 PMCID: PMC10378791 DOI: 10.3390/foods12142771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Research on the use of polysaccharides as hydrophobic bioactive carriers instead of proteins is still scarce. Sugar beet pectin (SBP) contains a small amount of protein and is a potential carrier for loading curcumin. In this work, SBP encapsulation, genipin crosslinking, and laccase-induced gelation were used to develop novel jelly food and improve the stability of curcumin without the incorporation of oil. By mixing the SBP solution (40 mg/mL) with curcumin powder (25 mg/mL SBP solution), an SBP-curcumin complex (SBP-Cur) was fabricated with a loading amount of 32 mg/g SBP, and the solubility of curcumin improved 116,000-fold. Fluorescence spectroscopy revealed that hydrophobic interactions drove the complexation of curcumin and SBP. Crosslinked by genipin (10 mM), SBP-Cur showed a dark blue color, and the gel strength of laccase-catalyzed gels was enhanced. Heating and UV radiation tests suggested that the genipin crosslinking and gelation strategies substantially improved the stability of curcumin. Because of the unique UV-blocking capacity of blue pigment, crosslinked samples retained 20% more curcumin than control samples. With the enhanced stability of curcumin, the crosslinked SBP-curcumin complexes could be a functional food ingredient used in functional drinks, baked food, and jelly food.
Collapse
Affiliation(s)
- Jia-Wei Lin
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521011, China
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Gui-Li Jiang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Cui-Xin Liang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Ye-Meng Li
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xing-Yi Chen
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xiao-Tong Zhang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521011, China
| |
Collapse
|
14
|
Luo S, Wang S, Yang X, Yuan K, Zhang H, Zhang S, Yang X, Guo Y. Gelation behaviors and mechanism of a new pectic polysaccharide from apple pomace as a potential gelatin substitute. Int J Biol Macromol 2023; 241:124558. [PMID: 37094647 DOI: 10.1016/j.ijbiomac.2023.124558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
In this study, we reported a pectic polysaccharide industrially obtained from apple pomace by metal ion precipitation technique showing an unexpected gelation behavior. Structurally, this apple pectin (AP) is a macromolecular polymer with a weight-average molecular weight (Mw) of 361.7 kDa, and DM (degree of methoxylation) of 12.5 %, comprising 60.38 % glucose, 19.41 % mannose, 17.60 % galactose and 1.00 % rhamnose and 1.61 % glucuronic acid. The low acidic sugar percentage relative to the total monosaccharide amount indicated a high branching structure of AP. On addition of Ca2+ ions, AP exhibited a remarkable gelling ability upon cooling its heat solution to low temperature (e.g., 4 °C). However, at room temperature (e.g., 25 °C) or in the absence of Ca2+, no gel was formed. At a fixed pectin concentration (0.5 %, w/v), AP showed increasing gel hardness and gelation temperature (Tgel) with CaCl2 concentration increasing to 0.05 % (w/v); however, further addition of CaCl2 weakened AP gels and even abolished the gelation. On reheating, all gels melted below 35 °C, which suggests the potential use of AP as a gelatin substitute. The gelation mechanism was explained as an intricate balance of the synchronous formation of hydrogen bond and Ca2+ crosslinks between AP molecules during cooling.
Collapse
Affiliation(s)
- Shuai Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, PR China
| | - Shuaida Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, PR China
| | - Xudong Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, PR China
| | - Kai Yuan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, PR China
| | - Huan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, PR China
| | - Shuai Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, PR China
| | - Xi Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, PR China.
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, PR China; National Research & Development Center of Apple Processing Technology, PR China; The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, PR China.
| |
Collapse
|
15
|
Superhydrophobic modification of cellulosic paper-based materials: Fabrication, properties, and versatile applications. Carbohydr Polym 2023; 305:120570. [PMID: 36737208 DOI: 10.1016/j.carbpol.2023.120570] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Cellulose is the cheapest and mostly widespread green raw material on earth. Due to the easy and versatile developed modification of cellulose, many cellulosic paper-based sustainable materials and their multifunctional applications have attained increasing interest under the background of the implementation of the "plastic ban" policy. However, intrinsic cellulose paper is hydrophilic and non-water-proof, which highly limited its application, thus becoming a bottleneck for the development of "cellulosic paper-based plastic replacement". Unquestioningly, the superhydrophobic modification of cellulosic paper-based materials and the extension of their high value-added applications are highly desired, which is the main content of this review. More importantly, we presented the comprehensive discussion of the functionalized applications of superhydrophobic cellulosic paper-based materials ranging from conventional products to high value-added functional materials such as paper straw and paper mulch film for the first time, which have great industrialization potential and value. This review would offer the valuable guidance and insightful information for the rational construction of sustainable superhydrophobic cellulosic paper for advanced functional devices.
Collapse
|
16
|
Lin J, Tang ZS, Brennan CS, Chandrapala J, Gao W, Han Z, Zeng XA. Thermomechanically micronized sugar beet pulp: Emulsification performance and the contribution of soluble elements and insoluble fibrous particles. Food Res Int 2023; 165:112467. [PMID: 36869480 DOI: 10.1016/j.foodres.2023.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/04/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
In this work, thermomechanically micronized sugar beet pulp (MSBP), a micron-scaled plant-based byproduct comprised of soluble elements (∼40 wt%) and insoluble fibrous particles (IFPs, ∼60 wt%), was used as a sole stabilizer for oil-in-water emulsion fabrication. The influence of emulsification parameters on the emulsifying properties of MSBP was investigated, including emulsification techniques, MSBP concentration, and oil weight fraction. High-speed shearing (M1), ultrasonication (M2), and microfludization (M3) were used to fabricate oil-in-water emulsions (20% oil) with 0.60 wt% MSBP as stabilizer, in which the d4,3 value was 68.3, 31.5, and 18.2 μm, respectively. Emulsions fabricated by M2 and M3 (higher energy input) were more stable than M1 (lower energy input) during long-term storage (30 days) as no significant increase of d4,3. As compared to M1, the adsorption ratio of IFPs and protein was increased from ∼0.46 and ∼0.34 to ∼0.88 and ∼0.55 by M3. Fabricated by M3, the creaming behavior of emulsions was completely inhibited with 1.00 wt% MSBP (20% oil) and 40% oil (0.60 wt% MSBP), showing a flocculated state and could be disturbed by sodium dodecyl sulfate. The gel-like network formed by IFPs could be strengthened after storage as both viscosity and module were significantly increased. During emulsification, the co-stabilization effect of the soluble elements and IFPs enabled a compact and hybrid coverage onto the droplet surface, which acted as a physical barrier to endow the emulsion with robust steric repulsion. Altogether, these findings suggested the feasibility of using plant-based byproducts as oil-in-water emulsion stabilizers.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Charles S Brennan
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Jayani Chandrapala
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Wenhong Gao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Han
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| |
Collapse
|
17
|
Li Y, Wang JH, Wang EC, Tang ZS, Han Y, Luo XE, Zeng XA, Woo MW, Han Z. The microstructure and thermal properties of pulsed electric field pretreated oxidized starch. Int J Biol Macromol 2023; 235:123721. [PMID: 36801303 DOI: 10.1016/j.ijbiomac.2023.123721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
The structure and thermal properties of pulsed electric field (PEF) assisted sodium hypochlorite oxidized starch were investigated. The carboxyl content of the oxidized starch was increased by 25 % when compared with the traditional oxidation method. Dents and cracks were evident on the surface of the PEF-pretreated starch. Compared with native starch, the peak gelatinization temperature (Tp) of PEF-assisted oxidized starch (POS) was reduced by 10.3 °C, while that of the oxidized starch without PEF treatment (NOS) was only reduced by 7.4 °C. In addition, PEF treatment further reduces the viscosity and improve the thermal stability of the starch slurry. Therefore, PEF treatment combined with hypochlorite oxidation is an effective method to prepare oxidized starch. PEF showed great potential in expanding starch modification, to promote a wider application of oxidized starch in the paper, the textile and the food industry.
Collapse
Affiliation(s)
- Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jin-Hua Wang
- Foshan Shunde Midea Washing Appliances MFG. Co., Ltd, Foshan 528300, China
| | - Er-Chun Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500,China
| | - Yu Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiu-Er Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528000, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500,China
| | - Meng-Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
18
|
Lin J, Tang ZS, Brennan CS, Chandrapala J, Gao W, Han Z, Zeng XA. Valorizing protein-polysaccharide conjugates from sugar beet pulp as an emulsifier. Int J Biol Macromol 2023; 226:679-689. [PMID: 36436597 DOI: 10.1016/j.ijbiomac.2022.11.217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Inspired by the emulsion stability of sugar beet pulp pectin, the hydrophobic protein fraction in sugar beet pulp (SBP) is expected to feature high interfacial activity. This work retrieved alkaline extracted protein-polysaccharide conjugates (AEC) from partially depectinized SBP by hot alkaline extraction. AEC was protein-rich (57.20 %), and the polysaccharide mainly comprised neutral sugar, which adopted a rhamnogalacturonan-I pectin-like structure. The hydrophobic polypeptide chains tangled as a dense 'core' with polysaccharide chains attached as a hydrated 'shell' (hydrodynamic radius of ~110 nm). AEC could significantly decrease the oil-water interfacial tension (11.58 mN/m), featuring superior emulsification performance than three control emulsifiers, especially the excellent emulsifying stability (10 % oil) as the emulsion droplet size of 0.438 and 0.479 μm for fresh and stored (60 °C, 5 d) emulsions, respectively. The relationship of molecular structure to emulsification was investigated by specific enzymic modification, suggesting the intact macromolecular structure was closely related to emulsifying activity and that the NS fraction contributed greatly to emulsifying stability. Moreover, AEC was highly efficient to stabilize gel-like high internal phase emulsions (oil fraction 0.80) with low concentration (0.2 %) and even high ionic strength (0-1000 mM). Altogether, valorizing AEC as an emulsifier is feasible for high-value utilization of SBP.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | | | - Jayani Chandrapala
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Wenhong Gao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Han
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| |
Collapse
|
19
|
Wu K, Zhang T, Chai X, Duan X, He D, Yu H, Liu X, Tao Z. Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence. Foods 2022; 12:foods12010045. [PMID: 36613259 PMCID: PMC9818807 DOI: 10.3390/foods12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Essential oils (EOs) have good natural antioxidant and antimicrobial properties; however, their volatility, intense aroma, poor aqueous solubility, and chemical instability limit their applications in the food industry. The encapsulation of EOs in β-cyclodextrins (β-CDs) is a widely accepted strategy for enhancing EO applications. The complexation of cinnamon essential oil (CEO) with five types of β-CDs, containing different substituent groups (β-CD with primary hydroxyl, Mal-β-CD with maltosyl, CM-β-CD with carboxymethyl, HP-β-CD with hydroxypropyl, and DM-β-CD with methyl), inclusion process behaviors, volatile components, and antioxidant and antibacterial activities of the solid complexes were studied. The CEOs complexed with Mal-β-CD, CM-β-CD, and β-CD were less soluble than those complexed with DM-β-CD and HP-β-CD. Molecular docking confirmed the insertion of the cinnamaldehyde benzene ring into various β-CD cavities via hydrophobic interactions and hydrogen bonds. GC-MS analysis revealed that HP-β-CD had the greatest adaptability to cinnamaldehyde. The CEO encapsulated in β-, Mal-β-, and CM-β-CD showed lower solubility but better control-release characteristics than those encapsulated in DM- and HP-β-CD, thereby increasing their antioxidant and antibacterial activities. This study demonstrated that β-, Mal-β-, and CM-β-CD were suitable alternatives for the encapsulation of CEO to preserve its antioxidant and antibacterial activities for long-time use.
Collapse
|
20
|
Lei HQ, Li DM, Woo MW, Zeng XA, Han Z, Wang RY. The antihyperglycemic effect of pulsed electric field-extracted polysaccharide of Kaempferia elegans officinale on streptozotocin induced diabetic mice. Front Nutr 2022; 9:1053811. [PMID: 36570142 PMCID: PMC9769402 DOI: 10.3389/fnut.2022.1053811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Kaempferia elegans polysaccharide (KEP) was extracted using a high-voltage pulsed electric field-assisted hot water method. Its physicochemical properties, in vitro activity and hypoglycemic effect was investigated. Experiments were undertaken with diabetic mice models and the potential mechanism of KEP to improve blood glucose levels was unveiled through measurements of relevant indicators in the serum and liver of the mice. Results showed that KEP is mainly composed of glucose, rhamnose, arabinose, and galactose. It has certain DPPH and ABTS free radical scavenging ability and good α-glucosidase inhibitory ability, indicating that KEP has the potential to improve blood glucose levels in diabetes patients. The experimental results of KEP treatment on mice showed that KEP could control the continuous increase of fasting blood glucose levels. The potential mechanisms behind this blood glucose level control composes of (1) increasing the glucokinase and C peptide levels and decreasing Glucose-6-phosphatase content for improving key enzyme activity in the glucose metabolism pathway. This promotes the consumption of blood glucose during glycolysis, thereby inhibiting the production of endogenous glucose in gluconeogenesis pathway; (2) reducing triglyceride, total cholesterol, low density lipoprotein cholesterol, and increasing high density lipoprotein cholesterol content, for regulating blood lipid indicators to normal levels; and (3) by improving the activities of catalase, glutathione peroxidase, and antioxidant enzymes superoxide dismutase for further improving the antioxidant defense system in the body to reduce blood glucose.
Collapse
Affiliation(s)
- Huan-Qing Lei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dong-Mei Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Meng-Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - Xin-An Zeng
- Department of Food Science, Foshan University, Foshan, Guangdong, China,Preparatory Office of Yangjiang Applied Undergraduate College, Yangjiang, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Preparatory Office of Yangjiang Applied Undergraduate College, Yangjiang, China,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China,*Correspondence: Zhong Han,
| | - Ruo-Yong Wang
- Air Force Medical Center People’s Liberation Army, Beijing, China,Ruo-Yong Wang,
| |
Collapse
|
21
|
Cellulose nanofiber from pomelo spongy tissue as a novel particle stabilizer for Pickering emulsion. Int J Biol Macromol 2022; 224:1439-1449. [DOI: 10.1016/j.ijbiomac.2022.10.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
|