1
|
Almeida CORP, Martinez RM, Figueiredo MS, Teodoro AJ. Botanical, nutritional, phytochemical characteristics, and potential health benefits of murici (Byrsonima crassifolia) and taperebá (Spondias mombin): insights from animal and cell culture models. Nutr Rev 2024; 82:407-424. [PMID: 37349898 DOI: 10.1093/nutrit/nuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Brazil has great biodiversity, and the Amazon biome stands out for a variety of native fruits with high economic and nutritional potential. Murici (Byrsonima crassifolia) and taperebá (Spondias mombin) are sources of vitamins, minerals, and phytochemicals with potential health benefits. Because of the bioactive potential of these Brazilian fruits, this review aims to gather the most current existing knowledge about their botanical, nutritional, and phytochemical properties, because the presence of several bioactive compounds may bring promising strategies to the prevention and treatment of several diseases. The search was conducted of the LILACS, MEDLINE, PubMed, and Science Direct databases, considering articles published between 2010 and 2023. The compiled results showed that these fruits, their leaves, and seeds have great antioxidant activity and are a good source of phytochemicals, especially phenolic compounds. In vitro and in vivo studies indicate that these bioactive compounds have several health benefits related to the prevention or treatment of diseases, including antioxidant effects; anti-inflammatory effects; and antidiabetic, antidepressant, neuroprotective, antiproliferative, anticancer, hypolipemic, cardioprotective, gastroprotective, hepatoprotective, and nephroprotective effects, and they are particularly related to the reduction of damage from oxidative stress. This review highlights the potential of these fruits as functional foods and for therapeutic purposes. However, it is recommended to conduct more studies on the identification and quantification of phytochemicals present in these fruits and studies in humans to better understand the mechanisms of action related to their effects and to understand the interaction of these compounds with the human body, as well as to prove the safety and efficacy of these compounds on health.
Collapse
Affiliation(s)
- Carolina O R P Almeida
- Graduate Program in Food and Nutrition, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel M Martinez
- Graduate Program in Food and Nutrition Security, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana S Figueiredo
- Nutrition and Dietetics Department, Universidade Federal Fluminense/Faculdade de Nutrição, Rio de Janeiro, RJ, Brazil
| | - Anderson J Teodoro
- Nutrition and Dietetics Department, Universidade Federal Fluminense/Faculdade de Nutrição, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Almeida CDORPD, Martinez RM, Souza VRD, Lima TPB, Nascimento BA, Noblat GDA, Abreu GM, Pereira AD, Figueiredo MS, Teodoro AJ. Effects of Supplementation of Murici ( Byrsonima crassifolia) and Taperebá ( Spondias mombin) Pulp Extracts on Food Intake, Body Parameters, and Oxidative Stress Markers in Healthy Rats. J Med Food 2024; 27:47-59. [PMID: 38156814 DOI: 10.1089/jmf.2022.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
This study evaluates the effects of supplementation of murici (Byrsonima crassifolia) and taperebá (Spondias mombin) pulp extracts on dietary intake, body composition, biochemical parameters, and markers of oxidative stress. Two experiments were conducted with a total of 80 healthy male Wistar rats and a 30-day supplementation. In the first experiment, animals were divided into control (C) group, murici group 50 mg/(kg⸱day) (50Mu), murici group 100 mg/(kg⸱day) (100Mu), and murici group 200 mg/(kg⸱day) (200Mu). In the second experiment, animals were divided into C group, taperebá group 50 mg/(kg⸱day) (50Tap), taperebá group 100 mg/(kg⸱day) (100Tap), and taperebá group 200 mg/(kg⸱day) (200Tap). Results showed lower feed intake in 50Mu, 100Mu, and 100Tap groups (13%, 12%, and 10%, respectively, P < .05) and lower body fat in 200Mu, 100Tap, and 200Tap groups (16.0%, 29.1%, and 27.1%, respectively, P < .05). Only the 100Tap group showed reduced adipose tissue content (30.4%; P < .05). Increased plasma antioxidant capacity was observed at all doses for both fruits. Taperebá supplementation reduced ferrous oxidation-xylenol orange levels (50Tap: 8.4%, 100Tap: 16.1%, 200Tap: 24.3%; P < .05) and increased thiol levels (50Tap: 39%, 100Tap: 31%; P < .05). Serum thiobarbituric acid reactive substances levels were reduced in all groups receiving taperebá (50Tap: 77.7%, 100Tap: 73.1%, 200Tap: 73.8%; P < .05) and murici (50Mu: 44.5%, 100Mu: 34%, 200Mu: 43%; P < .05). Therefore, it is suggested that the inclusion of these fruits in the diet can contribute to health maintenance and disease prevention, through their effects on controlling food intake, improving body composition, and in combating oxidative stress.
Collapse
Affiliation(s)
| | - Raquel Martins Martinez
- Food and Nutrition Security Program, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Bruna Almeida Nascimento
- Emília de Jesus Ferreiro College of Nutrition, Nutrition and Dietetic Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Gabriel de Alcantara Noblat
- Emília de Jesus Ferreiro College of Nutrition, Nutrition and Dietetic Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Giovanna Menezes Abreu
- Nutrition Science Program, Nutrition and Dietetic Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | | | - Mariana Sarto Figueiredo
- Integrated Center of Food and Nutrition, Nutrition and Dietetic Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Anderson Junger Teodoro
- Integrated Center of Food and Nutrition, Nutrition and Dietetic Department, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Monteiro-Alfredo T, Macedo MLR, de Picoli Souza K, Matafome P. New Therapeutic Strategies for Obesity and Its Metabolic Sequelae: Brazilian Cerrado as a Unique Biome. Int J Mol Sci 2023; 24:15588. [PMID: 37958572 PMCID: PMC10648839 DOI: 10.3390/ijms242115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Brazil has several important biomes holding impressive fauna and flora biodiversity. Cerrado being one of the richest ones and a significant area in the search for new plant-based products, such as foods, cosmetics, and medicines. The therapeutic potential of Cerrado plants has been described by several studies associating ethnopharmacological knowledge with phytochemical compounds and therapeutic effects. Based on this wide range of options, the Brazilian population has been using these medicinal plants (MP) for centuries for the treatment of various health conditions. Among these, we highlight metabolic diseases, namely obesity and its metabolic alterations from metabolic syndrome to later stages such as type 2 diabetes (T2D). Several studies have shown that adipose tissue (AT) dysfunction leads to proinflammatory cytokine secretion and impaired free fatty acid (FFA) oxidation and oxidative status, creating the basis for insulin resistance and glucose dysmetabolism. In this scenario, the great Brazilian biodiversity and a wide variety of phytochemical compounds make it an important candidate for the identification of pharmacological strategies for the treatment of these conditions. This review aimed to analyze and summarize the current literature on plants from the Brazilian Cerrado that have therapeutic activity against obesity and its metabolic conditions, reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Tamaeh Monteiro-Alfredo
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas (LPPFB), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas (LPPFB), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
| | - Paulo Matafome
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
- Coimbra Health School (ESTeSC), Polytechnic University of Coimbra, Rua 5 de Outubro, 3046-854 Coimbra, Portugal
| |
Collapse
|
4
|
Kauffmann AC, Castro VS. Phenolic Compounds in Bacterial Inactivation: A Perspective from Brazil. Antibiotics (Basel) 2023; 12:antibiotics12040645. [PMID: 37107007 PMCID: PMC10135396 DOI: 10.3390/antibiotics12040645] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Phenolic compounds are natural substances that are produced through the secondary metabolism of plants, fungi, and bacteria, in addition to being produced by chemical synthesis. These compounds have anti-inflammatory, antioxidant, and antimicrobial properties, among others. In this way, Brazil represents one of the most promising countries regarding phenolic compounds since it has a heterogeneous flora, with the presence of six distinct biomes (Cerrado, Amazon, Atlantic Forest, Caatinga, Pantanal, and Pampa). Recently, several studies have pointed to an era of antimicrobial resistance due to the unrestricted and large-scale use of antibiotics, which led to the emergence of some survival mechanisms of bacteria to these compounds. Therefore, the use of natural substances with antimicrobial action can help combat these resistant pathogens and represent a natural alternative that may be useful in animal nutrition for direct application in food and can be used in human nutrition to promote health. Therefore, this study aimed to (i) evaluate the phenolic compounds with antimicrobial properties isolated from plants present in Brazil, (ii) discuss the compounds across different classes (flavonoids, xanthones, coumarins, phenolic acids, and others), and (iii) address the structure-activity relationship of phenolic compounds that lead to antimicrobial action.
Collapse
Affiliation(s)
| | - Vinicius Silva Castro
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
5
|
de Souza VR, Lima TPB, Bedê TP, Faria SBA, Alves R, Louzada A, de Moraes BPT, Silva AR, Gonçalves de Albuquerque CF, de Azeredo VB, Teodoro AJ. Murici ( Byrsonima crassifolia (L.) Kunth and verbascifolia (L.)) and Tapereba ( Spondias mombin) Improve Hepatic and Inflammatory Biomarkers in High-Fat-Diet Rats. Foods 2023; 12:foods12020255. [PMID: 36673347 PMCID: PMC9857676 DOI: 10.3390/foods12020255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
The present study investigated the effects of murici and tapereba on improving hepatic and inflammatory biomarkers in high-fat-diet rats. Female Wistar rats were divided into five groups (n = 10/group): control (CON), high-fat diet (HF), murici drink + high-fat diet (Mu-HF), tapereba drink + high-fat diet (Tap-HF), and murici and tapereba blend drink + high-fat diet (MT-HF). Drinks were offered daily for 60 days, following which body and liver weights, hepatosomatic indexes, serum parameters, inflammatory profile, and antioxidant activity (DPPH and ORAC) were analyzed. The cell death of hepatic cells was evaluated using flow cytometry. It was observed that weight gain was similar among the groups, while glycemia was lower in the MT-HF group. A high-fat diet increased the concentration of cholesterol total, ALT, IL-1β (in plasma and liver), and TNF-α (in the liver), and this was reduced by treatment with the fruit-based beverages. The other evaluated parameters showed no statistically significant difference. Compared to the CON and HF groups, the groups that received the drinks had higher cellular antioxidant activity and reduced oxidative stress, lipid oxidation, and development of pro-inflammatory cytokines, such as IL-1β. A high-fat diet induced higher cell death in hepatic tissue, which was prevented by the murici, tapereba, and the fruit-blend drinks. The consumption of murici, tapereba, and fruit-blend-based beverages showed beneficial effects on liver metabolism; therefore, they may serve as a nutritional approach for preventing and treating non-alcoholic liver disease.
Collapse
Affiliation(s)
- Vanessa Rosse de Souza
- Food and Nutrition Program, Functional Foods Laboratory, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, Brazil
| | - Thuane Passos Barbosa Lima
- Food and Nutrition Program, Functional Foods Laboratory, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, Brazil
| | - Teresa Palmiciano Bedê
- Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro 24020-140, Brazil
| | | | - Renata Alves
- Membrane Transport Laboratory, State University of Rio de Janeiro, Rio de Janeiro 24020-140, Brazil
| | - Alana Louzada
- Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro 24020-140, Brazil
| | - Bianca Portugal Tavares de Moraes
- Immunopharmacology Laboratory, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Adriana Ribeiro Silva
- Immunopharmacology Laboratory, Oswaldo Cruz, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | | | - Vilma Blondet de Azeredo
- Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro 24020-140, Brazil
| | - Anderson Junger Teodoro
- Food and Nutrition Program, Functional Foods Laboratory, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, Brazil
- Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro 24020-140, Brazil
- Correspondence:
| |
Collapse
|
6
|
Borges PRS, Edelenbos M, Larsen E, Hernandes T, Nunes EE, de Barros Vilas Boas EV, Pires CRF. The bioactive constituents and antioxidant activities of ten selected Brazilian Cerrado fruits. Food Chem X 2022; 14:100268. [PMID: 35309677 PMCID: PMC8931356 DOI: 10.1016/j.fochx.2022.100268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/20/2022] [Accepted: 02/22/2022] [Indexed: 11/09/2022] Open
Abstract
This is the first study of the bioactive compounds of Rollinia mucosa, Alibertia verrucosa, and Buchenavia tomentosa. Brazilian native fruits are essential food sources for local people and possibly viable raw materials for new products. Brazilian Fruits from Cerrado contain bioactive compounds with high antioxidant potential in vitro, comparable to other well-known fruits. Mirindiba (Buchenavia tomentosa) contains above-average levels of tocopherol, carotenoids, vitamin C and total phenolic.
This study measured the total levels of phenolic, anthocyanin, carotenoid, and tocopherol compounds, and vitamin C in ten fruits from the Brazilian Cerrado: araçá-boi, bacaba, bacupari, biribá, cajuí, curriola, marmelada-espinho, mirindiba, murici, and puçá-preto. Five extracts were prepared from each fruit using solvents with different polarities. The Trolox equivalent antioxidant activity, oxygen radical absorbance capacity, and inhibition of β-carotene bleaching were determined for each extract. Scott-Knott test and principal component analysis showed that the analyzed fruits were rich sources of different classes of bioactive compounds, with levels comparable to those in commonly consumed fruits such as guavas, and various berries and citrus fruits. To our knowledge, this is the first comprehensive study of the bioactive compounds and antioxidant activities of biribá, cajuí, marmelada-espinho, and mirindiba. Moreover, mirindiba was found to be a rich source of vitamin C and phenolics, with an average level of carotenoids and tocopherols.
Collapse
Affiliation(s)
| | - Merete Edelenbos
- Department of Food Science, Aarhus University, 48 8200 Aarhus, Denmark
| | - Erik Larsen
- Department of Food Science, Aarhus University, 48 8200 Aarhus, Denmark
| | - Thais Hernandes
- Faculty of Nutrition, Federal University of Mato Grosso, 78.060-900, Cuiabá, MT, Brazil
| | - Elisângela Elena Nunes
- Department of Food Science, Federal University of Lavras, 37.200-000, Lavras, MG, Brazil
| | | | | |
Collapse
|
7
|
Aguiar LM, Bicas JL, Fuentes E, Alarcón M, Gonzalez IP, Pastore GM, Maróstica MR, Cazarin CBB. Non-nutrients and nutrients from Latin American fruits for the prevention of cardiovascular diseases. Food Res Int 2020; 139:109844. [PMID: 33509467 DOI: 10.1016/j.foodres.2020.109844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
Non-communicable diseases (NCDs) have been rapidly increasing; among them, cardiovascular diseases (CVDs) are responsible for around 1/3 of deaths in the world. Environmental factors play a central role in their development. Diet is a very important factor in this scenario, and the intake of fruits and vegetables has been considered as one of the critical strategies for reducing the risk of CVDs. Fruits are a source of micronutrients and bioactive compounds that could have cardioprotective effects through several distinct mechanisms, such as antioxidant, antithrombotic and antiplatelet activities, vasodilatation, improvement of plasma lipid profiles, and modulation of inflammatory signaling. Brazil has a very rich and unexplored biodiversity in its different biomes, with several types of fruit, which are a source of bioactive compounds and micronutrients with therapeutic properties. In this sense, this review shows the current knowledge regarding the cardioprotective properties of selected Latin American and Brazilian fruits, including their effects on the activation of platelets and on the inflammation processes involved in atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Lais Marinho Aguiar
- University of Campinas, School of Food Engineering, Rua Monteiro Lobato, 80, Zip Code 13083-862, Campinas/SP, Brazil
| | - Juliano Lemos Bicas
- University of Campinas, School of Food Engineering, Rua Monteiro Lobato, 80, Zip Code 13083-862, Campinas/SP, Brazil
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 2 norte 685, Talca, Chile.
| | - Marcelo Alarcón
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 2 norte 685, Talca, Chile.
| | - Ivan Palomo Gonzalez
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 2 norte 685, Talca, Chile.
| | - Gláucia Maria Pastore
- University of Campinas, School of Food Engineering, Rua Monteiro Lobato, 80, Zip Code 13083-862, Campinas/SP, Brazil.
| | - Mário Roberto Maróstica
- University of Campinas, School of Food Engineering, Rua Monteiro Lobato, 80, Zip Code 13083-862, Campinas/SP, Brazil.
| | - Cinthia Baú Betim Cazarin
- University of Campinas, School of Food Engineering, Rua Monteiro Lobato, 80, Zip Code 13083-862, Campinas/SP, Brazil.
| |
Collapse
|
8
|
S Cesar PH, Trento MV, Sales TA, A Simão A, C Ramalho T, Marcussi S. Vanillic acid as phospholipase A 2 and proteases inhibitor: In vitro and computational analyses. Biotechnol Appl Biochem 2020; 68:486-496. [PMID: 32420666 DOI: 10.1002/bab.1943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Enzymatic inhibition by natural compounds may represent a valuable adjuvant in snakebite serum therapy. The objective in this work was to evaluate possible in vitro interactions between vanillic acid and enzymes from Bothrops spp. and Crotalus durissus terrificus venoms, and also suggest a theory as how they interact based on molecular docking. Vanillic acid inhibited the phospholipase activity induced by Bothrops alternatus (∼25% inhibition); the caseinolytic activity induced by Bothrops atrox (∼30%), Bothrops jararacussu (∼44%), and C. d. terrificus (∼33%); the fibrinogenolysis induced by B. jararacussu, B. atrox, and C. d. terrificus (100%); the serine protease activity induced by Bothrops moojeni (∼45%) and Bothrops jararaca (∼66%); the hemolytic activity induced by B. moojeni (∼26%); the thrombolysis activity induced by B. atrox (∼30%) and B. jararacussu (∼20%); and the thrombotic activity induced by C. d. terrificus (∼8%). The compound was also capable of delaying the coagulation time in citrated plasma by 60, 35, and 75 Sec, when incubated with B. moojeni, B. atrox, and B. jararaca, respectively. The results obtained expand the possibilities for future pharmaceutical use of vanillic acid, considering the high homology degree among human and snake venom phospholipases A2 and proteases (involved in chronic inflammatory diseases). Also, this compound can be used as adjuvant to improve currently available treatments for ophidism victims.
Collapse
Affiliation(s)
- Pedro H S Cesar
- Biochemistry Laboratory, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Marcus V Trento
- Biochemistry Laboratory, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Thais A Sales
- Computational Chemistry Laboratory, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Anderson A Simão
- Biochemistry Laboratory, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Teodorico C Ramalho
- Computational Chemistry Laboratory, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Silvana Marcussi
- Biochemistry Laboratory, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
9
|
Marques TR, Cesar PHS, Braga MA, Marcussi S, Corrêa AD. Fruit Bagasse Phytochemicals from Malpighia Emarginata Rich in Enzymatic Inhibitor with Modulatory Action on Hemostatic Processes. J Food Sci 2018; 83:2840-2849. [PMID: 30334251 DOI: 10.1111/1750-3841.14330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/19/2018] [Accepted: 07/21/2018] [Indexed: 11/29/2022]
Abstract
Agro-industrial wastes are promising sources of phytochemicals for the development of products to be used in health promotion and maintenance. In this study, extracts from acerola bagasse (AB) were characterized by HPLC, and evaluated according to its modulatory action on phospholipases A2 and proteases involved in processes such as inflammation and blood clotting. Snake venoms were used as biological tools once they have high functional and structural homology between their enzymes and human enzymes. Two types of extracts were prepared from AB: aqueous and methanolic. These extracts, evaluated at different proportions (venom:extract, w:w), significantly inhibited the phospholipase activity induced by the venoms of Bothrops moojeni, Bothrops atrox (11% to 31%), and Crotalus durissus terrificus (C. d. t.) (11% to 19%). The hemolytic activity induced by the venoms of B. moojeni and C. d. t. was better inhibited by the methanolic extract (inhibition between 23% and 48%). Thrombolysis induced by the venoms of B. moojeni and C. d. t. was inhibited by both extracts, with inhibition ranging from 13% to 63% for the aqueous extract, and from 12% to 92% for the methanolic one. Both extracts increased the time of coagulation induced by the venoms of B. moojeni and Lachesis muta muta in 26 and up to 68 s. These inhibitory actions were related to the following phenolic compounds present in the extract of AB: gallic acid, catechin, epigallocatechin gallate, epicatechin, syringic acid, p-coumaric acid, and quercetin. Additional studies are needed to confirm their potential use for nutraceutical purposes. PRACTICAL APPLICATION: Agro-industrial wastes are promising sources of phytochemicals for the development of products that can be used by pharmaceutical, cosmetics, and food industries. Studies report the use of the acerola bagasse extract in health improvement. However, its toxic-pharmacological characterization is still scarce. In this study, the extracts of acerola bagasse presented phenolic compounds that can modulate the activity of enzymes such as phospholipases A2 and proteases that act on the coagulant/anticoagulant and thrombotic/thrombolytic activities and the break of phospholipids, decreasing the inflammation and platelet aggregation. Although the in vivo effects of the extracts are not fully understood, this study shed light upon the possibilities of their usage.
Collapse
Affiliation(s)
- Tamara R Marques
- Chemistry Dept., Univ. Federal de Lavras - UFLA, Campus Universitário. Lavras, Minas Gerais, Brazil
| | - Pedro Henrique S Cesar
- Chemistry Dept., Univ. Federal de Lavras - UFLA, Campus Universitário. Lavras, Minas Gerais, Brazil
| | - Mariana A Braga
- Chemistry Dept., Univ. Federal de Lavras - UFLA, Campus Universitário. Lavras, Minas Gerais, Brazil
| | - Silvana Marcussi
- Chemistry Dept., Univ. Federal de Lavras - UFLA, Campus Universitário. Lavras, Minas Gerais, Brazil
| | - Angelita D Corrêa
- Chemistry Dept., Univ. Federal de Lavras - UFLA, Campus Universitário. Lavras, Minas Gerais, Brazil
| |
Collapse
|
10
|
Stafussa AP, Maciel GM, Rampazzo V, Bona E, Makara CN, Junior BD, Haminiuk CWI. Bioactive compounds of 44 traditional and exotic Brazilian fruit pulps: phenolic compounds and antioxidant activity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1409761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ana Paula Stafussa
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná, Curitiba, Paraná, Brasil
| | - Giselle Maria Maciel
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Tecnológica Federal do Paraná, Sede Ecoville, Curitiba, Paraná, Brasil
| | - Valéria Rampazzo
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná, Curitiba, Paraná, Brasil
| | - Evandro Bona
- Departamento Acadêmico de Alimentos (PPGTA), Universidade Tecnológica Federal do Paraná, Paraná, Brasil
| | | | - Bogdan Demczuk Junior
- Departamento Acadêmico de Alimentos (PPGTA), Universidade Tecnológica Federal do Paraná, Paraná, Brasil
| | - Charles Windson Isidoro Haminiuk
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Tecnológica Federal do Paraná, Sede Ecoville, Curitiba, Paraná, Brasil
| |
Collapse
|
11
|
Neri-Numa IA, Soriano Sancho RA, Pereira APA, Pastore GM. Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Res Int 2018; 103:345-360. [DOI: 10.1016/j.foodres.2017.10.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/19/2017] [Accepted: 10/28/2017] [Indexed: 01/19/2023]
|
12
|
Moreira LC, de Ávila RI, Veloso DFMC, Pedrosa TN, Lima ES, do Couto RO, Lima EM, Batista AC, de Paula JR, Valadares MC. In vitro safety and efficacy evaluations of a complex botanical mixture of Eugenia dysenterica DC. (Myrtaceae): Prospects for developing a new dermocosmetic product. Toxicol In Vitro 2017; 45:397-408. [DOI: 10.1016/j.tiv.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/03/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022]
|
13
|
de Andrade Silva CA, Fonseca GG. Brazilian savannah fruits: Characteristics, properties, and potential applications. Food Sci Biotechnol 2016; 25:1225-1232. [PMID: 30263399 DOI: 10.1007/s10068-016-0195-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 03/10/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022] Open
Abstract
The Brazilian savannah is the second largest biome of the country, and it displays great biodiversity. The fruits of the native trees have peculiar characteristics and are recognized for their nutritional and therapeutic aspects. However, little is known about their technological and biotechnological potential applications. The existing information concerning these aspects has never been compiled so far. It is known that many of these fruits contain many bioactive compounds of industrial interest, such as carotenoids and phenolic constituents. Another aspect of the fruit is the high fatty acid content of some species. Pequi, bocaiuva, jatoba, baru, amburama, and buriti, for instance, are among those fruits described as being rich in fatty acids, mostly unsaturated ones. Here, we reviewed 18 species from the Brazilian savannah identified to be of interest because of high potencial for sustained medium- and short-term explorations, under the technological and biotechnological aspects, seeking the development of new products from these scarcely studied raw materials.
Collapse
Affiliation(s)
- Cinthia Aparecida de Andrade Silva
- Laboratory of Bioengineering, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, CEP 79.804-970 Dourados-MS, Brazil
| | - Gustavo Graciano Fonseca
- Laboratory of Bioengineering, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, CEP 79.804-970 Dourados-MS, Brazil
| |
Collapse
|
14
|
Study on the Cytotoxic, Genotoxic and Clastogenic Potential of Attalea phalerata Mart. ex Spreng. Oil Pulp In Vitro and In Vivo Experimental Models. PLoS One 2016; 11:e0165258. [PMID: 27764219 PMCID: PMC5072689 DOI: 10.1371/journal.pone.0165258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/07/2016] [Indexed: 11/20/2022] Open
Abstract
Attalea phalerata Mart. ex Spreng. (Arecaceae), popularly known as “bacuri”, is used in Brazilian folk medicine. Its oil is used orally to relieve pulmonary congestion and joint pain. In topical applications, it is applied as an effective hair tonic and anti-dandruff. The in natura pulp and its nuts are used as food because of its nutritional value. Despite its use in folk medicine, there is a lack of data regarding its in vivo/in vitro cytotoxic/genotoxic and clastogenic effects. Therefore, in this study, we evaluated the cytotoxic, genotoxic and clastogenic effects of Attalea phalerata Mart. ex Spreng. oil (APMO) in vitro and in vivo. For the analysis of cytotoxic potential, the Artemia salina and MTT (3-(4,5-dimethizzol-zyl)-2,5-diphenyltetrazolium bromide) assays were performed. Possible cytotoxic, genotoxic and clastogenic effects of APMO intake were determined by performing the comet and micronucleus assays. Male and female Wistar rats were orally treated with doses of 125, 250, 500 or 1000 mg.kg-1 of the APMO daily for 28 consecutive days (four weeks). The results showed that the APMO did not induce cell death in the experiments of Artemia salina and MTT, indicating that it has no cytotoxicity. The APMO did not cause significant damage to the DNA of the rats in the four doses used when compared to the negative control group (saline + Tween® 80). The APMO did not present any significant increase in micronucleated polychromatic erythrocytes (MNPCEs) for the four tested doses. When compared to the positive control group, all groups (comet and micronucleus tests) were statistically different. These data suggest that the administration of Attalea phalerata Mart oil. ex Spreng does not cause cytotoxicity, genotoxicity and clastogenicity in experimental models in vitro and in vivo following oral administration in this study.
Collapse
|
15
|
Casaril AM, Martinez DM, Ricordi VG, Alves D, Lenardão EJ, Schultze E, Collares T, Seixas FK, Savegnago L. Evaluation of the toxicity of α-(phenylselanyl) acetophenone in mice. Regul Toxicol Pharmacol 2015; 73:868-74. [DOI: 10.1016/j.yrtph.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 01/17/2023]
|
16
|
Batista ÂG, Ferrari AS, da Cunha DC, da Silva JK, Cazarin CBB, Correa LC, Prado MA, Carvalho-Silva LBD, Esteves EA, Maróstica Júnior MR. Polyphenols, antioxidants, and antimutagenic effects of Copaifera langsdorffii fruit. Food Chem 2015; 197 Pt B:1153-9. [PMID: 26675852 DOI: 10.1016/j.foodchem.2015.11.093] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 10/21/2015] [Accepted: 11/17/2015] [Indexed: 01/21/2023]
Abstract
Copaifera langsdorffii (copaiba) is a Brazilian exotic fruit, poorly studied regarding its bioactive composition. The aim of this study was to determine bioactive compounds, antioxidant and antimutagenic activities of copaiba pulp. The samples were extracted with different solvents in order to analyze polyphenol compounds (Folin Ciocalteau and HPLC-DAD), total flavonoids (reaction with AlCl3) and antioxidant capacity (FRAP, ORAC, DPPH). The copaiba fruit showed high polyphenol content and antioxidant capacity. Phenolic compounds, such as gallic acid, epicatechin gallate, catechin, epicatechin and isoquercitrin, were identified in the copaiba pulp. Despite the antioxidant capacity, the highest dose of copaiba showed no antimutagenic effects in the in vivo study. The dose which showed antimutagenic activity was 100 mg kg(-1).
Collapse
Affiliation(s)
- Ângela Giovana Batista
- School of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas-SP, Brazil
| | | | | | - Juliana Kelly da Silva
- School of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas-SP, Brazil
| | - Cinthia Baú Betim Cazarin
- School of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas-SP, Brazil
| | - Luiz Claudio Correa
- Brazilian Agricultural Research Corporation, Embrapa Tropical Semi-arid, Petrolina, Pernambuco 56302-970, Brazil
| | - Marcelo Alexandre Prado
- School of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas-SP, Brazil
| | | | - Elizabethe Adriana Esteves
- Nutrition Department, Federal University of Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | | |
Collapse
|
17
|
Padayachee A, Day L, Howell K, Gidley MJ. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit Rev Food Sci Nutr 2015; 57:59-81. [DOI: 10.1080/10408398.2013.850652] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. Padayachee
- Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria, Australia
| | - L. Day
- CSIRO Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - K. Howell
- Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria, Australia
| | - M. J. Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
18
|
de Oliveira Fernandes T, de Ávila RI, de Moura SS, de Almeida Ribeiro G, Naves MMV, Valadares MC. Campomanesia adamantium (Myrtaceae) fruits protect HEPG2 cells against carbon tetrachloride-induced toxicity. Toxicol Rep 2014; 2:184-193. [PMID: 28962350 PMCID: PMC5598383 DOI: 10.1016/j.toxrep.2014.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/07/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022] Open
Abstract
Campomanesia adamantium (Myrtaceae) is an antioxidant compounds-rich Brazilian fruit popularly known as gabiroba. In view of this, it was evaluated the hepatoprotective effects of pulp (GPE) or peel/seed (GPSE) hydroalcoholic extracts of gabiroba on injured liver-derived HepG2 cells by CCl4 (4 mM). The results showed the presence of total phenolic in GPSE was (60%) higher when compared to GPE, associated with interesting antioxidant activity using DPPH• assay. Additionally, HPLC chromatograms and thin layer chromatography of GPE and GPSE showed the presence of flavonoids. Pretreatment of HepG2 cells with GPE or GPSE (both at 800–1000 μg/mL) significantly (p < 0.0001) protected against cytotoxicity induced by CCl4. Additionally, the cells treated with both extracts (both at 1000 μg/mL) showed normal morphology (general and nuclear) contrasting with apoptotic characteristics in the cells only exposed to CCl4. In these experiments, GPSE also was more effective than GPE. In addition, CCl4 induced a marked increase in AST (p < 0.05) and ALT (p < 0.0001) levels, while GPE or GPSE significantly (p < 0.0001) reduced these levels, reaching values found in the control group. In conclusion, the results suggest that gabiroba fruits exert hepatoprotective effects on HepG2 cells against the CCl4-induced toxicity, probably, at least in part, associated with the presence of antioxidant compounds, especially flavonoids.
Collapse
Affiliation(s)
- Thaís de Oliveira Fernandes
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Goiás, rua 227, quadra 68, s/n, Setor Leste Universitário, 74.605-080 Goiânia, GO, Brazil
| | - Renato Ivan de Ávila
- Laboratório de Farmacologia e Toxicologia Celular – FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, rua 240 esquina com 5ª Avenida, s/n, Setor Universitário, 74.605-220 Goiânia, GO, Brazil
| | - Soraia Santana de Moura
- Laboratório de Farmacologia e Toxicologia Celular – FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, rua 240 esquina com 5ª Avenida, s/n, Setor Universitário, 74.605-220 Goiânia, GO, Brazil
| | - Gerlon de Almeida Ribeiro
- Laboratório de Pesquisa em Produtos Naturais – LPPN, Faculdade de Farmácia, Universidade Federal de Goiás, rua 240 esquina com 5ª Avenida, s/n, Setor Universitário, 74.605-220 Goiânia, GO, Brazil
| | - Maria Margareth Veloso Naves
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Goiás, rua 227, quadra 68, s/n, Setor Leste Universitário, 74.605-080 Goiânia, GO, Brazil
- Corresponding author. Tel.: +55 62 3209 6270.
| | - Marize Campos Valadares
- Laboratório de Farmacologia e Toxicologia Celular – FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, rua 240 esquina com 5ª Avenida, s/n, Setor Universitário, 74.605-220 Goiânia, GO, Brazil
- Corresponding author. Tel.: +55 62 3209 6044x227; fax: +55 62 3209 6044x227.
| |
Collapse
|
19
|
Chen Y, Wang G, Wang H, Cheng C, Zang G, Guo X, Liu RH. Phytochemical profiles and antioxidant activities in six species of ramie leaves. PLoS One 2014; 9:e108140. [PMID: 25243741 PMCID: PMC4171523 DOI: 10.1371/journal.pone.0108140] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/21/2014] [Indexed: 12/02/2022] Open
Abstract
Increased consumption of vegetables or plant food has been associated with decreased risk of developing major chronic diseases, such as cancers, diabetes, cardiovascular diseases, and age-related functional decline. Ramie leaves are rich in phenolics and flavonoids, which have been suggested for human health benefits. Phenolic contents, flavonoid contents, phenolic compounds, and anti-cancer properties in six species of ramie leaves were analyzed by Folin-reagent method, sodium borohydride/chloranil-based assay (SBC), HPLC method and antiproliferation, cytoxicity, respectively. Antioxidant activities were measured through peroxyl radical scavenging capacity (PSC) method, oxygen radical absorbance capacity (ORAC) method, and cellular antioxidant activity (CAA). Research indicated that Boehmeria penduliflora contained the highest total phenolic content (2313.7±27.28 mg GAE/100 g FW), and flavonoid content (1682.4±27.70 mg CAE/100 g FW). Boehmeria tricuspis showed the highest PSC value (9574.8±117.63 µM vit. C equiv./100 g FW), while Boehmeria penduliflora indicated the highest ORAC value (330.44±16.88 µmol Trolox equiv./g FW). The antioxidant activities were correlated with phenolic contents and flavonoid contents. Boehmeria tricuspis had the highest antiproliferative capacity with the lowest EC50 (4.11±0.19 mg/mL). The results for the analyzed ramie for CAA were significantly different from each other (p<0.05), Boehmeria tricuspis had the highest CAA value (133.63±7.10 µmol QE/100 g). Benzoic acid, 4-coumaric acid, caffeic acid, and ferulic acid were the dominant phenolic ingredients in the ramie leaves according to HPLC analysis. Our research is the first report to study the phytochemical profiles and antioxidant activities in different species of ramie leaves for their health benefit.
Collapse
Affiliation(s)
- Yongsheng Chen
- School of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, The People's Republic of China
| | - Gaoyan Wang
- Department of Food Science, Cornell University, Ithaca, New York, United States of America
| | - Hong Wang
- School of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, The People's Republic of China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, The People's Republic of China
| | - Gonggu Zang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, The People's Republic of China
| | - Xinbo Guo
- School of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, The People's Republic of China
- * E-mail: (XBG); (RHL)
| | - Rui Hai Liu
- School of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, The People's Republic of China
- Department of Food Science and Institute of Comparative and Environmental Toxicology, Stocking Hall, Cornell University, Ithaca, New York, United States of America
- * E-mail: (XBG); (RHL)
| |
Collapse
|
20
|
Zielinski AAF, Ávila S, Ito V, Nogueira A, Wosiacki G, Haminiuk CWI. The association between chromaticity, phenolics, carotenoids, and in vitro antioxidant activity of frozen fruit pulp in Brazil: an application of chemometrics. J Food Sci 2014; 79:C510-6. [PMID: 24547813 DOI: 10.1111/1750-3841.12389] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/10/2014] [Indexed: 11/27/2022]
Abstract
A total of 19 Brazilian frozen pulps from the following fruits: açai (Euterpe oleracea), blackberry (Rubus sp.), cajá (Spondias mombin), cashew (Anacardium occidentale), cocoa (Theobroma cacao), coconut (Cocos nucifera), grape (Vitis sp.), graviola (Annona muricata), guava (Psidium guajava), papaya (Carica papaya), peach (Prunus persica), pineapple (Ananas comosus), pineapple and mint (A. comosus and Mentha spicata), red fruits (Rubus sp. and Fragaria sp.), seriguela (Spondias purpurea), strawberry (Fragaria sp.), tamarind (Tamarindus indica), umbu (Spondias tuberosa), and yellow passion fruit (Passiflora edulis) were analyzed in terms of chromaticity, phenolic compounds, carotenoids, and in vitro antioxidant activity using ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays. Data were processed using principal component analysis (PCA) and hierarchical cluster analysis (HCA). Antioxidant capacity was measured by DPPH and FRAP assays, which showed significant (P < 0.01) correlation with total phenolic compounds (r = 0.88 and 0.70, respectively), total flavonoids (r = 0.63 and 0.81, respectively), and total monomeric anthocyanins (r = 0.59 and 0.73, respectively). PCA explained 74.82% of total variance of data, and the separation into 3 groups in a scatter plot was verified. Three clusters also suggested by HCA, corroborated with PCA, in which cluster 3 was formed by strawberry, red fruits, blackberry, açaí, and grape pulps. This cluster showed the highest contents of total phenolic compounds, total flavonoids, and antioxidant activity.
Collapse
Affiliation(s)
- Acácio Antonio Ferreira Zielinski
- Graduate Program of Food Engineering, Federal Univ. of Paraná, R. Cel. Francisco Heráclito dos Santos 210, Polytechnic Center, CEP 81531-980, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Gonçalves CA, Siqueira JM, Carollo CA, Mauro MDO, de Davi N, Cunha-Laura AL, Monreal ACD, Castro AH, Fernandes L, Chagas RR, Auharek SA, Oliveira RJ. Gestational exposure to Byrsonima verbascifolia: teratogenicity, mutagenicity and immunomodulation evaluation in female Swiss mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:843-50. [PMID: 24140582 DOI: 10.1016/j.jep.2013.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Byrsonima verbascifolia is used in folk medicine to treat diarrhea, intestinal infections, chronic wounds, Chagas disease, inflammation and as a diuretic. However there is no investigation regarding the Byrsonima verbascifolia hydrometanolic extract (BVHME) used during gestation. MATERIALS AND METHODS The pregnant females were randomly divided into 5 groups. Control group received saline plus DMSO (1%) in a volume of 0.1 mL/10 g (b.w.), via gavage, for at least 15 days prior to mating and throughout the gestational period. The Pre-treatment group received the BVHME, via gavage, at a dose of 50 mg/kg (b.w.) for at least 15 days prior to mating and up to the appearance of the vaginal plug. The Organogenesis group received the BVHME at a dose of 50 mg/kg (b.w.), via gavage, on the 5-15th gestational day. The Gestational group received the BVHME at a dose of 50 mg/kg (b.w.), via gavage, throughout the gestational period (from the 1st to the 18th day of pregnancy). The Pre+Gestational group received the BVHME at a dose of 50mg/kg (b.w.), via gavage, for at least 15 days prior to mating and up to throughout the gestational period. The clinical signals of maternal and fetuses toxicity were evaluated, as the mutagenicity and immunomodulation tests were performed. RESULTS AND CONCLUSIONS The present investigation shows, for the first time, that the use of Byrsonima verbascifolia extract in pregnant Swiss mice, did not alter the female reproductive function, mutagenicity or immunostimulation as well as not interfere with embryofetal development at least in our experimental conditions.
Collapse
Affiliation(s)
- Caroline Amélia Gonçalves
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Núcleo de Hospital Universitário (NHU), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil; Programa de Pós-graduação em Farmácia, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Malta LG, Tessaro EP, Eberlin M, Pastore GM, Liu RH. Assessment of antioxidant and antiproliferative activities and the identification of phenolic compounds of exotic Brazilian fruits. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.04.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Evaluation of the antioxidant, antiproliferative and antimutagenic potential of araçá-boi fruit (Eugenia stipitata Mc Vaugh — Myrtaceae) of the Brazilian Amazon Forest. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.09.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|