1
|
Nabipour H, Aliakbari F, Volkening K, Strong MJ, Rohani S. New metal-organic framework coated sodium alginate for the delivery of curcumin as a sustainable drug delivery and cancer therapy system. Int J Biol Macromol 2024; 259:128875. [PMID: 38154719 DOI: 10.1016/j.ijbiomac.2023.128875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
The utilization of biocompatible drug delivery systems with extended drug release capabilities is highly advantageous in cancer therapy, as they can mitigate adverse effects. To establish such a biocompatible system with prolonged drug release behavior, researchers developed an innovative drug carrier. In this study, a sustainable approach was employed to synthesize a new zinc-based metal-organic framework (Zn-MOF) through the reaction between synthesized Schiff base ligands and zinc ions. Comprehensive analyses, including FT-IR, XRD, SEM, BET surface area, and TGA techniques, were employed to thoroughly characterize the frameworks. Following comprehensive characterization, curcumin (CUR) was loaded onto the Zn-MOF, resulting in CUR entrapment efficiency and loading capacity of 79.23 % and 26.11 %, respectively. In vitro evaluations of CUR release from CUR@MOF exhibited controlled release patterns, releasing 78.9 % and 50.0 % of CUR at pH 5.0 and pH 7.4, respectively. To mitigate initial burst release, a coating of the biopolymer sodium alginate (SA) was applied to CUR@Zn-MOF. In vitro CUR release tests indicated that SA/CUR@Zn-MOF outperformed pristine CUR@Zn-MOF. The release of CUR conformed to the Korsmeyer-Peppas model, displaying non-Fickian diffusion. Furthermore, an in vitro cytotoxicity study clearly demonstrated the potent anti-tumor activity of the synthesized CUR@Zn-MOF attributed to its controlled release of CUR. This led to the induction of apoptotic effects and cell death across HeLa, HEK293, and SH-SY5Y cell lines. These findings strongly suggest that the developed pH-sensitive carriers hold remarkable potential as targeted vehicles for drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Hafezeh Nabipour
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Farhang Aliakbari
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
2
|
Polymer/Enzyme Composite Materials—Versatile Catalysts with Multiple Applications. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A significant interest was granted lately to enzymes, which are versatile catalysts characterized by natural origin, with high specificity and selectivity for particular substrates. Additionally, some enzymes are involved in the production of high-valuable products, such as antibiotics, while others are known for their ability to transform emerging contaminates, such as dyes and pesticides, to simpler molecules with a lower environmental impact. Nevertheless, the use of enzymes in industrial applications is limited by their reduced stability in extreme conditions and by their difficult recovery and reusability. Rationally, enzyme immobilization on organic or inorganic matrices proved to be one of the most successful innovative approaches to increase the stability of enzymatic catalysts. By the immobilization of enzymes on support materials, composite biocatalysts are obtained that pose an improved stability, preserving the enzymatic activity and some of the support material’s properties. Of high interest are the polymer/enzyme composites, which are obtained by the chemical or physical attachment of enzymes on polymer matrices. This review highlights some of the latest findings in the field of polymer/enzyme composites, classified according to the morphology of the resulting materials, following their most important applications.
Collapse
|
3
|
Zhang D, Jiang Y, Xiang M, Wu F, Sun M, Du X, Chen L. Biocompatible Polyelectrolyte Complex Nanoparticles for Lycopene Encapsulation Attenuate Oxidative Stress-Induced Cell Damage. Front Nutr 2022; 9:902208. [PMID: 35711553 PMCID: PMC9197169 DOI: 10.3389/fnut.2022.902208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, lycopene was successfully encapsulated in polyelectrolyte complex nanoparticles (PEC NPs) fabricated with a negatively charged polysaccharide, TLH-3, and a positively charged sodium caseinate (SC) via electrostatic interactions. Results showed that the lycopene-loaded PEC NPs were spherical in shape, have a particle size of 241 nm, have a zeta potential of −23.6 mV, and have encapsulation efficiency of 93.6%. Thus, lycopene-loaded PEC NPs could serve as effective lycopene carriers which affected the physicochemical characteristics of the encapsulated lycopene and improved its water dispersibility, storage stability, antioxidant capacity, and sustained release ability in aqueous environments when compared with the free lycopene. Moreover, encapsulated lycopene could enhance the cells' viability, prevent cell apoptosis, and protect cells from oxidative damage through the Nrf2/HO-1/AKT signalling pathway, via upregulation of antioxidase activities and downregulation of MDA and ROS levels. Therefore, the biocompatible lycopene-loaded PEC NPs have considerable potential use for the encapsulation of hydrophobic nutraceuticals in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Dongjing Zhang
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei, China.,School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Yun Jiang
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei, China
| | - Ming Xiang
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei, China
| | - Fen Wu
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei, China
| | - Min Sun
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei, China
| | - XianFeng Du
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Lei Chen
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
4
|
Polysaccharide-based nanoparticles fabricated from oppositely charged curdlan derivatives for curcumin encapsulation. Int J Biol Macromol 2022; 213:923-933. [DOI: 10.1016/j.ijbiomac.2022.05.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022]
|
5
|
Su Y, Chen Y, Zhang L, Adhikari B, Xu B, Li J, Zheng T. Synthesis and characterization of lotus seed protein-based curcumin microcapsules with enhanced solubility, stability, and sustained release. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2220-2231. [PMID: 34611905 DOI: 10.1002/jsfa.11560] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lotus seed protein (LSP) was extracted from lotus seed and used to encapsulate curcumin with or without complexing with pectin. The physicochemical properties of LSP-based microcapsules, including solubility, stability, and in vitro sustained release, were determined. The mechanism of interaction between curcumin, LSP, and pectin was revealed. RESULTS The encapsulation efficiency of curcumin was found to depend on LSP concentration and was highest (86.32%, w/w) at 50 mg mL-1 . The curcumin in curcumin-LSP and curcumin-LSP-pectin powder particles achieved a solubility of 75.15% and 81.39%, respectively, which was a remarkable enhancement. The microencapsulation with LSP and LSP-pectin matrix showed a significant improvement in the antioxidant activity, photostability, thermostability, and storage stability of free curcumin. The microencapsulated curcumin showed sustained control release at the gastric stage and burst-type release in the subsequent intestinal stage, presenting cumulative release rates of 64.3% and 72.4% from curcumin-LSP and curcumin-LSP-pectin particles after gastrointestinal digestion. The LSP-pectin complex produced microcapsules with higher solubility, smaller particle size, enhanced physicochemical stability, and increased bioaccessibility. Fourier transform infrared, circular dichroism spectra, and differential scanning calorimetry data indicated that the encapsulated curcumin interacted with LSP and pectin mainly through hydrogen bonding, hydrophobic, and electrostatic interactions. CONCLUSION This work shows that LSP can be an alternative encapsulant for the delivery of hydrophobic nutraceuticals with enhanced solubility, stability, and sustained release. The results may contribute to the design of novel food-grade delivery systems based on LSP vehicles, thereby broadening the applications of LSP in the fields of functional food. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Li Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
6
|
Akhtar A, Aslam S, Khan S, McClements DJ, Khalid N, Maqsood S. Utilization of diverse protein sources for the development of protein-based nanostructures as bioactive carrier systems: A review of recent research findings (2010-2021). Crit Rev Food Sci Nutr 2021; 63:2719-2737. [PMID: 34565242 DOI: 10.1080/10408398.2021.1980370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Consumer awareness of the relationship between health and nutrition has caused a substantial increase in the demand for nutraceuticals and functional foods containing bioactive compounds (BACs) with potential health benefits. However, the direct incorporation of many BACs into commercial food and beverage products is challenging because of their poor matrix compatibility, chemical instability, low bioavailability, or adverse impact on food quality. Advanced encapsulation technologies are therefore being employed to overcome these problems. In this article, we focus on the utilization of plant and animal derived proteins to fabricate micro and nano-particles that can be used for the oral delivery of BACs such as omega-3 oils, vitamins and nutraceuticals. This review comprehensively discusses different methods being implemented for fabrications of protein-based delivery vehicles, types of proteins used, and their compatibility for the purpose. Finally, some of the challenges and limitations of different protein matrices for encapsulation of BACs are deliberated upon. Various approaches have been developed for the fabrication of protein-based microparticles and nanoparticles, including injection-gelation, controlled denaturation, and antisolvent precipitation methods. These methods can be used to construct particle-based delivery systems with different compositions, sizes, surface hydrophobicity, and electrical characteristics, thereby enabling them to be used in a wide range of applications.
Collapse
Affiliation(s)
- Aqsa Akhtar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sadia Aslam
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Radix Pseudostellariae protein-curcumin nanocomplex: Improvement on the stability, cellular uptake and antioxidant activity of curcumin. Food Chem Toxicol 2021; 151:112110. [PMID: 33713747 DOI: 10.1016/j.fct.2021.112110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Radix Pseudostellariae protein (RPP) with satisfactory antioxidant activity and self-assembled ability was extracted from dried Radix Pseudostellariae. In this study, RPP-curcumin nanocomplex (RPP-Cur) was fabricated, and its improvement on the stability, cellular uptake and antioxidant activity of curcumin was investigated. RPP-Cur with homogeneously spherical structure exhibited good stability, which could maintain the morphology against simulated gastrointestinal digestion and up to 300 mM ionic concentration. After RPP nanoparticles encapsulation, the retention of curcumin increased 1.45 times under UV irradiation for 6 h. Besides, RPP-Cur exhibited additive reducing power of curcumin and RPP. The transport efficiency of hydrophobic curcumin across Caco-2 cells monolayer was greatly improved by RPP nanoparticle by 3.7 folds. RPP-Cur was able to be internalized by Caco-2 cells dose-dependently via macropinocytosis and clathrin-mediated endocytosis. The cellular uptake efficiency of embedded curcumin in RPP nanoparticles by Caco-2 cells was significantly higher than that of free curcumin, which might contribute to the enhanced intracellular antioxidant activity of RPP-Cur. These findings suggest that the proteins from Radix Pseudostellariae have potential to be developed into novel delivery system with intrinsic antioxidant activity for the hydrophobic active molecules in healthy food field.
Collapse
|
8
|
Yu YB, Wu MY, Wang C, Wang ZW, Chen TT, Yan JK. Constructing biocompatible carboxylic curdlan-coated zein nanoparticles for curcumin encapsulation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106028] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Shahgholian N, Rajabzadeh G. Preparation of BSA nanoparticles and its binary compounds via ultrasonic piezoelectric oscillator for curcumin encapsulation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Wu Y, Liu H, Li Z, Huang D, Nong L, Ning Z, Hu Z, Xu C, Yan JK. Pectin-decorated selenium nanoparticles as a nanocarrier of curcumin to achieve enhanced physicochemical and biological properties. IET Nanobiotechnol 2019; 13:880-886. [PMID: 31625531 PMCID: PMC8676667 DOI: 10.1049/iet-nbt.2019.0144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/29/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
In this study, the authors developed pectin-stabilised selenium nanoparticles (pectin-SeNPs) for curcumin (Cur) encapsulation and evaluated their physicochemical properties and biological activities. Results showed that pectin-SeNPs and Cur-loaded pectin-SeNPs (pectin-SeNPs@Cur) exhibited monodisperse and homogeneous spherical structures in aqueous solutions with mean particle sizes of ∼61 and ∼119 nm, respectively. Cur was successfully encapsulated into pectin-SeNPs through hydrogen bonding interactions with an encapsulation efficiency of ∼60.6%, a loading content of ∼7.4%, and a pH-dependent and controlled drug release in vitro. After encapsulation was completed, pectin-SeNPs@Cur showed enhanced water solubility (∼500-fold), dispersibility, and storage stability compared with those of free Cur. Moreover, pectin-SeNPs@Cur possessed significant free radical scavenging ability and antioxidant capacity in vitro, which were stronger than those of pectin-SeNPs. Antitumour activity assay in vitro demonstrated that pectin-SeNPs@Cur could inhibit the growth of HepG2 cells in a concentration-dependent manner, and the nanocarrier pectin-SeNPs exhibited a low cytotoxic activity against HepG2 cells. Therefore, the results suggested that pectin-SeNPs could function as effective nanovectors for the enhancement of the water solubility, stability, and in vitro bioactivities of hydrophobic Cur.
Collapse
Affiliation(s)
- Yan Wu
- Technical Center of China Tobacco Guangxi Industrial Co. Ltd., Nanning, Guangxi 530001, People's Republic of China
| | - Hong Liu
- Technical Center of China Tobacco Guangxi Industrial Co. Ltd., Nanning, Guangxi 530001, People's Republic of China
| | - Zhihua Li
- Technical Center of China Tobacco Guangxi Industrial Co. Ltd., Nanning, Guangxi 530001, People's Republic of China
| | - Dongye Huang
- Technical Center of China Tobacco Guangxi Industrial Co. Ltd., Nanning, Guangxi 530001, People's Republic of China
| | - Lizheng Nong
- Technical Center of China Tobacco Guangxi Industrial Co. Ltd., Nanning, Guangxi 530001, People's Republic of China
| | - Zhengxing Ning
- Technical Center of China Tobacco Guangxi Industrial Co. Ltd., Nanning, Guangxi 530001, People's Republic of China
| | - Zhizhong Hu
- Technical Center of China Tobacco Guangxi Industrial Co. Ltd., Nanning, Guangxi 530001, People's Republic of China
| | - Chunping Xu
- College of Food and Biology Engineering, Zhengzhou University of Light Industry, Zhengzhou 450016, People's Republic of China
| | - Jing-Kun Yan
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
11
|
Cui J, Zhou J, Huang L, Jing J, Wang N, Wang L. Curcumin encapsulation and protection based on lysozyme nanoparticles. Food Sci Nutr 2019; 7:2702-2707. [PMID: 31428357 PMCID: PMC6694727 DOI: 10.1002/fsn3.1129] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 12/21/2022] Open
Abstract
Curcumin possesses antioxidant, anti-inflammatory, and other properties. However, this compound exhibits low bioavailability because of its poor solubility and stability. In this paper, lysozyme nanoparticles were fabricated through solvent evaporation, and then, the solubilization and protection capability of curcumin were investigated. Lysozyme nanoparticles were characterized by dynamic light scattering technique, atomic force microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The load capacity and stability in thermal environment were further explored. Results showed that the lysozyme nanoparticle displayed a spherical structure (127.9 ± 2.12 nm) with favorable distribution. The solubility of curcumin can increase to 22 μg/mL. After encapsulation by lysozyme nanoparticles, the retentive curcumin can reach up to 67.9% and 30.25% at 25°C and 50°C, respectively, significantly higher than that of free curcumin. Meanwhile, experiments on DPPH free radicals indicated the curcumin loaded by lysozyme nanoparticle possessed higher free radical scavenging activity than that of free curcumin with same treatments. The results confirmed that lysozyme nanoparticles exhibit potential applications in solubilizing and protecting the environment-sensitive hydrophobic functional components.
Collapse
Affiliation(s)
- Jilai Cui
- College of Life ScienceXinyang Normal UniversityXinyangChina
- Tea Plant Biology Key Laboratory of Henan ProvinceXinyangChina
- Institute for Conservation and Utilization of Agro‐bioresources in Dabie MountainsXinyangChina
| | - Jie Zhou
- College of Life ScienceXinyang Normal UniversityXinyangChina
- Tea Plant Biology Key Laboratory of Henan ProvinceXinyangChina
- Institute for Conservation and Utilization of Agro‐bioresources in Dabie MountainsXinyangChina
| | - Lu Huang
- College of Life ScienceXinyang Normal UniversityXinyangChina
| | - Junxiang Jing
- College of Life ScienceXinyang Normal UniversityXinyangChina
| | - Ningze Wang
- College of Life ScienceXinyang Normal UniversityXinyangChina
| | - Luyuan Wang
- College of Life ScienceXinyang Normal UniversityXinyangChina
| |
Collapse
|
12
|
Yan JN, Shang WH, Zhao J, Han JR, Jin WG, Wang HT, Du YN, Wu HT, Janaswamy S, Xiong YL, Zhu BW. Gelation and microstructural properties of protein hydrolysates from trypsin-treated male gonad of scallop (Patinopecten yessoensis) modified by κ-Carrageenan/K+. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Nano-encapsulation of naringinase produced by Trichoderma longibrachiatum ATCC18648 on thermally stable biopolymers for citrus juice debittering. J Microbiol 2019; 57:521-531. [DOI: 10.1007/s12275-019-8528-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022]
|
14
|
Xu W, Huang L, Jin W, Ge P, Shah BR, Zhu D, Jing J. Encapsulation and release behavior of curcumin based on nanoemulsions-filled alginate hydrogel beads. Int J Biol Macromol 2019; 134:210-215. [PMID: 31071402 DOI: 10.1016/j.ijbiomac.2019.04.200] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/05/2023]
Abstract
To provide the bilateral advantages of emulsions and hydrogels, a facile approach was used to fabricate nanoemulsions filled hydrogel beads through combining the method of self-emulsification and sodium alginate (SA) ionic gelation. The encapsulation and release behavior of curcumin (Cur) were further investigated. The results indicated that Cur packaged nanoemulsions were with the size of 24.26 ± 0.22 nm. The nanoemulsions filled SA hydrogel beads were spherical shell with the diameter of 0.46 ± 0.02 mm. For Cur, the EE and LC of emulsion filled SA hydrogel beads were 99.15 ± 0.85% and 7.25 ± 3.16 mg/g respectively. The release behavior could be regulated by external pH condition. The release behavior at pH 9.0 displayed a higher release rate than that at pH 7.0. Cur released behavior well followed the Hixcon-Crowell model which indicated that Cur was released in a diffusion-controlled model. Comparatively investigation of microstructure using field emission scanning electron microscope (FE-SEM) further investigates the corrosion behavior of SA gel beads during Cur release. The worth-while endeavor provided a practical combined technique of emulsions and ionic gelation to fabricate hybrid hydrogel beads that have potential in delivery system for hydrophobic composition.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China.
| | - Lu Huang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peipei Ge
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Bakht Ramin Shah
- University of South Bohemian in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and protection of Waters, Na Sádkách 1780, 37005, Czech Republic
| | - Dandan Zhu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Junxiang Jing
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
15
|
Lu X, Chen J, Guo Z, Zheng Y, Rea MC, Su H, Zheng X, Zheng B, Miao S. Using polysaccharides for the enhancement of functionality of foods: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Fabrication of ovalbumin/κ-carrageenan complex nanoparticles as a novel carrier for curcumin delivery. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Sanidad KZ, Sukamtoh E, Xiao H, McClements DJ, Zhang G. Curcumin: Recent Advances in the Development of Strategies to Improve Oral Bioavailability. Annu Rev Food Sci Technol 2019; 10:597-617. [PMID: 30633561 DOI: 10.1146/annurev-food-032818-121738] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Substantial human and preclinical studies have shown that curcumin, a dietary compound from turmeric, has a variety of health-promoting effects including but not limited to antioxidant, antimicrobial, anti-inflammatory, and anticancer actions. However, curcumin has poor bioavailability, and high doses of curcumin are usually needed to exert its health-promoting effects in vivo, limiting its applications for disease prevention. Here, we discuss the health-promoting effects of curcumin, factors limiting its bioavailability, and strategies to improve its oral bioavailability.
Collapse
Affiliation(s)
- Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; , .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Elvira Sukamtoh
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; ,
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; , .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; ,
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; , .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
18
|
Wu C, Li L, Zhong Q, Cai R, Wang P, Xu X, Zhou G, Han M, Liu Q, Hu T, Yin T. Myofibrillar protein–curcumin nanocomplexes prepared at different ionic strengths to improve oxidative stability of marinated chicken meat products. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Weng Q, Cai X, Zhang F, Wang S. Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin. Food Chem 2018; 274:796-802. [PMID: 30373011 DOI: 10.1016/j.foodchem.2018.09.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/26/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Abstract
Simulating the process of traditional Chinese medicine decoction, Radix Pseudostellariae protein (RPP)-based nanoparticles were constructed by combining heat treatment with pH adjustment in succession. The formed nanoparticles were characterized as homogeneously dispersed sphere within 100 nm in diameter. With curcumin as a drug model, the potential application of RPP as a nanocarrier was studied. Curcumin could combine to RPP through hydrophobic interaction and quench the intrinsic fluorescence of RPP. Results of X-ray diffraction revealed that the crystal formation of curcumin was suppressed after the formation of nanocomplexes. In addition, the curcumin-loaded nanocomplexes exhibited good thermal stability and the light stability of curcumin was significantly improved. The curcumin-loaded nanocomplexes had stronger reducing power than free curcumin, which displayed additive effect between curcumin and RPP. In summary, the obtained RPP nanoparticles are potential to become new drug delivery carriers in food field and pharmaceutical applications for the encapsulation of hydrophobic components.
Collapse
Affiliation(s)
- Qingxia Weng
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xixi Cai
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Fang Zhang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, People's Republic of China.
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
20
|
Xu W, Lou Y, Xu B, Li Y, Xiong Y, Jing J. Mineralized calcium carbonate/xanthan gum microspheres for lysozyme adsorption. Int J Biol Macromol 2018; 120:2175-2179. [PMID: 30201565 DOI: 10.1016/j.ijbiomac.2018.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/17/2018] [Accepted: 09/07/2018] [Indexed: 11/15/2022]
Abstract
Calcium carbonate/xanthan gum (Ca2CO3/XG) microspheres were prepared using biomimetic mineralization method for lysozyme (Ly) adsorption. The morphology of Ca2CO3/XG microspheres was characterized by field emission scanning electron microscope (FE-SEM). The Ly adsorption behavior was verified by Fourier transform infrared (FTIR) and in situ fluorescence microscope images. The effects of pHs on lysozyme adsorption were investigated as well. It was revealed that CaCO3/XG microspheres could immobilize lysozyme efficiently via electrostatic interactions with adsorption rate and adsorption quantity of 58.55 ± 0.56% and 18.7 ± 1.2 μg/mg as the pH was 7.0. Comparatively, the values markedly improved to 80.97 ± 0.15% and 24.3 ± 0.1 μg/mg respectively as the pH was 9.0 (p < 0.05). Additionally, UV and fluorescence spectrum showed that Ly maintained its original secondary structure during the adsorption/desorption process. The study therefore demonstrated that CaCO3/XG microspheres can be used as a practical and efficient support for Ly adsorption and desorption.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China; Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang 464000, China.
| | - Yucui Lou
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Bin Xu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang 473000, China
| | - Yingying Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - YongZhao Xiong
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Junxiang Jing
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
21
|
Xu W, Jin W, Wang Y, Li J, Huang K, Shah BR, Li B. Effect of physical interactions on structure of lysozyme in presence of three kinds of polysaccharides. Journal of Food Science and Technology 2018; 55:3056-3064. [PMID: 30065415 DOI: 10.1007/s13197-018-3228-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/19/2018] [Accepted: 05/10/2018] [Indexed: 11/29/2022]
Abstract
In this work the influences of κ-carrageenan (CRG), konjac glucomannan (KGM) and inulin on lysozyme (Ly)'s structure, activity, and their complex phase behavior were investigated through spectroscopy and activity measurement in heated and unheated conditions. It was found that the impact on the structure and activity of Ly was determined by the interactions with polysaccharides. After heat treatment, KGM and CRG improved the stability of complex systems. However, inulin did not have significant impact. Heating process promoted to change the structure of Ly, and the intervention retard following the sequence of CRG > KGM > inulin. The worthwhile work indicated protein's structure and activity could be regulated by the interaction with polysaccharide, which might provide theoretical basis for food preservation and processing in different temperature treatments. Besides, the bidirectional effects of polysaccharide on protein would be beneficial to rational selection of functional properties of polysaccharide/protein systems.
Collapse
Affiliation(s)
- Wei Xu
- 1Colleg of Life Science, Xinyang Normal University, Xinyang, 464000 China.,Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, 464000 China
| | - Weiping Jin
- 2College of Food Science and Technology, Huazhong Agriculture University, Wuhan, 430070 China.,4Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yuan Wang
- 1Colleg of Life Science, Xinyang Normal University, Xinyang, 464000 China
| | - Juan Li
- 1Colleg of Life Science, Xinyang Normal University, Xinyang, 464000 China
| | - Kunling Huang
- 1Colleg of Life Science, Xinyang Normal University, Xinyang, 464000 China
| | - Bakht Ramin Shah
- 5Department of Nutrition and Food Hygiene, School of Public Health, Wuhan University, Wuhan, 430071 Hubei China
| | - Bin Li
- 2College of Food Science and Technology, Huazhong Agriculture University, Wuhan, 430070 China.,4Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|
22
|
Yang Z, Yang H, Yang H. Characterisation of rheology and microstructures of κ-carrageenan in ethanol-water mixtures. Food Res Int 2018; 107:738-746. [DOI: 10.1016/j.foodres.2018.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 10/17/2022]
|
23
|
Physicochemical properties of casein-dextran nanoparticles prepared by controlled dry and wet heating. Int J Biol Macromol 2018; 107:2604-2610. [DOI: 10.1016/j.ijbiomac.2017.10.140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 11/18/2022]
|
24
|
Antonov YA, Zhuravleva IL, Cardinaels R, Moldenaers P. Macromolecular complexes of lysozyme with kappa carrageenan. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Cho H, Yu KS, Hwang KT. Effect of ellagic acid incorporation on the oxidative stability of sodium caseinate-polysaccharide-stabilized emulsions. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Mirpoor SF, Hosseini SMH, Yousefi GH. Mixed biopolymer nanocomplexes conferred physicochemical stability and sustained release behavior to introduced curcumin. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Yan JK, Qiu WY, Wang YY, Wu JY. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5720-5730. [PMID: 28657749 DOI: 10.1021/acs.jafc.7b01848] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyelectrolyte complex nanoparticles (PEC NPs) were fabricated via electrostatic interactions between positively charged heat-denatured lactoferrin (LF) particles and negatively charged pectin. The obtained PEC NPs were then utilized as curcumin carriers. PEC NPs were prepared by mixing 1.0 mg/mL solutions of heat-denatured LF and pectin at a mass ratio of 1:1 (w/w) in the absence of NaCl at pH 4.50. PEC NPs that were prepared under optimized conditions were spherical in shape with a particle size of ∼208 nm and zeta potential of ∼-32 mV. Hydrophobic curcumin was successfully encapsulated into LF/pectin PEC NPs with high encapsulation efficiency (∼85.3%) and loading content (∼13.4%). The in vitro controlled release and prominent antioxidant activities of curcumin from LF/pectin PEC NPs were observed. The present work provides a facile and fast method to synthesize nanoscale food-grade delivery systems for the improved water solubility, controlled release, and antioxidant activity of hydrophobic curcumin.
Collapse
Affiliation(s)
- Jing-Kun Yan
- School of Food & Biological Engineering, Jiangsu University , Zhenjiang, 212013, China
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong
| | - Wen-Yi Qiu
- School of Food & Biological Engineering, Jiangsu University , Zhenjiang, 212013, China
| | - Yao-Yao Wang
- School of Food & Biological Engineering, Jiangsu University , Zhenjiang, 212013, China
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
28
|
Lopes NA, Brandelli A. Nanostructures for delivery of natural antimicrobials in food. Crit Rev Food Sci Nutr 2017; 58:2202-2212. [PMID: 28394691 DOI: 10.1080/10408398.2017.1308915] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Natural antimicrobial compounds are a topic of utmost interest in food science due to the increased demand for safe and high-quality foods with minimal processing. The use of nanostructures is an interesting alternative to protect and delivery antimicrobials in food, also providing controlled release of natural compounds such as bacteriocins and antimicrobial proteins, and also for delivery of plant derived antimicrobials. A diversity of nanostructures are capable of trapping natural antimicrobials maintaining the stability of substances that are frequently sensitive to food processing and storage conditions. This article provides an overview on natural antimicrobials incorporated in nanostructures, showing an effective antimicrobial activity on a diversity of food spoilage and pathogenic microorganisms.
Collapse
Affiliation(s)
- Nathalie Almeida Lopes
- a Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Adriano Brandelli
- a Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
29
|
Cho H, Lee HJ, Yu KS, Choi YM, Hwang KT. Characterisation and food application of curcumin bound to sodium caseinate-polysaccharide electrostatic complexes. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hyunnho Cho
- Department of Food and Nutrition and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| | - Hee Jae Lee
- Department of Food and Nutrition and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| | - Ki Seon Yu
- Department of Food and Nutrition and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| | - Yu Mi Choi
- Department of Food and Nutrition and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| |
Collapse
|
30
|
Li Z, Wang Y, Pei Y, Xiong W, Xu W, Li B, Li J. Effect of substitution degree on carboxymethylcellulose interaction with lysozyme. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.07.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Brandelli A, Brum LFW, dos Santos JHZ. Nanobiotechnology Methods to Incorporate Bioactive Compounds in Food Packaging. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-39306-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Shahgholian N, Rajabzadeh G. Fabrication and characterization of curcumin-loaded albumin/gum arabic coacervate. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.11.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Cho H, Jung H, Lee H, Kwak HK, Hwang KT. Formation of electrostatic complexes using sodium caseinate with high-methoxyl pectin and carboxymethyl cellulose and their application in stabilisation of curcumin. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Hyunnho Cho
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| | - Hana Jung
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
- Department of Home Economics; Korea National Open University; Seoul 03087 Korea
| | - HeeJae Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| | - Ho-Kyung Kwak
- Department of Home Economics; Korea National Open University; Seoul 03087 Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| |
Collapse
|
34
|
Xu W, Jin W, Zhang C, Liang H, Shah BR, Li B. Environment induced self-aggregation behavior of κ-carrageenan/lysozyme complex. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bcdf.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Liang H, Zhou B, Li J, Xu W, Liu S, Li Y, Chen Y, Li B. Supramolecular design of coordination bonding architecture on zein nanoparticles for pH-responsive anticancer drug delivery. Colloids Surf B Biointerfaces 2015; 136:1224-33. [PMID: 26613857 DOI: 10.1016/j.colsurfb.2015.09.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 01/29/2023]
Abstract
A pH-responsive system by constructing a designable coordination bonding-based metal-tannic acid (TA) architecture on zein nanoparticles (NPs) has been investigated. Film formation was initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. The prepared metal-TA coated zein NPs (zein-TA/metal NPs) demonstrated good stability to maintain particle size in cell culture medium at 37 °C. The microstructure of the NPs was revealed by transmission electron microscopy (TEM). To confirm the surface chemical information of the NPs, XPS analysis was performed. Furthermore, in vitro viability studies revealed that the zein-TA/metal NPs showed no significant cytotoxicity against HepG2 cells for 24h. Because of the pH-responsive coordination bonding between TA and metal ions, the functional property of the metal-TA films was tailored for drug delivery. Biocompatible AuNPs were produced using zein-TA/metal NPs as reducing and stabilizing agents which were promising in the photothermal therapy of cancers and other diseases.
Collapse
Affiliation(s)
- Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430068, China
| | - Bin Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430068, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430068, China
| | - Wei Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430068, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430068, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430068, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430068, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430068, China.
| |
Collapse
|
36
|
Loquercio A, Castell-Perez E, Gomes C, Moreira RG. Preparation of Chitosan-Alginate Nanoparticles forTrans-cinnamaldehyde Entrapment. J Food Sci 2015; 80:N2305-15. [DOI: 10.1111/1750-3841.12997] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/14/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Andre Loquercio
- Dept. of Biological & Agricultural Engineering; Texas A&M Univ; College Station TX 77843-2117 U.S.A
| | - Elena Castell-Perez
- Dept. of Biological & Agricultural Engineering; Texas A&M Univ; College Station TX 77843-2117 U.S.A
| | - Carmen Gomes
- Dept. of Biological & Agricultural Engineering; Texas A&M Univ; College Station TX 77843-2117 U.S.A
| | - Rosana G. Moreira
- Dept. of Biological & Agricultural Engineering; Texas A&M Univ; College Station TX 77843-2117 U.S.A
| |
Collapse
|
37
|
Li Z, Wang Y, Pei Y, Xiong W, Zhang C, Xu W, Liu S, Li B. Curcumin encapsulated in the complex of lysozyme/carboxymethylcellulose and implications for the antioxidant activity of curcumin. Food Res Int 2015; 75:98-105. [DOI: 10.1016/j.foodres.2015.05.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/16/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
38
|
Isolation, characterization and formulation of curcuminoids and in vitro release study of the encapsulated particles. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Li Z, Xu W, Wang Y, Shah BR, Zhang C, Chen Y, Li Y, Li B. Quantum dots loaded nanogels for low cytotoxicity, pH-sensitive fluorescence, cell imaging and drug delivery. Carbohydr Polym 2015; 121:477-85. [DOI: 10.1016/j.carbpol.2014.12.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
|
40
|
Xu W, Jin W, Li Z, Liang H, Wang Y, Shah BR, Li Y, Li B. Synthesis and characterization of nanoparticles based on negatively charged xanthan gum and lysozyme. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Li Z, Xu W, Zhang C, Chen Y, Li B. Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate. Int J Biol Macromol 2015; 75:166-72. [PMID: 25637692 DOI: 10.1016/j.ijbiomac.2015.01.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 11/26/2022]
Abstract
Nanogels (NGs) were fabricated with lysozyme and carboxymethylcellulose via a green self-assembly method. The prepared NGs were characterized by dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Pyrene and isothiocyanate were introduced as fluorescent probes to research the hydrophobic area of the NGs and cells endocytosis, respectively. Methotrexate (MTX) was used to investigate the drug encapsulation property of the NGs. It turned out to be that the drug loaded NGs were regular spherical shape with a hydrodynamic diameter of about 123 nm. The drug loading efficiency was about 14.2%. The NGs can slowly release the drug and increase the bioavailability of the loaded drug. The NGs are promising carriers for the delivery of drugs and other bioactive molecules.
Collapse
Affiliation(s)
- Zhenshun Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science, Yangtze University, Jingzhou 434025, China; Jingchu Food Research and Development Center, Yangtze University, Jingzhou 434025, China
| | - Wei Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunlan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
42
|
Zou L, Liu W, Liu C, Xiao H, McClements DJ. Designing excipient emulsions to increase nutraceutical bioavailability: emulsifier type influences curcumin stability and bioaccessibility by altering gastrointestinal fate. Food Funct 2015; 6:2475-86. [DOI: 10.1039/c5fo00606f] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Excipient emulsions can be specifically designed to increase the bioavailability of powdered curcumin. The bioavailability depends on the nature of the emulsifier used to coat the droplets in the excipient emulsion.
Collapse
Affiliation(s)
- Liqiang Zou
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
- Department of Food Science
| | - Wei Liu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Hang Xiao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | | |
Collapse
|
43
|
Liang H, Zhou B, He L, An Y, Lin L, Li Y, Liu S, Chen Y, Li B. Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin. RSC Adv 2015. [DOI: 10.1039/c4ra14270e] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this article, we report the successful assembly of nanoparticles (NPs) from a water-soluble chitosan (CS) derivative (N-(2-hydroxyl)propyl-3-trimethyl ammonium chitosan chloride, HTCC) and zein via a low-energy phase separation method.
Collapse
Affiliation(s)
- Hongshan Liang
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Bin Zhou
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Lei He
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Yaping An
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Liufeng Lin
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Yan Li
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Shilin Liu
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Yijie Chen
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Bin Li
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| |
Collapse
|
44
|
Dias MI, Ferreira ICFR, Barreiro MF. Microencapsulation of bioactives for food applications. Food Funct 2015; 6:1035-52. [DOI: 10.1039/c4fo01175a] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The potential of microencapsulation to protect bioactive compounds ensuring bioavailability maintenance is proved but requires further studies on its applicability and incentives by regulatory agencies.
Collapse
Affiliation(s)
- Maria Inês Dias
- Mountain Research Centre (CIMO)
- ESA
- Polytechnic Institute of Bragança
- 5301-855 Bragança
- Portugal
| | | | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering (LSRE)
- Associate Laboratory LSRE/LCM
- Polytechnic Institute of Bragança
- 5301-857 Bragança
- Portugal
| |
Collapse
|