1
|
Ghorbani A, Rafe A, Hesarinejad MA, Lorenzo JM. Effect of pH and protein to polysaccharide ratio on coacervation of sesame protein isolate-Tragacanth gum: Structure-rheology function. Int J Biol Macromol 2025:143911. [PMID: 40319956 DOI: 10.1016/j.ijbiomac.2025.143911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/09/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
The electrostatic complexes of sesame protein isolate (SPI) and Tragacanth gum (TRG) as a function of pH (2-8) and biopolymer ratios on their interactions and characterization was investigated. The optimal pH of coacervation was found ~5.0 and ratio of 5:1, which facilitated the strongest electrostatic interactions and highest turbidity for complex formation. Rheological assessments revealed that SPI/TRG coacervates exhibited robust gel-like behavior, characterized by a dominating elastic modulus, indicative of a strong interconnected network structure which was achieved at a ratio of 5:1 SPI to TRG at pH 5.0, suggesting suitability for its bioactive encapsulation. Fourier transform infrared spectroscopy confirmed the presence of both electrostatic interactions and hydrogen bonding during coacervation. Thermal analysis indicated that SPI/TRG coacervates possess enhanced thermal stability compared to the individual components. SEM images and dynamic light scattering provided insights into the morphological characteristics, revealing the impact of hydration and encapsulation on particle size and surface structure. This research contributes to the development of sustainable plant-based ingredients with functional applications in the food industry, paving the way for future studies aimed at optimizing SPI/TRG formulations for specific applications within food systems. The findings underscore the potential of SPI/TRG coacervates as innovative, health-oriented food ingredients.
Collapse
Affiliation(s)
- Azade Ghorbani
- Department of Food Physics, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ali Rafe
- Department of Food Physics, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Mohammad Ali Hesarinejad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
2
|
Doshi N, Guo W, Chen F, Venema P, Shum HC, de Vries R, Li X. Simple and complex coacervation in systems involving plant proteins. SOFT MATTER 2024; 20:1966-1977. [PMID: 38334990 DOI: 10.1039/d3sm01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Plant-based foods are gaining popularity as alternatives to meat and dairy products due to sustainability and health concerns. As a consequence, there is a renewed interest in the phase behaviour of plant proteins and of mixtures of plant proteins and polysaccharides, in particular in the cases where coacervation is found to occur, i.e., liquid-liquid phase separation (LLPS) into two phases, one of which is rich in biopolymers and one of which is poor in biopolymer. Here we review recent research into both simple and complex coacervation in systems involving plant proteins, and their applications in food- as well as other technologies, such as microencapsulation, microgel production, adhesives, biopolymer films, and more.
Collapse
Affiliation(s)
- Nirzar Doshi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands.
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - Wei Guo
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feipeng Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Paul Venema
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - Ho Cheung Shum
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands.
| | - Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
3
|
Wang M, Li Y, Liu Q, Zhang Z, Huang M, Shao J, Sun J. Ameliorating the stability of native/thermally denatured chicken-derived myofibrillar proteins particles in an aqueous system: The synergistic effect of acidification combined with inulin and inulin/sodium alginate. Int J Biol Macromol 2023; 253:127383. [PMID: 37838125 DOI: 10.1016/j.ijbiomac.2023.127383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
The effect of acidification through hydrochloric acid combined with inulin (In), and inulin/sodium alginate (In/SA) on the stability of native/thermally denatured myofibrillar proteins (MPs/TMPs) particles in an aqueous system was investigated. At the same pH, MPs-In and TMPs-In particles were smaller and had higher absolute potentials than MPs-In/SA and TMPs-In/SA particles. Additionally, the size of MPs-In particles reached 1 μm, and the solubility increased from 21.73 ± 0.57 % to 76.26 ± 1.27 % when the pH was reduced from 5.0 to 3.0. The absolute potential of TMPs 3-In particles increased from 15.77 ± 0.72 to 28.20 ± 0.30 mV, and the solubility increased from 18.65 ± 0.72 % to 74.53 ± 0.74 %. Confocal laser microscopy revealed that, compared with pH 5.0 or 4.0, MPs-In/TMPs-In particles dispersed more evenly at pH 3.0 compared with pH 5.0 or 4.0. This further confirmed that electrostatic repulsion between particles maximally contributed to particle stability. Furthermore, the α-helix content in TMPs-In particles at pH 3.0 decreased from 41.51 ± 1.09 % (TMPs control) to 16.61 ± 1.87 %. This decrement of an up to 60 % led to decreased intramolecular hydrogen bonds and improved surface hydrophobicity. Therefore, a single polysaccharide (In) combined with MPs/TMPs particles exhibited higher dispersion and stability at pH 3.0. These findings could provide new insights into chicken-derived protein beverage processing.
Collapse
Affiliation(s)
- Mengman Wang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Liu
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhiguo Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China
| | - Ming Huang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China; National R&D Branch Center for Poultry Meat Processing Technology, Nanjing Huangjiaoshou Food Sci. & Tech. Co., Ltd., Nanjing 210095, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Liaoning 110000, China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China; Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University and Zhucheng Waimao Co., Ltd., Qingdao 266109, China.
| |
Collapse
|
4
|
Langendörfer LJ, Avdylaj B, Hensel O, Diakité M. Design of Plant-Based Food: Influences of Macronutrients and Amino Acid Composition on the Techno-Functional Properties of Legume Proteins. Foods 2023; 12:3787. [PMID: 37893680 PMCID: PMC10606351 DOI: 10.3390/foods12203787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Imitating animal-based products using vegetable proteins is a technological challenge that can be mastered based on their techno-functional properties. These properties of legume proteins can be influenced by multiple factors, among which the macronutrients and amino acid contents play an important role. Therefore, the question arises as to what extent the techno-functional properties are related to these factors. The water- and oil-holding capacities and the emulsion and foaming properties of commercially available legume protein powders were analyzed. Correlations between macronutrient, amino acid content, steric structure, and techno-functional properties were conducted. However, the protein concentration is the focus of techno-functional properties, as well as the type of protein and the interaction with the non-protein ingredients. The type of protein is not always quantified by the quantity of amino acids or by their spatial arrangement. In this study, the effects of the three-dimensional structure were observed by the used purification method, which overshadow the influencing factors of the macronutrients and amino acid content. In summary, both the macronutrient and amino acid contents of legume proteins provide a rough indication but not a comprehensive statement about their techno-functional properties and classification in an adequate product context.
Collapse
Affiliation(s)
- Lena Johanna Langendörfer
- Faculty of Food Technology, University of Applied Science Fulda, Leipziger Str. 123, 36037 Fulda, Germany; (B.A.); (M.D.)
| | - Blerarta Avdylaj
- Faculty of Food Technology, University of Applied Science Fulda, Leipziger Str. 123, 36037 Fulda, Germany; (B.A.); (M.D.)
| | - Oliver Hensel
- Faculty of Organic Agricultural Science, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany;
| | - Mamadou Diakité
- Faculty of Food Technology, University of Applied Science Fulda, Leipziger Str. 123, 36037 Fulda, Germany; (B.A.); (M.D.)
| |
Collapse
|
5
|
Yao Y, He W, Xu B. Physiochemical characteristics and sensory properties of plant protein isolates-konjac glucomannan compound gels. Food Sci Nutr 2023; 11:5063-5077. [PMID: 37701223 PMCID: PMC10494608 DOI: 10.1002/fsn3.3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 09/14/2023] Open
Abstract
In this study, the effects of konjac glucomannan (KGM) at different concentrations on the physiochemical and sensory properties of soy protein isolate (SPI), pea protein isolate (PPI), or peanut protein isolate (PNPI) compound gels were investigated. The results revealed that when the ratio of PNPI to KGM was 90:10, the denaturation temperature of PNPI could be significantly enhanced to 119.32°C by KGM modification. Concerning the textural and microstructural features, the amount of KGM addition had positive correlation with the hardness and chewiness of each compound gel, however, too much KGM addition will cause the unstable internal structure of the PNPI/KGM compound gels (70:30 and 60:40). Furthermore, sensory results indicated that PNPI/KGM (80:20), PPI/KGM (80:20), SPI/KGM (80:20) had great potential to be considered as prototypes for novel plant-based products, which generated the highest acceptance scores of 5.04, 5.94, and 5.36 in each group, respectively.
Collapse
Affiliation(s)
- Yueying Yao
- Food Science and Technology Program, Department of Life SciencesBNU‐HKBU United International CollegeZhuhaiChina
| | - Wenmeng He
- Food Science and Technology Program, Department of Life SciencesBNU‐HKBU United International CollegeZhuhaiChina
| | - Baojun Xu
- Food Science and Technology Program, Department of Life SciencesBNU‐HKBU United International CollegeZhuhaiChina
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data ScienceBNU‐HKBU United International CollegeZhuhaiChina
| |
Collapse
|
6
|
Li M, Zhang X, Han D, Wu S, Gong J. Systematic study on lysozyme-hyaluronan complexes: Multi-spectroscopic characterization and molecular dynamics simulation. Int J Biol Macromol 2023; 246:125642. [PMID: 37394210 DOI: 10.1016/j.ijbiomac.2023.125642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
This study systematically investigated the complexation mechanism of lysozyme (LYS) and hyaluronan (HA) as well as their complex-formation process using multi-spectroscopy combined with molecular dynamics simulation. Overall, the results demonstrated that electrostatic interaction provides the primary self-assembly driving forces for LYS-HA complex formation. Circular dichroism spectroscopy revealed that the LYS-HA complexes formation primarily alters the α-helix and β-sheet structures of LYS. Fluorescence spectroscopy yielded an entropy of 0.12 kJ/mol·K and enthalpy of -44.46 kJ/mol for LYS-HA complexes. Molecular dynamics simulation indicated that the amino acid residues of ARG114 in LYS and 4ZB4 in HA contributed most significantly. HT-29 and HCT-116 cell experiments demonstrated that LYS-HA complexes possess excellent biocompatibility. Furthermore, LYS-HA complexes were found to be potentially useful the efficient encapsulation of several insoluble drugs and bioactives. These findings provide new insight into the binding mechanism between LYS and HA, and prove indispensable to promoting the potential application of LYS-HA complexes as bioactive compound delivery systems, emulsion stabilizers, or foaming agents in the food industry.
Collapse
Affiliation(s)
- Maolin Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xin Zhang
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Dandan Han
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China
| |
Collapse
|
7
|
Sadeghi R, Colle M, Smith B. Protein composition of pulses and their protein isolates from different sources and in different isolation pH values using a reverse phase high performance liquid chromatography method. Food Chem 2023; 409:135278. [PMID: 36586270 DOI: 10.1016/j.foodchem.2022.135278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The objective of this study was to compare the composition of pulse proteins isolated from lentils and green and yellow peas at two isolation pH values (9 and 11) and determine the effect of this variability on protein functionality. Chromatogram peaks obtained from reverse-phase high performance liquid chromatography were identified by isolation of albumin-, vicilin- and legumin-rich fractions for the three pulses. Protein composition was obtained for each isolate and compared against that of the originating pulse flour. Lentil flour showed the highest level of vicilin with a vicilin/legumin ratio of ∼ 2.5, while this ratio was 1.3 and 1.2 for green and yellow pea flour, respectively. Albumin content of yellow pea flour was high (∼36.1 %), which reduced to ∼ 15-19 % in isolated proteins showing a loss in albumins during the isolation. Higher extraction pH increased pea protein yield but led to lower protein solubility with no changes in foaming properties and in-vitro digestibility.
Collapse
Affiliation(s)
- Rohollah Sadeghi
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, USA.
| | - Michael Colle
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, USA
| | - Brennan Smith
- USDA-ARS-SRRC Food Processing and Sensory Quality, 1100 Allen Toussaint Blvd, New Orleans, LA 70124, USA
| |
Collapse
|
8
|
Kolotova DS, Borovinskaya EV, Bordiyan VV, Zuev YF, Salnikov VV, Zueva OS, Derkach SR. Phase Behavior of Aqueous Mixtures of Sodium Alginate with Fish Gelatin: Effects of pH and Ionic Strength. Polymers (Basel) 2023; 15:polym15102253. [PMID: 37242828 DOI: 10.3390/polym15102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The phase behavior of aqueous mixtures of fish gelatin (FG) and sodium alginate (SA) and complex coacervation phenomena depending on pH, ionic strength, and cation type (Na+, Ca2+) were studied by turbidimetric acid titration, UV spectrophotometry, dynamic light scattering, transmission electron microscopy and scanning electron microscopy for different mass ratios of sodium alginate and gelatin (Z = 0.01-1.00). The boundary pH values determining the formation and dissociation of SA-FG complexes were measured, and we found that the formation of soluble SA-FG complexes occurs in the transition from neutral (pHc) to acidic (pHφ1) conditions. Insoluble complexes formed below pHφ1 separate into distinct phases, and the phenomenon of complex coacervation is thus observed. Formation of the highest number of insoluble SA-FG complexes, based on the value of the absorption maximum, is observed at рHopt and results from strong electrostatic interactions. Then, visible aggregation occurs, and dissociation of the complexes is observed when the next boundary, pHφ2, is reached. As Z increases in the range of SA-FG mass ratios from 0.01 to 1.00, the boundary values of рНc, рHφ1, рHopt, and рHφ2 become more acidic, shifting from 7.0 to 4.6, from 6.8 to 4.3, from 6.6 to 2.8, and from 6.0 to 2.7, respectively. An increase in ionic strength leads to suppression of the electrostatic interaction between the FG and SA molecules, and no complex coacervation is observed at NaCl and CaCl2 concentrations of 50 to 200 mM.
Collapse
Affiliation(s)
- Daria S Kolotova
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, Murmansk 183010, Russia
| | - Ekaterina V Borovinskaya
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, Murmansk 183010, Russia
| | - Vlada V Bordiyan
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, Murmansk 183010, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russia
- A. Butlerov Chemical Institute, Kazan Federal University, Kazan 420008, Russia
| | - Vadim V Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russia
| | - Olga S Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, Kazan 420066, Russia
| | - Svetlana R Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, Murmansk 183010, Russia
| |
Collapse
|
9
|
Grossmann L. Structural properties of pea proteins ( Pisum sativum) for sustainable food matrices. Crit Rev Food Sci Nutr 2023; 64:8346-8366. [PMID: 37074167 DOI: 10.1080/10408398.2023.2199338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Pea proteins are widely used as a food ingredient, especially in sustainable food formulations. The seed itself consists of many proteins with different structures and properties that determine their structure-forming properties in food matrices, such as emulsions, foams, and gels. This review discusses the current insights into the structuring properties of pea protein mixtures (concentrates, isolates) and the resulting individual fractions (globulins, albumins). The structural molecular features of the proteins found in pea seeds are discussed and based on this information, different structural length scales relevant to foods are reviewed. The main finding of this article is that the different pea proteins are able to form and stabilize structural components found in foods such as air-water and oil-water interfaces, gels, and anisotropic structures. Current research reveals that each individual protein fraction has unique structure-forming properties and that tailored breeding and fractionation processes will be required to optimize these properties. Especially the use of albumins, globulins, and mixed albumin-globulins proved to be useful in specific food structures such as foams, emulsions, and self-coacervation, respectively. These new research findings will transform how pea proteins are processed and being used in novel sustainable food formulations in the future.
Collapse
Affiliation(s)
- Lutz Grossmann
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
10
|
Islam F, Amer Ali Y, Imran A, Afzaal M, Zahra SM, Fatima M, Saeed F, Usman I, Shehzadi U, Mehta S, Shah MA. Vegetable proteins as encapsulating agents: Recent updates and future perspectives. Food Sci Nutr 2023; 11:1705-1717. [PMID: 37051354 PMCID: PMC10084973 DOI: 10.1002/fsn3.3234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/29/2023] Open
Abstract
The use of proteinaceous material is desired as it forms a protective gelation around the active core, making it safe through temperature, pH, and O2 in the stomach and intestinal environment. During the boom of functional food utilization in this era of advancement in drug delivery systems, there is a dire need to find more protein sources that could be explored for the potential of being used as encapsulation materials, especially vegetable proteins. This review covers certain examples which need to be explored to form an encapsulation coating material, including soybeans (conglycinin and glycinin), peas (vicilin and convicilin), sunflower (helianthins and albumins), legumes (glutenins and albumins), and proteins from oats, rice, and wheat. This review covers recent interventions exploring the mentioned vegetable protein encapsulation and imminent projections in the shifting paradigm from conventional process to environmentally friendly green process technologies and the sensitivity of methods used for encapsulation. Vegetable proteins are easily biodegradable and so are the procedures of spray drying and coacervation, which have been discussed to prepare the desired encapsulated functional food. Coacervation processes are yet more promising in the case of particle size formation ranging from nano to several hundred microns. The present review emphasizes the significance of using vegetable proteins as capsule material, as well as the specificity of encapsulation methods in relation to vegetable protein sensitivity and the purpose of encapsulation accompanying recent interventions.
Collapse
Affiliation(s)
- Fakhar Islam
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Yuosra Amer Ali
- Department of Food Sciences, College of Agriculture and ForestryUniversity of MosulMosulIraq
| | - Ali Imran
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Syeda Mahvish Zahra
- Department of Environmental Design, Health and Nutritional SciencesAllama Iqbal Open UniversityIslamabadPakistan
- Institute of Food Science and Nutrition, University of SargodhaSargodhaPakistan
| | - Maleeha Fatima
- Department of Home EconomicsGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Ifrah Usman
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Umber Shehzadi
- Department of Food Sciences, College of Agriculture and ForestryUniversity of MosulMosulIraq
| | - Shilpa Mehta
- Department of Electrical and Electronic EngineeringAuckland University of TechnologyAucklandNew Zealand
| | - Mohd Asif Shah
- Adjunct FacultyUniversity Center for Research & Development, Chandigarh UniversityMohaliIndia
| |
Collapse
|
11
|
Wei Y, Lou NH, Cai Z, Li R, Zhang H. Carboxymethylated corn fiber gums efficiently improve the stability of native and acidified aqueous pea protein dispersions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Hemp protein isolate-polysaccharide complex coacervates and their application as emulsifiers in oil-in-water emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
The type of gum arabic affects interactions with soluble pea protein in complex coacervation. Carbohydr Polym 2022; 295:119851. [DOI: 10.1016/j.carbpol.2022.119851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022]
|
14
|
Bu K, Huang D, Li D, Zhu C. Encapsulation and sustained release of curcumin by hawthorn pectin and Tenebrio Molitor protein composite hydrogel. Int J Biol Macromol 2022; 222:251-261. [PMID: 36152699 DOI: 10.1016/j.ijbiomac.2022.09.145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
In this study, the effects of pH value, mixing ratio and the Ca2+ concentration on the complex gelation of hawthorn pectin (HP) and Tenebrio Molitor protein (TMP) were investigated. The turbidity results showed that the composite gel had the maximum polymer concentration when the mixing ratio was 2:1 and the pH value was 3.35. The rheological measurement results showed that TMP/HP (15 mmol/L) hydrogel (THIH) had the highest storage modulus and loss modulus, indicating that the properties of the hydrogel at this Ca2+ concentration had been significantly improved. The results of scanning electron microscope and pore size also proved that the network structure prepared under this condition was compact and uniform, the pore size was small, which was beneficial to the entrapment of active components. Subsequently, in order to explore the storage stability and antioxidant activity of THIH-loaded curcumin in simulated gastrointestinal environment, in vitro simulated digestion experiment was carried out and satisfactory results were obtained. To sum up, THIH was a promising delivery system with broad application prospects, which was expected to provide a novel idea for the entrapment and delivery of active components.
Collapse
Affiliation(s)
- Kaixuan Bu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Shandong Agricultural University, Taian 271018, PR China
| | - Dongjie Huang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Shandong Agricultural University, Taian 271018, PR China
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Shandong Agricultural University, Taian 271018, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
15
|
Conversion of Pulse Protein Foam-Templated Oleogels into Oleofoams for Improved Baking Application. Foods 2022; 11:foods11182887. [PMID: 36141019 DOI: 10.3390/foods11182887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The food industry has long been searching for an efficient replacement for saturated-fatty-acid-rich fats for baking applications. Although oleogels have been considered a potential alternative for saturated and trans fats, their success in food application has been poor. The present study explored the use of oleofoams obtained by whipping the pulse protein foam-templated oleogels for cake baking. Oleogels were prepared at room temperature by adding canola oil containing high-melting monoglyceride (MAG) or candelilla wax (CW) to the freeze-dried pea or faba bean protein-stabilized foams. Oleogels were then whipped to create the oleofoams; however, only the oleogels containing MAG could form oleofoams. CW-oleogel could not form any oleofoam. The most stable oleofoams with the highest overrun, stability, and storage modulus were obtained from 3% MAG+pulse protein foam-templated oleogels. The MAG plus protein foam-templated oleogels showed smaller and more packed air bubbles than MAG-only oleofoam, which was ascribed to the protein's ability to stabilize air bubbles and provide a network in the continuous oil phase to restrict air bubble movement. A novel batter preparation method for oleofoam was developed to increase air bubble incorporation. The X-ray microtomography images of the cakes showed a non-homogeneous distribution of larger air bubbles in the oleofoam cake compared to the shortening cake although their total porosity was not much different. The oleofoam cakes made with the new method yielded similar hardness and chewiness compared to the shortening cakes. By improving rheology and increasing air incorporation in the batter, high-quality cakes can be obtained with MAG-containing oleofoams made from pulse protein foam-templated oleogels.
Collapse
|
16
|
Xu Y, Jia Z, Wang J, Sun J, Song R. Property and Stability of Astaxanthin Emulsion Based on Pickering Emulsion Templating with Zein and Sodium Alginate as Stabilizer. Int J Mol Sci 2022; 23:9386. [PMID: 36012651 PMCID: PMC9408833 DOI: 10.3390/ijms23169386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Astaxanthin loaded Pickering emulsion with zein/sodium alginate (SA) as a stabilizer (named as APEs) was developed, and its structure and stability were characterized. The encapsulation efficiency of astaxanthin (Asta) in APEs was up to 86.7 ± 3.8%, with a mean particle size of 4.763 μm. Freeze-dried APEs showed particles stacked together under scanning electronic microscope; whereas dispersed spherical nanoparticles were observed in APEs dilution under transmission electron microscope images. Confocal laser scanning microscope images indicated that zein particles loaded with Asta were aggregated with SA coating. X-ray diffraction patterns and Fourier transform infrared spectra results showed that intermolecular hydrogen bonding, electrostatic attraction and hydrophobic effect were involved in APEs formation. APEs demonstrated non-Newtonian shear-thinning behavior and fit well to the Cross model. Compared to bare Asta extract, APEs maintained high Asta retention and antioxidant activity when heated from 50 to 10 °C. APEs showed different stability at pH (3.0-11.0) and Na+, K+, Ca2+, Cu2+ and Fe2+ conditions by visual, zeta potential and polydispersity index measurements. Additionally, the first order kinetics fit well to describe APEs degradation at pH 3.0 to 9.0, Na+, and K+ conditions. Our results suggest the potential application of Asta-loaded Pickering emulsion in food systems as a fortified additive.
Collapse
Affiliation(s)
- Yan Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhe Jia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiaxing Wang
- Research Office of Marine Biological Resources Utilization and Development, Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Jipeng Sun
- Research Office of Marine Biological Resources Utilization and Development, Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
17
|
Shi D, Nickerson MT. Comparative evaluation of the functionality of faba bean protein isolates with major legume proteins in the market. Cereal Chem 2022. [DOI: 10.1002/cche.10589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dai Shi
- Department of Food and Bioproduct SciencesUniversity of Saskatchewan51 Campus Dr.SaskatoonSKCanada
| | - Michael T. Nickerson
- Department of Food and Bioproduct SciencesUniversity of Saskatchewan51 Campus Dr.SaskatoonSKCanada
| |
Collapse
|
18
|
Başyiğit B, Yücetepe M, Akyar G, Karaaslan A, Karaaslan M. Enhancing thermal and emulsifying resilience of pomegranate fruit protein with gum Arabic conjugation. Colloids Surf B Biointerfaces 2022; 215:112516. [PMID: 35489318 DOI: 10.1016/j.colsurfb.2022.112516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 01/13/2023]
Abstract
In this study, a controlled Maillard reaction was carried out to conjugate gum Arabic (GA) polymer to pomegranate protein isolate (PPI). The Maillard conjugates (MCs) were visualized by SEM and authenticity of the conjugates was assessed by NMR, FTIR, and XRD. To reveal the effect of the Maillard conjugation on the quality attributes of PPI, functional properties, thermal stability, and emulsifying behaviors of PPI and MCs were investigated. The oil binding capacity of conjugated protein (370.52%) was higher than that of protein alone (208.19%). While GA and PPI were completely degraded or decomposed at a temperature of 1000 °C, the MCs retained approximately half of the initial mass. MCs displayed higher emulsifying activity (42.71 m2/g) and emulsifying stability (90.17 (ESI30)), compared to PPI (32.61 m2/g) and (72.25 (ESI30)). Stability coefficient was significantly improved and reached from 0.64 R to 0.95 R with the usage of MCs in the emulsions. A lower centrifugal precipitation rate was determined in MCs emulsions (28.26%) compared to PPI emulsions (45.42%). Utilization of MCs instead of protein alone as a stabilizer in the oil-in-water emulsions was a logical approach for increasing their stability against environmental degradations including freeze-thaw cycle, pH, ionic, and temperature stress.
Collapse
Affiliation(s)
- Bülent Başyiğit
- Harran University, Engineering Faculty, Food Engineering Department, 63010 Şanlıurfa, Turkey
| | - Melike Yücetepe
- Harran University, Engineering Faculty, Food Engineering Department, 63010 Şanlıurfa, Turkey
| | - Gülbahar Akyar
- Harran University, Engineering Faculty, Food Engineering Department, 63010 Şanlıurfa, Turkey
| | - Asliye Karaaslan
- Harran University, Vocational School, Food Processing Programme, 63200 Şanlıurfa, Turkey
| | - Mehmet Karaaslan
- Harran University, Engineering Faculty, Food Engineering Department, 63010 Şanlıurfa, Turkey.
| |
Collapse
|
19
|
Sunflower protein isolates-composition, extraction and functional properties. Adv Colloid Interface Sci 2022; 306:102725. [DOI: 10.1016/j.cis.2022.102725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022]
|
20
|
Hadidi M, Boostani S, Jafari SM. Pea proteins as emerging biopolymers for the emulsification and encapsulation of food bioactives. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Zhan F, Youssef M, Shah BR, Li J, Li B. Overview of foam system: Natural material-based foam, stabilization, characterization, and applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Santos J, Trujillo-Cayado LA, Carrello H, Cidade MT, Alfaro MC. Optimization of sonication parameters to obtain food emulsions stabilized by zein: formation of zein-diutan gum/zein-guar gum complexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2127-2134. [PMID: 34605029 DOI: 10.1002/jsfa.11554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Zein as a sole material is not suitable for technological applications since it is not flexible. A possible solution to extend the applications of zein is the formation of zein-polysaccharide complexes. As a first step, sonication parameters were optimized to obtain finer emulsions formulated with zein, rosemary essential oil as food preservative, and sunflower oil, by means of response surface methodology. After the formation of these guar- or diutan-zein complexes the rheological properties of these food emulsions were evaluated. RESULTS An increase in sonication power, sonication time and cycles provoked a decrease in mean droplet size and a lack of recoalescence. The optimized emulsion was the starting point to form two different complexes: zein with diutan gum and zein with guar gum at different concentrations. Rheological properties as well as the microstructure observed by field emission scanning electron microscopy (FESEM) were analyzed. Interestingly, zein-guar gum complexes did not form a rheological gel; as a consequence, emulsions containing them seem to undergo a destabilization process with aging time. In contrast, emulsions formulated with zein-diutan gum presented a 3D network, observed by FESEM technique and proved by rheological measurements. CONCLUSION While emulsions containing zein-guar gum complexes did not form networks to stabilize oil droplets, zein-diutan gum complexes did. This work brings to light the importance of the selection of polysaccharide used in food emulsions formulated with zein. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jenifer Santos
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| | - Luis A Trujillo-Cayado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| | - Henrique Carrello
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade, NOVA de Lisboa, Caparica, Portugal
| | - Maria T Cidade
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade, NOVA de Lisboa, Caparica, Portugal
| | - Maria-Carmen Alfaro
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
23
|
Asen ND, Aluko RE. Physicochemical and Functional Properties of Membrane-Fractionated Heat-Induced Pea Protein Aggregates. Front Nutr 2022; 9:852225. [PMID: 35399668 PMCID: PMC8984611 DOI: 10.3389/fnut.2022.852225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
This study was carried out to investigate the effect of heat pre-treatment of pea proteins at different pH values on the formation of functional protein aggregates. A 10% (w/v) aqueous mixture of pea protein concentrate (PPC) was adjusted to pH 3.0, 5.0, 7.0, or 9.0 followed by heating at 100°C for 30 min, cooled and centrifuged. The supernatant was sequentially passed through 30 and 50 kDa molecular weight cut-off membranes to collect the <30, 30–50, and >50 kDa fractions. The >50 kDa fractions from pH 3.0 (FT3), 5.0 (FT5), 7.0 (FT7), and 9.0 (FT9) treatments had >60% protein content in contrast to the ≤20% for the <30 and 30–50 kDa fractions. Therefore, the >50 kDa fractions were collected and then compared to the untreated PPC for some physicochemical and functional properties. Protein aggregation was confirmed as the denaturation temperature for FT3 (124.30°C), FT5 (190.66oC), FT7 (206.33oC) and FT9 (203.17oC) was significantly (p < 0.05) greater than that of PPC (74.45oC). Scanning electron microscopy showed that FT5 had a compact structure like PPC while FT3, FT7, and FT9 contained a more continuous network. In comparison to PPC, the >50 kDa fractions showed improved solubility (>60%), oil holding capacity (~100%), protein content (~7%), foam capacity (>10%), foam stability (>7%), water holding capacity (>16%) and surface hydrophobicity (~50%). Least gelation concentration of PPC (18%), FT3 (25%), FT5 (22%), FT7 (22%), and FT9 (25%) was improved to 16, 18, 20, 16, and 18%, respectively, after addition of NaCl.
Collapse
Affiliation(s)
- Nancy D. Asen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- The Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Rotimi E. Aluko
| |
Collapse
|
24
|
Shen Y, Hong S, Li Y. Pea protein composition, functionality, modification, and food applications: A review. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:71-127. [PMID: 35940709 DOI: 10.1016/bs.afnr.2022.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The demand for proteins continues to increase due to their nutritional benefits, the growing world population, and rising protein deficiency. Plant-based proteins represent a sustainable source to supplement costly animal proteins. Pea (Pisum sativum L.) is one of the most produced plant legume crops in the world and contributes to 26% of the total pulse production. The average protein content of pea is about 20%-25%. The commercial utilization of pea proteins is limited, partially due to its less desirable functionalities and beany off-flavor. Protein modification may change these properties and broaden the application of pea proteins in the food industry. Functional properties such as protein solubility, water and oil holding capacity, emulsifying/foaming capacity and stability, and gelation can be altered and improved by enzymatic, chemical, and physical modifications. These modifications work by affecting protein chemical structures, hydrophobicity/hydrophilicity balance, and interactions with other food constituents. Modifiers, reaction conditions, and degree of modifications are critical variables for protein modifications and can be controlled to achieve desirable functional attributes that may meet applications in meat analogs, baking products, dressings, beverages, dairy mimics, encapsulation, and emulsions. Understanding pea protein characteristics will allow us to design better functional ingredients for food applications.
Collapse
Affiliation(s)
- Yanting Shen
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Shan Hong
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
25
|
Shen Y, Hong S, Singh G, Koppel K, Li Y. Improving functional properties of pea protein through "green" modifications using enzymes and polysaccharides. Food Chem 2022; 385:132687. [PMID: 35299020 DOI: 10.1016/j.foodchem.2022.132687] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/22/2022]
Abstract
Pea proteins have gained significant interest in recent years. The objective of this study was to enhance pea protein functional properties through enzymatic and/or conjugation modifications and understand the physicochemical properties of the modified proteins. Molecular changes of the proteins were characterized, and protein functionality, in vitro digestibility, and sensory properties were analyzed. The proteins crosslinked with transglutaminase showed significantly improved water holding capacity (5.2-5.6 g/g protein) compared with the control pea protein isolate (2.8 g/g). The pea proteins conjugated with guar gum showed exceptional emulsifying capacity (EC) and stability (ES) of up to 100% compared with the control protein (EC of 58% and ES of 48%). Some sequentially modified pea proteins, such as transglutaminase crosslinking followed by guar gum conjugation had multiple functional enhancement (water holding, oil holding, emulsifying, and gelation). The functionally enhanced pea proteins had comparable sensory scores as the control protein.
Collapse
Affiliation(s)
- Yanting Shen
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, United States
| | - Shan Hong
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, United States
| | - Gaganpreet Singh
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506, United States
| | - Kadri Koppel
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506, United States
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, United States.
| |
Collapse
|
26
|
Giroldi M, Grambusch IM, Schlabitz C, Kuhn D, Lehn DN, Volken de Souza CF. Encapsulation of protein hydrolysates by spray drying: feasibility of using buffalo whey proteins. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Maiara Giroldi
- Food Biotechnology Laboratory University of Vale do Taquari—Univates Av. Avelino Tallini Lajeado RS 171, ZC 95914‐014 Brazil
- Biotechnology Graduate Program University of Vale do Taquari—Univates Av. Avelino Tallin Lajeado RS 171, ZC 95914‐014 Brazil
| | - Isabel Marie Grambusch
- Food Biotechnology Laboratory University of Vale do Taquari—Univates Av. Avelino Tallini Lajeado RS 171, ZC 95914‐014 Brazil
| | - Cláudia Schlabitz
- Food Biotechnology Laboratory University of Vale do Taquari—Univates Av. Avelino Tallini Lajeado RS 171, ZC 95914‐014 Brazil
- Biotechnology Graduate Program University of Vale do Taquari—Univates Av. Avelino Tallin Lajeado RS 171, ZC 95914‐014 Brazil
| | - Daniel Kuhn
- Food Biotechnology Laboratory University of Vale do Taquari—Univates Av. Avelino Tallini Lajeado RS 171, ZC 95914‐014 Brazil
- Biotechnology Graduate Program University of Vale do Taquari—Univates Av. Avelino Tallin Lajeado RS 171, ZC 95914‐014 Brazil
| | - Daniel Neutzling Lehn
- Food Biotechnology Laboratory University of Vale do Taquari—Univates Av. Avelino Tallini Lajeado RS 171, ZC 95914‐014 Brazil
| | - Claucia Fernanda Volken de Souza
- Food Biotechnology Laboratory University of Vale do Taquari—Univates Av. Avelino Tallini Lajeado RS 171, ZC 95914‐014 Brazil
- Biotechnology Graduate Program University of Vale do Taquari—Univates Av. Avelino Tallin Lajeado RS 171, ZC 95914‐014 Brazil
| |
Collapse
|
27
|
Shen K, Long J, Li X, Hua Y, Chen Y, Kong X, Zhang C. Complexation of pea protein isolate with dextran sulphate and interfacial adsorption behaviour and O/W emulsion stability at acidic conditions. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kejie Shen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Jie Long
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| |
Collapse
|
28
|
Microencapsulation and controlled release of α-tocopherol by complex coacervation between pea protein and tragacanth gum: A comparative study with arabic and tara gums. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Shen Y, Babu KS, Amamcharla J, Li Y. Emulsifying properties of pea protein/guar gum conjugates and mayonnaise application. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanting Shen
- Department of Grain Science and Industry Kansas State University Manhattan KS 66506 USA
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry Food Science Institute Kansas State University Manhattan KS 66506 USA
| | - Jayendra Amamcharla
- Department of Animal Sciences and Industry Food Science Institute Kansas State University Manhattan KS 66506 USA
| | - Yonghui Li
- Department of Grain Science and Industry Kansas State University Manhattan KS 66506 USA
| |
Collapse
|
30
|
On the foaming properties of plant proteins: Current status and future opportunities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
|
32
|
Ghavidel N, Fatehi P. Recent Developments in the Formulation and Use of Polymers and Particles of Plant-based Origin for Emulsion Stabilizations. CHEMSUSCHEM 2021; 14:4850-4877. [PMID: 34424605 DOI: 10.1002/cssc.202101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The main scope of this Review was the recent progress in the use of plant-based polymers and particles for the stabilization of Pickering and non-Pickering emulsion systems. Due to their availability and promising performance, it was discussed how the source, modification, and formulation of cellulose, starch, protein, and lignin-based polymers and particles would impact their emulsion stabilization. Special attention was given toward the material synthesis in two forms of polymeric surfactants and particles and the corresponding formulated emulsions. Also, the effects of particle size, degree of aggregation, wettability, degree of substitution, and electrical charge in stabilizing oil/water systems and micro- and macro-structures of oil droplets were discussed. The wide range of applications using such plant-based stabilizers in different technologies as well as their challenge and future perspectives were described.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| |
Collapse
|
33
|
Sim SYJ, SRV A, Chiang JH, Henry CJ. Plant Proteins for Future Foods: A Roadmap. Foods 2021; 10:1967. [PMID: 34441744 PMCID: PMC8391319 DOI: 10.3390/foods10081967] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Protein calories consumed by people all over the world approximate 15-20% of their energy intake. This makes protein a major nutritional imperative. Today, we are facing an unprecedented challenge to produce and distribute adequate protein to feed over nine billion people by 2050, in an environmentally sustainable and affordable way. Plant-based proteins present a promising solution to our nutritional needs due to their long history of crop use and cultivation, lower cost of production, and easy access in many parts of the world. However, plant proteins have comparatively poor functionality, defined as poor solubility, foaming, emulsifying, and gelling properties, limiting their use in food products. Relative to animal proteins, including dairy products, plant protein technology is still in its infancy. To bridge this gap, advances in plant protein ingredient development and the knowledge to construct plant-based foods are sorely needed. This review focuses on some salient features in the science and technology of plant proteins, providing the current state of the art and highlighting new research directions. It focuses on how manipulating plant protein structures during protein extraction, fractionation, and modification can considerably enhance protein functionality. To create novel plant-based foods, important considerations such as protein-polysaccharide interactions, the inclusion of plant protein-generated flavors, and some novel techniques to structure plant proteins are discussed. Finally, the attention to nutrition as a compass to navigate the plant protein roadmap is also considered.
Collapse
Affiliation(s)
- Shaun Yong Jie Sim
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Akila SRV
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Jie Hong Chiang
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
34
|
Qi X, Lan Y, Ohm JB, Chen B, Rao J. The viability of complex coacervate encapsulated probiotics during simulated sequential gastrointestinal digestion affected by wall materials and drying methods. Food Funct 2021; 12:8907-8919. [PMID: 34378612 DOI: 10.1039/d1fo01533h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The objective of this study was to investigate the impact of protein type (sodium caseinate and pea protein isolate) and protein to sugar beet pectin mixing ratio (5 : 1 and 2 : 1) on complex coacervate formation, as well as the impact of the finishing technology (freeze-drying and spray-drying) for improving the viability of encapsulated Lactobacillus rhamnosus GG (LGG) in complex coacervates during simulated sequential gastrointestinal (GI) digestion. The physicochemical properties of LGG encapsulated microcapsules in liquid and powder form were evaluated. The state diagram and ζ-potential results indicated that pH 3.0 was the optimum pH for coacervate formation in the current systems. Confocal laser scanning microscopy (CLSM), viscoelastic analysis, and Fourier transform infrared spectroscopy (FTIR) confirmed that the gel-like network structure of the complex coacervates was successfully formed between the protein and SBP at pH 3.0 through electrostatic interaction. In terms of physiochemical properties and viability of LGG encapsulated in the microcapsule powder, the drying method played a crucial role on particle size, microstructure and death rate of encapsulated LGG during simulated sequential GI digestion compared to protein type and biopolymer mixing ratio. For example, the microstructure of spray-dried microcapsules exhibited smaller spherical particles with some cavities, whereas the larger particle size of freeze-dried samples showed a porous sponge network structure with larger particle sizes. As a result, spray-dried LGG microcapsules generally had a lower death rate during simulated sequential gastrointestinal digestion compared to their freeze-dried counterparts. Among all samples, spray-dried PPI-SBP microcapsules demonstrated superior performance against cell loss and maintained more than 7.5 log CFU per g viable cells after digestion.
Collapse
Affiliation(s)
- Xiaoxi Qi
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Yang Lan
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Jae-Bom Ohm
- USDA-ARS, Red River Valley Agricultural Research Center, Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Lab., Fargo, ND 58108, USA
| | - Bingcan Chen
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Jiajia Rao
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| |
Collapse
|
35
|
Dong D, Cui B. Fabrication, characterization and emulsifying properties of potato starch/soy protein complexes in acidic conditions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Physicochemical and functional properties of a novel xanthan gum-lysozyme nanoparticle material prepared by high pressure homogenization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Wu G, Hui X, Brennan MA, Zeng X, Guo X, Brennan CS. Combination of rehydrated sodium caseinate aqueous solution with blackcurrant concentrate and the formation of encapsulates via spray drying and freeze drying: Alterations to the functional properties of protein. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gang Wu
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture & Life Sciences Lincoln University Christchurch New Zealand
- Riddet Institute Palmerston North New Zealand
| | - Xiaodan Hui
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture & Life Sciences Lincoln University Christchurch New Zealand
- Riddet Institute Palmerston North New Zealand
| | - Margaret A. Brennan
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture & Life Sciences Lincoln University Christchurch New Zealand
| | - Xin‐An Zeng
- School of Food Science of Engineering South China University of Technology Guangzhou China
| | - Xinbo Guo
- School of Food Science of Engineering South China University of Technology Guangzhou China
| | - Charles S. Brennan
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture & Life Sciences Lincoln University Christchurch New Zealand
- Riddet Institute Palmerston North New Zealand
- School of Science RMIT Melbourne Australia
| |
Collapse
|
38
|
Carpentier J, Conforto E, Chaigneau C, Vendeville JE, Maugard T. Complex coacervation of pea protein isolate and tragacanth gum: Comparative study with commercial polysaccharides. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Comunian TA, Drusch S, Brodkorb A. Advances of plant-based structured food delivery systems on the in vitro digestibility of bioactive compounds. Crit Rev Food Sci Nutr 2021; 62:6485-6504. [PMID: 33775182 DOI: 10.1080/10408398.2021.1902262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food researchers are currently showing a growing interest in in vitro digestibility studies due to their importance for obtaining food products with health benefits and ensuring a balanced nutrient intake. Various bioactive food compounds are sensitive to the digestion process, which results in a lower bioavailability in the gut. The main objective of structured food delivery systems is to promote the controlled release of these compounds at the desired time/place, in addition to protecting them during digestion processes. This review provides an overview of the influence of structured delivery systems on the in vitro digestive behavior. The main delivery systems are summarized, the pros and cons of different structures are outlined, and examples of several studies that optimized the use of these structured systems are provided. In addition, we have reviewed the use of plant-based systems, which have been of interest to food researchers and the food industry because of their health benefits, improved sustainability as well as being an alternative for vegetarian, vegan and consumers suffering from food allergies. In this context, the review provides new insights and comprehensive knowledge regarding the influence of plant-based structured systems on the digestibility of encapsulated compounds and proteins/polysaccharides used in the encapsulation process.
Collapse
Affiliation(s)
- Talita A Comunian
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| |
Collapse
|
40
|
Wu G, Hui X, Liang J, Liu H, Chen H, Gong X, Brennan MA, Zeng XA, Guo X, Brennan CS. Combination of rehydrated whey protein isolate aqueous solution with blackcurrant concentrate and the formation of encapsulates via spray-drying and freeze-drying: Alterations to the functional properties of protein and their anticancer properties. Food Chem 2021; 355:129620. [PMID: 33780795 DOI: 10.1016/j.foodchem.2021.129620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Novel protein ingredients were produced by encapsulating blackcurrant concentrate (BC) with whey protein through spray-, or freeze-, drying strategies. The effects of encapsulation strategies and the addition of BC on the physical and functional characteristics, and anticancer activity of the ingredients were evaluated. The mechanistic interactions between the blackcurrant anthocyanins (BAs) with the whey protein components were predicted via in silico studies. HPLC results revealed that spray-dried and freeze-dried whey protein-BC encapsulates have effectively delivered the BAs. The physical and functional properties of the proteins were altered by drying strategies and the addition of BC. Anticancer effects were linked to reactive oxygen species production and cell apoptosis towards HepG2. Molecular docking results showed that hydrogen bonds were the main binding forces between BAs and various whey protein molecules, resulting in the formation of complexes. These findings are relevant to the formulation of powdered products to be used as ingredients in practical food matrix.
Collapse
Affiliation(s)
- Gang Wu
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand.
| | - Xiaodan Hui
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Jiaxi Liang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Han Chen
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Xi Gong
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Margaret A Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Xin-An Zeng
- School of Food Science of Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xinbo Guo
- School of Food Science of Engineering, South China University of Technology, Guangzhou 510641, China
| | - Charles S Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand; School of Food Science of Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
41
|
Zhang Q, Dong H, Gao J, Chen L, Vasanthan T. Field pea protein isolate/chitosan complex coacervates: Formation and characterization. Carbohydr Polym 2020; 250:116925. [PMID: 33049839 DOI: 10.1016/j.carbpol.2020.116925] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/21/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022]
Abstract
Influence of chitosan (Ch) with low, medium, and high molecular weight (LMW, MMW, and HMW) on the formation of field pea protein isolate (FPPI)/Ch complex coacervates was investigated. An increase in maximum turbidity and a gradual shift of critical pH values towards the isoelectronic point of FPPI were observed as the FPPI/Ch ratio increased. Formation of FPPI/Ch complex coacervates was dominated by the electrostatic and hydrophobic interactions. FPPI/Ch complex coacervates exhibited a porous network microstructure and relatively uniform-sized and even-distributed pores were found in FPPI/Ch-HMW coacervates. Different thermodynamic profiles were observed during complex coacervation between FPPI and Ch with varying MWs and the largest binding stoichiometry was observed in the Ch-MMW at pH 6.6. In summary, the Ch-HMW was demonstrated to be most suitable for the formation of FPPI/Ch complex coacervates with homogenous microstructure but caused less changes in the tertiary conformation of FPPI compared to the Ch-LWM and Ch-MMW.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada; College of Food Science/Institute of Food Processing and Safety, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China.
| | - Hongmin Dong
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Jun Gao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Thava Vasanthan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
42
|
Soares ID, Okiyama DCG, Rodrigues CEDC. Simultaneous green extraction of fat and bioactive compounds of cocoa shell and protein fraction functionalities evaluation. Food Res Int 2020; 137:109622. [PMID: 33233210 DOI: 10.1016/j.foodres.2020.109622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
This work aimed to verify the feasibility of using alcoholic solvents under atmospheric pressure for the simultaneous extraction of fat and bioactive compounds from cocoa shell (CS), a byproduct of the cocoa industry, as well as to determine the influence of processing on the characteristics of defatted solids (DS). To this end, CS fat (CSF) extraction kinetics using ethanol or isopropanol as solvents were determined at 75 and 90 °C. Relative extraction yields of flavanols and alkaloids were determined, and protein functionalities such as the nitrogen solubility index were evaluated. CSF extraction yields from 36 to 70% were obtained with the highest figures related to absolute solvents. Conversely, hydrated alcohols were suitable to extract bioactive compounds, especially alkaloids, with extraction yields up to 73%. The best values of DS functionalities were obtained with the use of isopropanol, with a foaming capacity of (34 ± 2)% and stability of (57 ± 3)%; regarding emulsifying capability, the highest value was (126 ± 2) m2/g with a stability of (53 ± 4) min. CSF with a fatty acid composition similar to that of cocoa butter and DS with interesting protein functionalities were achieved, indicating that CS can be applied in food systems.
Collapse
Affiliation(s)
- Ingrid Denardi Soares
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de Sao Paulo (USP), P. O. Box 23, 13635-900 Pirassununga, São Paulo, Brazil
| | - Dayane Cristina Gomes Okiyama
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de Sao Paulo (USP), P. O. Box 23, 13635-900 Pirassununga, São Paulo, Brazil
| | - Christianne Elisabete da Costa Rodrigues
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de Sao Paulo (USP), P. O. Box 23, 13635-900 Pirassununga, São Paulo, Brazil.
| |
Collapse
|
43
|
Sousa de Oliveira T, Freitas-Silva O, Mendonça Kluczkovski A, Henrique Campelo P. Potential use of vegetable proteins to reduce Brazil nut oil oxidation in microparticle systems. Food Res Int 2020; 137:109526. [PMID: 33233158 DOI: 10.1016/j.foodres.2020.109526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Brazil nut oil is mostly composed of unsaturated fatty acids, some of which are associated with decreased incidence of cardiovascular diseases. Vegetable proteins have been increasingly used as wall material for partial replacement of carbohydrates and whey proteins. In order to create an oil preservation method, Brazil nut oil was encapsulated with three different types of vegetable protein concentrates and gum arabic (GA): rice (RPC + GA); pea (PPC + GA); and soy (SPC + GA) .For this purpose, vegetable protein concentrates were characterized, and after the drying process the physicochemical characteristics of the microparticles were evaluated. The most stable emulsion, after seven days of evaluation, was composed of RPC + GA. RPC + GA. This treatment was also more stable based on the shelf life assessments. We concluded that RCP microparticles were the best option for encapsulating Brazil nut oil in comparison with the other particles evaluated. In addition, the product obtained is potentially capable of being included in various processed foods.
Collapse
Key Words
- (C 20:0) Arachidonic Acid - (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoic acid
- Bertholletia excelsa
- C 14:0 Myristic Acid - tetradecanoic acid
- C 16:0 Palmitic Acid - hexadecanoic acid
- C 16:1 Palmitoleic Acid - (Z)-hexadec-9-enoic acid
- C 17:0 Margaric Acid - heptadecanoic acid
- C 18:0 Stearic Acid - octadecanoic acid
- C 18:1 (ϖ 9) – Oleic Acid - (Z)-octadec-9-enoic acid
- C 18:2 (ϖ 6) Linoleic Acid - (9Z,12Z)-octadeca-9,12-dienoic acid
- C 18:3 (ϖ 3) Linolenic Acid - (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid
- Conservation
- Freeze-drying encapsulation
- Oxidative stability
- Protein characterization
- Unsaturated fatty acids
Collapse
Affiliation(s)
- Tamires Sousa de Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Amazonas - UFAM, Amazonas, Brazil.
| | | | | | - Pedro Henrique Campelo
- Faculty of Agricultural Sciences, Federal University of Amazonas - UFAM, Amazonas, Brazil
| |
Collapse
|
44
|
Naderi B, Keramat J, Nasirpour A, Aminifar M. Complex coacervation between oak protein isolate and gum Arabic: optimization & functional characterization. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1825484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Behnaz Naderi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Javad Keramat
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ali Nasirpour
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mehrnaz Aminifar
- Department of Food, Halal and Agricultural Products, Food Technology and Agricultural Products Research Center, Standard Research Institute – SRI, Karaj, Iran
| |
Collapse
|
45
|
de Oliveira APH, Omura MH, Barbosa ÉDAA, Bressan GC, Vieira ÉNR, Coimbra JSDR, de Oliveira EB. Combined adjustment of pH and ultrasound treatments modify techno-functionalities of pea protein concentrates. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125156] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Grgić J, Šelo G, Planinić M, Tišma M, Bucić-Kojić A. Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants (Basel) 2020; 9:E923. [PMID: 32993196 PMCID: PMC7601682 DOI: 10.3390/antiox9100923] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Plant-derived phenolic compounds have multiple positive health effects for humans attributed to their antioxidative, anti-inflammatory, and antitumor properties, etc. These effects strongly depend on their bioavailability in the organism. Bioaccessibility, and consequently bioavailability of phenolic compounds significantly depend on the structure and form in which they are introduced into the organism, e.g., through a complex food matrix or as purified isolates. Furthermore, phenolic compounds interact with other macromolecules (proteins, lipids, dietary fibers, polysaccharides) in food or during digestion, which significantly influences their bioaccessibility in the organism, but due to the complexity of the mechanisms through which phenolic compounds act in the organism this area has still not been examined sufficiently. Simulated gastrointestinal digestion is one of the commonly used in vitro test for the assessment of phenolic compounds bioaccessibility. Encapsulation is a method that can positively affect bioaccessibility and bioavailability as it ensures the coating of the active component and its targeted delivery to a specific part of the digestive tract and controlled release. This comprehensive review aims to present the role of encapsulation in bioavailability of phenolic compounds as well as recent advances in coating materials used in encapsulation processes. The review is based on 258 recent literature references.
Collapse
Affiliation(s)
| | | | | | | | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (J.G.); (G.Š.); (M.P.); (M.T.)
| |
Collapse
|
47
|
Li M, McClements DJ, Liu X, Liu F. Design principles of oil‐in‐water emulsions with functionalized interfaces: Mixed, multilayer, and covalent complex structures. Compr Rev Food Sci Food Saf 2020; 19:3159-3190. [DOI: 10.1111/1541-4337.12622] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Moting Li
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | | | - Xuebo Liu
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | - Fuguo Liu
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| |
Collapse
|
48
|
Lamsen MRL, Wang T, D'Souza D, Dia V, Chen G, Zhong Q. Encapsulation of vitamin D 3 in gum arabic to enhance bioavailability and stability for beverage applications. J Food Sci 2020; 85:2368-2379. [PMID: 32691454 DOI: 10.1111/1750-3841.15340] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/24/2020] [Accepted: 06/01/2020] [Indexed: 02/05/2023]
Abstract
Delivery of vitamin D3 (VD3 ) in foods should exhibit desirable physicochemical characteristics and improves absorption. In this study, gum arabic (GA) was investigated as a VD3 carrier to encapsulate VD3 . VD3 dissolved in 5 mL ethanol corresponding to 0.3 to 6.0% mass of GA, was blended in 5.0% w/v GA solution, followed by freeze drying. The encapsulation efficiency decreased while loading capacity increased with an increased amount of VD3 . At the highest VD3 level, the loading capacity (3.47%) was the highest, and the encapsulation efficiency (61.24%) was satisfactory, and the treatment was further studied. The magnitude of negative zeta-potential increased from 3.1 to 31.0 mV at pH 2.0 to 7.4. During the 100-day storage at 3 °C of capsules reconstituted at pH 2.0 to 7.4, the hydrodynamic diameter decreased at all pH conditions, most evident for reduction to 81.3 nm at pH 7.4, and no precipitation was observed, indicating the significance of steric repulsion on capsule stability. Bioaccessibility of VD3 in capsules (95.76%) was significantly higher than the nonencapsulated VD3 (68.98%). The in vivo pharmacokinetic study in Sprague-Dawley rats after a single-dose of 300 µg VD3 showed the area-under-curve of serum 25(OHD) level in 48 hr of the encapsulation treatment was 4.32-fold of the nonencapsulated VD3 and more than twice higher than the VD3 -GA physical mixture. During 2-week supplementation of 60 µg VD3 /d, rats receiving capsules or physical mixture had 25(OH)D levels of at least 81 ng/mL higher than that of the nonencapsulated VD3 group. The studied encapsulation system holds great potential as a value-added ingredient to supplement VD3 in beverages with a wide pH range. PRACTICAL APPLICATION: The findings of this study demonstrated the improved dispersion stability and absorption of vitamin D3 after encapsulation in gum arabic. The capsules exhibited good dispersion stability across a pH range between 2.0 and 7.4, showing potential application in beverages. Furthermore, the enhanced absorption of VD3 after encapsulation highlights the nutritional benefits of the studied encapsulation system.
Collapse
Affiliation(s)
- Mary Ross L Lamsen
- Department of Food Science, The University of Tennessee, Knoxville, TN, U.S.A
| | - Tiannan Wang
- Department of Nutrition, The University of Tennessee, Knoxville, TN, U.S.A
| | - Doris D'Souza
- Department of Food Science, The University of Tennessee, Knoxville, TN, U.S.A
| | - Vermont Dia
- Department of Food Science, The University of Tennessee, Knoxville, TN, U.S.A
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, U.S.A
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN, U.S.A
| |
Collapse
|
49
|
Yücetepe A, Yavuz-Düzgün M, Şensu E, Bildik F, Demircan E, Özçelik B. The impact of pH and biopolymer ratio on the complex coacervation of Spirulina platensis protein concentrate with chitosan. Journal of Food Science and Technology 2020; 58:1274-1285. [PMID: 33746255 DOI: 10.1007/s13197-020-04636-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/16/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022]
Abstract
Spirulina platensis is one of the most significant multicellular blue-green Cyanobacterium microalgae with a high protein content. The complex coacervation as an encapsulation technique allows the formation of proteins with improved functional properties and thermal stability. In this study, the effects of pH and Spirulina platensis protein concentrate (SPPC)-chitosan ratio on complex coacervation formation were examined in terms of ζ-potential, turbidity, visual observation and microscopic images. Based on the results, the strongest interaction between SPPC and chitosan occurred at pH of 5.5 and SPPC-chitosan ratio of 7.5:1 with a precipitation in the test tubes. Stable dispersions were obtained at a pH range of 2-4 for the SPPC-chitosan ratio of 7.5:1 inhibiting the precipitation which occurs at individual SPPC solutions at this pH range. Characteristic organic groups in the individual SPPC and chitosan solutions as well as the SPPC-chitosan coacervate formed at the optimal conditions were identified by using Fourier Transform Infrared (FT-IR) spectroscopy technique. Furthermore, thermal stability of the individual SPPC and chitosan solutions and the SPPC-chitosan coacervates were investigated using differential scanning calorimetry (DSC). The glass transition temperature and enthalpy were 209.5 °C and - 3.414 W/g for the complex coacervates and 180.5 °C and - 0.877 W/g for SPPC. It means that complex coacervation provided more thermally-stable SPPC in chitosan-SPPC coacervate than that of the individual SPPC. Our results might have important implications for the utilization of Spirulina platensis proteins especially for acidic beverage applications.
Collapse
Affiliation(s)
- Aysun Yücetepe
- Department of Food Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Merve Yavuz-Düzgün
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- Department of Mechanical Engineering Chair of Particle Technology, Ruhr University, 44780 Bochum, Germany
| | - Eda Şensu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Fatih Bildik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Evren Demircan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co., 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
50
|
Functional properties of the protein isolates of hyacinth bean [Lablab purpureus (L.) Sweet]: An effect of the used procedures. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|