1
|
Zang J, Yan B, Liu Z, Tang D, Liu Y, Chen J, Yin Z. Current state, challenges and future orientations of the applications of lactic acid bacteria exopolysaccharide in foods. Food Microbiol 2025; 126:104678. [PMID: 39638447 DOI: 10.1016/j.fm.2024.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
In the quest for a balanced diet and better health, the global shift towards nutrient-dense foods highlights the multiple roles of lactic acid bacteria exopolysaccharides (LAB-EPS) in improving food quality and health. This paper offers a comprehensive survey of LAB-EPS, focusing on their classification, biosynthesis pathways and application in the food industry, from dairy products to bakery products and meat. It highlights the impact of LAB-EPS on the texture and sensory qualities of food. Despite their promising prospects, these polysaccharides face various application challenges in the food industry. These include variability in EPS production among LAB strains, complexity in structure-function relationships, and limited understanding of their health benefits. In order to address these issues, the review identifies and suggests future research directions to optimize the production of LAB-EPS, elucidating their health benefit mechanisms, and expanding their application scope. In summary, this review aims to contribute to advance innovation and progress in the food industry by developing healthier food options and deepening the understanding of LAB-EPS in promoting human health.
Collapse
Affiliation(s)
- Jianwei Zang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bingxu Yan
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zebo Liu
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou, 510610, China
| | - Yuanzhi Liu
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiguang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
2
|
Świder O, Roszko MŁ, Wójcicki M. The inhibitory effects of plant additives on biogenic amine formation in fermented foods - a review. Crit Rev Food Sci Nutr 2023; 64:12935-12960. [PMID: 37724793 DOI: 10.1080/10408398.2023.2258964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fermented food has unique properties and high nutritional value, and thus, should constitute a basic element of a balanced and health-promoting diet. However, it can accumulate considerable amount of biogenic amines (BAs), which ingested in excess can lead to adverse health effects. The application of plant-derived additives represents a promising strategy to ensure safety or enhance the functional and organoleptic properties of fermented food. This review summarizes currently available data on the application of plant-origin additives with the aim to reduce BA content in fermented products. The importance of ensuring fermented food safety has been highlighted considering the growing evidence of beneficial effects resulting from the consumption of this type of food, as well as the increasing number of individuals sensitive to BAs. The examined plant-origin additives reduced the BA concentration to varying degrees, and their efficacy depended on the type of additive, matrix, autochthonous, and inoculated microorganisms, as well as the manufacturing conditions. The main mechanisms of action include antimicrobial effects and the inhibition of microbial decarboxylases. Further research on the optimization of bioactive substances extraction, standardization of their chemical composition, and development of detailed procedures for its use in fermented products manufacturing are needed.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
3
|
Kristof I, Ledesma SC, Apud GR, Vera NR, Aredes Fernández PA. Oenococcus oeni allows the increase of antihypertensive and antioxidant activities in apple cider. Heliyon 2023; 9:e16806. [PMID: 37332959 PMCID: PMC10272325 DOI: 10.1016/j.heliyon.2023.e16806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023] Open
Abstract
This study aimed to investigate the impact of the malolactic fermentation (MLF) carried out by Oenococcus oeni on antihypertensive and antioxidant activities in cider. The MLF was induced using three strains of O. oeni. The modification in phenolic compounds (PCs) and nitrogen organic compounds, antioxidant, and antihypertensive activities were determined after MLF. Among the 17 PCs analyzed caffeic acid was the most abundant compound and phloretin, (-)-epicatechin, and myricetin were detected only in malolactic ciders, however, (-)-epigallocatechin was not detected after MLF. The evaluation of nitrogen organic compounds revealed a drop in total protein concentration (from 17.58 to 14.00 mg N/L) concomitantly with a significant release of peptide nitrogen (from 0.31 to a maximum value of 0.80 mg N/L) after MLF. In addition, an extracellular proteolytic activity was evidenced in all MLF supernatants. The FRAP activity increased reaching a maximum of 120.9 μmol FeSO4/mL and the ABTS radical-scavenging activity increased until 6.8 mmol ascorbic acid/L. Moreover, the angiotensin I-converting enzyme inhibitory activity reached a maximum value of 39.8%. The MLF conducted by O. oeni in ciders enables the increase of interesting biological activities and this finding could constitute a valuable tool to add value to final product.
Collapse
Affiliation(s)
- Irina Kristof
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 491, 4000, Tucumán, Argentina
| | - Silvana Cecilia Ledesma
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 491, 4000, Tucumán, Argentina
| | - Gisselle Raquel Apud
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 491, 4000, Tucumán, Argentina
| | - Nancy Roxana Vera
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 491, 4000, Tucumán, Argentina
| | - Pedro Adrián Aredes Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 491, 4000, Tucumán, Argentina
| |
Collapse
|
4
|
Pérez‐Lorenzo E, Artamendi M, Zabalo J, Zapiain E, Zapiain I, Arana S. Reduction of lactic acid bacteria and acetic acid bacteria from natural apple cider by UVC irradiation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eva Pérez‐Lorenzo
- CEIT‐Basque Research and Technology Alliance (BRTA) Donostia Spain
- Universidad de Navarra, Tecnun Donostia Spain
| | | | - Jon Zabalo
- CEIT‐Basque Research and Technology Alliance (BRTA) Donostia Spain
- Universidad de Navarra, Tecnun Donostia Spain
| | | | | | - Sergio Arana
- CEIT‐Basque Research and Technology Alliance (BRTA) Donostia Spain
- Universidad de Navarra, Tecnun Donostia Spain
| |
Collapse
|
5
|
Preliminary Evaluation of the Use of Thermally-Dried Immobilized Kefir Cells in Low Alcohol Winemaking. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low alcohol wines (≤10.5% vol) are novel products that have gradually been gaining the consumers’ and market’s interest over the last decade. Taking into account the technological properties of immobilized cell systems alongside with the commercial need for dry cultures, the aim of the present study was to assess the suitability of thermally-dried immobilized kefir cells on DCM, apples pieces, and grape skins in low alcohol wine production. Storage of thermally-dried kefir culture in various temperatures (−18, 5, and 20 °C) resulted in high viability rates for immobilized cells (up to 93% for yeasts/molds immobilized on grape skins and stored at −18 °C for 6 months). Fermentation activity was maintained after storage in all cases, while high operational stability was confirmed in repeated batch fermentations for a period of 6 months. Principal Component Analysis (PCA) revealed that the fermentation temperature rather than the state of kefir culture affected significantly volatiles detected by Head Space Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry analysis. Notably, all new products were of high quality and approved by the sensory panel.
Collapse
|
6
|
Dimopoulou M, Dols-Lafargue M. Exopolysaccharides Producing Lactic Acid Bacteria in Wine and Other Fermented Beverages: For Better or for Worse? Foods 2021; 10:2204. [PMID: 34574312 PMCID: PMC8466591 DOI: 10.3390/foods10092204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) from fermented beverages such as wine, cider and beer produce a wide range of exopolysaccharides (EPS) through multiple biosynthetic pathways. These extracellular polysaccharides constitute key elements for bacterial species adaptation to such anthropic processes. In the food industry, LAB polysaccharides have been widely studied for their rheological, functional and nutritional properties; however, these have been poorly studied in wine, beer and cider until recently. In this review, we have gathered the information available on these specific polysaccharide structure and, biosynthetic pathways, as well as the physiology of their production. The genes associated with EPS synthesis are also presented and compared. Finally, the possible role of EPS for bacterial survival and spread, as well as the risks or possible benefits for the winemaker and the wine lover, are discussed.
Collapse
Affiliation(s)
- Maria Dimopoulou
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos str, Egaleo, 12243 Athens, Greece;
| | - Marguerite Dols-Lafargue
- Unité de Recherche Œnologie EA 4577, University of Bordeaux, ISVV, USC 1366 INRA, Bordeaux INP, F-33140 Villenave d’Ornon, France
| |
Collapse
|
7
|
Apple Fermented Products: An Overview of Technology, Properties and Health Effects. Processes (Basel) 2021. [DOI: 10.3390/pr9020223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As an easily adapted culture, with overloaded production in some parts of the globe, apples and their by-products are being redirected to pharmaceutical, canning and beverages industries, both alcoholic and non-alcoholic. Fermentation is generally considered to increase the bioavailability of bioactive compounds found in apple, by impacting, through a high degree of changes, the product’s properties, including composition and health-promoting attributes, as well as their sensory profile. Probiotic apple beverages and apple vinegar are generally considered as safe and healthy products by the consumers. Recently, contributions to human health, both in vivo and in vitro studies, of non-alcoholic fermented apple-based products have been described. This review highlighted the advances in the process optimization of apple-based products considering vinegar, cider, pomace, probiotic beverages and spirits’ technologies. The different processing impacts on physical-chemical, nutritional and sensory profiles of these products are also presented. Additionally, the harmful effects of toxic compounds and strategies to limit their content in cider and apple spirits are illustrated. New trends of fermented apple-based products applicability in tangential industries are summarized.
Collapse
|
8
|
Misery B, Legendre P, Rue O, Bouchart V, Guichard H, Laplace JM, Cretenet M. Diversity and dynamics of bacterial and fungal communities in cider for distillation. Int J Food Microbiol 2020; 339:108987. [PMID: 33321431 DOI: 10.1016/j.ijfoodmicro.2020.108987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 11/18/2022]
Abstract
Bacterial and fungal population dynamics in cider for distillation have so far been explored by culture-dependant methods. Cider for distillation can be produced by the spontaneous fermentation of apples that do not undergo any intervention during the process. In this study, cider microbiomes extracted from six tanks containing ciders for distillation from four producers in Normandy were characterized at three main stages of the fermentation process: fermentation Initiation (I), end of the alcoholic Fermentation (F) and end of the Maturation period (M). Cider samples were subjected to Illumina MiSeq sequencing (rRNA 16S V1-V3 and ITS1 region targeting) to determine bacterial and fungal communities. Yeasts (YGC), Zymomonas (mZPP) and lactic acid bacteria selective media (mMRS, mMLO, mPSM) were also used to collect 807 isolates. Alcoholic levels, glycerol, sugar content (glucose, fructose and sucrose), pH, total and volatile acidity, nitrogen, malic and lactic acid contents were determined at all sampling points. Alpha diversity indexes show significant differences (p < 0.05) in microbial populations between I, F and M. Fungal communities were characterized by microorganisms from the environment and phytopathogens at I followed by the association of yearsts with alcoholic fermentation like Saccharomyces and non-Saccharomyces yeasts (Hanseniaspora, Candida). A maturation period for cider leads to an increase of the Dekkera/Brettanomyces population, which is responsible for off-flavors in cider for all producers. Among bacterial communities, the genera community associated to malolactic fermentation (Lactobacillus sp., Leuconostoc sp., Oenococcus sp.) was the most abundant at F and M. Acetic acid bacteria such as Acetobacter sp., Komagataeibacter sp. and Gluconobacter sp. were also detected during the process. Significant differences (p < 0.05) were found in fungal and bacterial populations between the four producers and during the fermentation process. The development of microorganisms associated with cider spoilage such as Zymomonas mobilis, Lactobacillus collinoides or Brettanomyces/Dekkera sp. was anticipated by a metagenomic approach. The monitoring of microbial diversity via high throughput sequencing combined with physical-chemical analysis is an interesting approach to improve the fermentation performance of cider for distillation and therefore, the quality of Calvados.
Collapse
Affiliation(s)
- B Misery
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - P Legendre
- LABÉO Frank Duncombe, 1 Route de Rosel, 14053 Caen Cedex 4, France
| | - O Rue
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, 78350 Jouy-en-Josas, France
| | - V Bouchart
- LABÉO Frank Duncombe, 1 Route de Rosel, 14053 Caen Cedex 4, France
| | - H Guichard
- Institut Français des Produits Cidricoles (IFPC), Domaine de la Motte, 35653 Le Rheu, France
| | - J M Laplace
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - M Cretenet
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France.
| |
Collapse
|
9
|
Nikolaou A, Kandylis P, Kanellaki M, Kourkoutas Y. Winemaking using immobilized kefir cells on natural zeolites. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Al Daccache M, Koubaa M, Maroun RG, Salameh D, Louka N, Vorobiev E. Impact of the Physicochemical Composition and Microbial Diversity in Apple Juice Fermentation Process: A Review. Molecules 2020; 25:molecules25163698. [PMID: 32823772 PMCID: PMC7464816 DOI: 10.3390/molecules25163698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
Fermented apple beverages are produced all over the world with diverse characteristics associated with each country. Despite the diversifications, cider producers are confronted with similar issues and risks. The nature of the raw material, also known as the fermentation medium, plays a key role in fermentation. A well-defined composition of apples is, therefore, required to produce cider with good quality. In addition, ferment and its metabolism are important factors in the fermentation process. The producers of cider and other alcoholic beverages are looking in general for novel yeast strains or for the use of native strains to produce "authentic" and diversified beverages that are distinct from each other, and that attract more and more consumers. Research articles on cider production are infrequent compared to wine production, especially on the impact of the chemical composition and microbial diversity of apples on fermentation. Even though the processing of fermented beverages is close in terms of microbial interactions and production, the study of the specific properties of apples and the production challenges of cider production is advantageous and meaningful for cider producers. This review summarizes the current knowledge on apple composition and the impact of the must composition on fermentation and yeast growth. In addition, the microbial diversity of cider, activities, and its influence on fermentation are reviewed.
Collapse
Affiliation(s)
- Marina Al Daccache
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CEDEX CS 60319, 60203 Compiègne, France; (M.A.D.); (E.V.)
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Mohamed Koubaa
- ESCOM, UTC, EA 4297 TIMR, 1 allée du réseau Jean-Marie Buckmaster, 60200 Compiègne, France
- Correspondence: ; Tel.: +33-3442-38841
| | - Richard G. Maroun
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Dominique Salameh
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Nicolas Louka
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Eugène Vorobiev
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CEDEX CS 60319, 60203 Compiègne, France; (M.A.D.); (E.V.)
| |
Collapse
|
11
|
Verce M, De Vuyst L, Weckx S. The metagenome-assembled genome of Candidatus Oenococcus aquikefiri from water kefir represents the species Oenococcus sicerae. Food Microbiol 2020; 88:103402. [DOI: 10.1016/j.fm.2019.103402] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 02/01/2023]
|
12
|
García C, Rendueles M, Díaz M. Liquid-phase food fermentations with microbial consortia involving lactic acid bacteria: A review. Food Res Int 2019; 119:207-220. [DOI: 10.1016/j.foodres.2019.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/27/2022]
|
13
|
Lorentzen MPG, Lucas PM. Distribution of Oenococcus oeni populations in natural habitats. Appl Microbiol Biotechnol 2019; 103:2937-2945. [PMID: 30788540 PMCID: PMC6447504 DOI: 10.1007/s00253-019-09689-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/02/2022]
Abstract
Oenococcus oeni is the lactic acid bacteria species most commonly encountered in wine, where it develops after the alcoholic fermentation and achieves the malolactic fermentation that is needed to improve the quality of most wines. O. oeni is abundant in the oenological environment as well as in apple cider and kombucha, whereas it is a minor species in the natural environment. Numerous studies have shown that there is a great diversity of strains in each wine region and in each product or type of wine. Recently, genomic studies have shed new light on the species diversity, population structure, and environmental distribution. They revealed that O. oeni has unique genomic features that have contributed to its fast evolution and adaptation to the enological environment. They have also unveiled the phylogenetic diversity and genomic properties of strains that develop in different regions or different products. This review explores the distribution of O. oeni and the diversity of strains in natural habitats.
Collapse
Affiliation(s)
- Marc P. G. Lorentzen
- Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F-33882 Villenave d’Ornon, France
| | - Patrick M. Lucas
- Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F-33882 Villenave d’Ornon, France
| |
Collapse
|
14
|
Bartowsky EJ. Oenococcus oeni and the genomic era. FEMS Microbiol Rev 2018; 41:S84-S94. [PMID: 28830095 DOI: 10.1093/femsre/fux034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/13/2017] [Indexed: 11/13/2022] Open
Abstract
Oenococcus oeni is the main lactic acid bacteria species associated with grapes and wine. It is a bacterium that has adapted itself to the harsh conditions of wine, and demonstrated its importance in the production of quality wines. It has a small genome (1.8 Mb); over 200 strains have had their genome sequenced. Genomic analyses have proposed that there are two major branches of O. oeni strains that might be linked to wine style (sparkling wine versus white and red) and metagenomic studies have suggested a possible influence of terroir. This review explores recent developments of O. oeni including genomic studies examining O. oeni diversity and how this might shape future regional-specific commercial O. oeni starter strains.
Collapse
Affiliation(s)
- Eveline J Bartowsky
- Lallemand Australia, PO Box 210, Edwardstown, Adelaide, SA 5039, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| |
Collapse
|
15
|
Disclosing diversity of exopolysaccharide-producing lactobacilli from Spanish natural ciders. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Cousin FJ, Le Guellec R, Schlusselhuber M, Dalmasso M, Laplace JM, Cretenet M. Microorganisms in Fermented Apple Beverages: Current Knowledge and Future Directions. Microorganisms 2017; 5:E39. [PMID: 28757560 PMCID: PMC5620630 DOI: 10.3390/microorganisms5030039] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022] Open
Abstract
Production of fermented apple beverages is spread all around the world with specificities in each country. 'French ciders' refer to fermented apple juice mainly produced in the northwest of France and often associated with short periods of consumption. Research articles on this kind of product are scarce compared to wine, especially on phenomena associated with microbial activities. The wine fermentation microbiome and its dynamics, organoleptic improvement for healthy and pleasant products and development of starters are now widely studied. Even if both beverages seem close in terms of microbiome and process (with both alcoholic and malolactic fermentations), the inherent properties of the raw materials and different production and environmental parameters make research on the specificities of apple fermentation beverages worthwhile. This review summarizes current knowledge on the cider microbial ecosystem, associated activities and the influence of process parameters. In addition, available data on cider quality and safety is reviewed. Finally, we focus on the future role of lactic acid bacteria and yeasts in the development of even better or new beverages made from apples.
Collapse
Affiliation(s)
- Fabien J Cousin
- Aliments Bioprocédés Toxicologie Environnements, Normandie Univ., UNICAEN, UNIROUEN, 14000 Caen, France.
| | - Rozenn Le Guellec
- Aliments Bioprocédés Toxicologie Environnements, Normandie Univ., UNICAEN, UNIROUEN, 14000 Caen, France.
| | - Margot Schlusselhuber
- Aliments Bioprocédés Toxicologie Environnements, Normandie Univ., UNICAEN, UNIROUEN, 14000 Caen, France.
| | - Marion Dalmasso
- Aliments Bioprocédés Toxicologie Environnements, Normandie Univ., UNICAEN, UNIROUEN, 14000 Caen, France.
| | - Jean-Marie Laplace
- Aliments Bioprocédés Toxicologie Environnements, Normandie Univ., UNICAEN, UNIROUEN, 14000 Caen, France.
| | - Marina Cretenet
- Aliments Bioprocédés Toxicologie Environnements, Normandie Univ., UNICAEN, UNIROUEN, 14000 Caen, France.
| |
Collapse
|
17
|
Draft Genome Sequence of Lactobacillus collinoides CUPV237, an Exopolysaccharide and Riboflavin Producer Isolated from Cider. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00506-16. [PMID: 27284133 PMCID: PMC4901224 DOI: 10.1128/genomea.00506-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactobacillus collinoides CUPV237 is a strain isolated from a Basque cider. Lactobacillus collinoides is one of the most frequent species found in cider from Spain, France, or England. A notable feature of the L. collinoides CUPV237 strain is its ability to produce exopolysaccharides.
Collapse
|
18
|
Henríquez-Aedo K, Durán D, Garcia A, Hengst MB, Aranda M. Identification of biogenic amines-producing lactic acid bacteria isolated from spontaneous malolactic fermentation of chilean red wines. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Gordún E, del Valle LJ, Ginovart M, Carbó R. Comparison of the microbial dynamics and biochemistry of laboratory sourdoughs prepared with grape, apple and yogurt. FOOD SCI TECHNOL INT 2014; 21:428-39. [DOI: 10.1177/1082013214543033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/13/2014] [Indexed: 11/17/2022]
Abstract
The microbiological culture-dependent characterization and physicochemical characteristics of laboratory sourdough prepared with grape (GS) were evaluated and compared with apple (AS) and yogurt (YS), which are the usual Spanish sourdough ingredients. Ripe GS took longer than AS and YS to reach the appropriate acidity and achieved lower values of lactic acid. In all sourdoughs, the lactic acid bacteria (LAB) increased during processing and were the dominant microorganisms (>1E + 8 CFU/g). GS, as well as AS, had high diversity of LAB species. In ripe YS, Pediococcus pentosaceus was the only species identified; in GS and AS, several Lactobacilli were also found, Lb. plantarum, Lb. brevis, and Lb. sakei; in addition, in GS Weisella cibaria also appeared. Regarding the yeast population, non- Saccharomyces yeasts from GS and AS showed a very high specific population (>1E + 7 CFU/g), but this was reduced in ripe sourdough (<1E + 4 CFU/g). Finally, the Saccharomyces group dominated in all sourdoughs. Starting ingredients or raw material provided microbiological specificity to sourdoughs, and grape could be considered one of them.
Collapse
Affiliation(s)
- Elena Gordún
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Spain
| | - Luis J del Valle
- Centre d'Enginyeria Biotecnològica i Molecular (CEBIM), Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Spain
| | - Marta Ginovart
- Department of Applied Mathematics III, Universitat Politècnica de Catalunya, Spain
| | - Rosa Carbó
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Spain
| |
Collapse
|
20
|
Influence of controlled inoculation of malolactic fermentation on the sensory properties of industrial cider. J Ind Microbiol Biotechnol 2014; 41:853-67. [DOI: 10.1007/s10295-014-1402-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Abstract
Given the lack of research in the traditional cider making field when compared to the efforts devoted to winemaking, this work focused on the effects of controlled inoculation of the malolactic fermentation (MLF) on the sensory properties of cider. MLF develops spontaneously in cider making at industrial level. In this work, industrial cider samples were inoculated with selected indigenous Oenococcus oeni strains and the benefits on the aroma and flavour in cider production compared to non-inoculated ciders were evaluated. Randomly amplified polymorphic DNA PCR was used to monitor strain colonization ability, outnumbering the indigenous microbiota, after completion of the alcoholic fermentation at industrial scale (20,000 l). Aroma-active compounds of experimentally inoculated ciders were analysed by HPLC and GC–MS, and sensory profiles were determined by fractioning aroma extracts using reversed-phase HPLC. Principal component analysis allowed the identification of relationships and differences among ciders with or without inoculation, including several highly appreciated commercial ones obtained under spontaneous conditions. Under controlled inoculation conditions, not only could MLF be shortened by half but, interestingly, enhancement of aroma complexity and flavour resulted in ciders enriched with a higher fruity note. In addition, important aromatic groups analysed here had not been previously described, thus affording deeper knowledge on aroma characterization of apple cider.
Collapse
|
21
|
Quirós C, Herrero M, García LA, Díaz M. Effects of SO2on lactic acid bacteria physiology when used as a preservative compound in malolactic fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/jib.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- C. Quirós
- Department of Chemical Engineering and Environmental Technology; University of Oviedo; Spain
| | - M. Herrero
- Department of Chemical Engineering and Environmental Technology; University of Oviedo; Spain
| | - L. A. García
- Department of Chemical Engineering and Environmental Technology; University of Oviedo; Spain
| | - M. Díaz
- Department of Chemical Engineering and Environmental Technology; University of Oviedo; Spain
| |
Collapse
|
22
|
Sánchez A, Coton M, Coton E, Herrero M, García LA, Díaz M. Prevalent lactic acid bacteria in cider cellars and efficiency of Oenococcus oeni strains. Food Microbiol 2012; 32:32-7. [PMID: 22850371 DOI: 10.1016/j.fm.2012.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 12/19/2011] [Accepted: 02/14/2012] [Indexed: 11/29/2022]
Abstract
Malolactic fermentation (MLF) is an important step in cider production in order to allowing for improvement of microbiological stability and organoleptic characteristics of cider. Induction of this fermentation by using starter cultures enables a better control over this bioprocess, but although it is a common practice in winemaking, starters specifically focussed for cider MLF are not yet commercially available. Proper starter cultures need to present the ability to degrade l-malic acid conferring pleasing sensory characteristics while avoiding toxicological risks. In this work, lactic acid bacteria (LAB) were first isolated from MLF industrial cider samples, obtained in a cellar in the main cider-producing region of Spain, Asturias. Isolates, identified by molecular tools, belonged to the Lactobacillus brevis and Oenococcus oeni species. After a phylogenetic analysis, representative strains of both identified species were evaluated in order to determine their fermentation capacity, showing O. oeni the best behaviour in this cider fermentation, as previously demonstrated for wine in the literature. Consequently, and with the aim to test the influence at strain level, selection of O. oeni isolates as starters for cider fermentation has been undergone. In order to check the influence of geography over biodiversity, O. oeni strains from six different industrial cellars representing the distinct producing areas in the region (located in a ratio of 30 km) were analyzed by using a specific RAPD method. In this way, isolates were typed in five distinct groups, mainly corresponding to each producing area. All strains isolated from the same cellar showed the same RAPD profile revealing the significance of geographical origin in the indigenous cider LAB. Molecular tools were applied to reject those isolates exhibiting presence of genes related to organoleptic spoilage (exopolysaccharides and acrolein production) or food safety (biogenic amine production), as key selection criteria. Representative strains of each of the five O. oeni RAPD groups were tested as pure cultures to evaluate their technological utility for cider production. Experimental data of malic acid degradation and cell concentration obtained were fitted to previously selected kinetic models aimed to optimization and prediction of bioprocess performance. Four strains revealed as suitable potential starter cultures for conducting MLF in cider production.
Collapse
Affiliation(s)
- Ainoa Sánchez
- Department of Chemical Engineering and Environmental Technology, University of Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Savino MJ, Sánchez LA, Saguir FM, de Nadra MCM. Lactic acid bacteria isolated from apples are able to catabolise arginine. World J Microbiol Biotechnol 2011; 28:1003-12. [DOI: 10.1007/s11274-011-0898-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|