1
|
Lin C, Tejano LA, Panjaitan FCA, Permata VNS, Sevi T, Chang Y. Protein identification and potential bioactive peptides from pumpkin ( Cucurbita maxima) seeds. Food Sci Nutr 2024; 12:5388-5402. [PMID: 39139947 PMCID: PMC11317681 DOI: 10.1002/fsn3.4188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 08/15/2024] Open
Abstract
Pumpkin is an economically important crop all over the world. Approximately, 18%-21% of pumpkins, consisting of peels and seeds by-products, are wasted during processing. In addition, the seeds are rich in protein and have the potency of bioactive peptide production. This study aims to recognize the proteins and investigate the potential bioactive peptides from pumpkin (Cucurbita maxima) seeds. Pumpkin seeds were subjected to hot air drying (HAD) at 55°C for 12 h and freeze-drying (FD) at -80°C for 54 h before they were powdered, analyzed, and precipitated by isoelectric point to obtain pumpkin seed protein isolates (PSPI). PSPI comprised 11S globulin subunit beta, 2S seed storage albumin, and chaperonin CPN60-1. To generate hydrolysate peptides, PSPI was hydrolyzed using papain, pepsin, and bromelain. FD group pepsin hydrolysates had the highest peptide content of 420.83 mg/g. ACE inhibition and DPP-IV inhibition activity were analyzed for each enzymatic hydrolysate. The pepsin hydrolyzed sample exhibited the highest ACE inhibition of 70.26%, and the papain hydrolyzed sample exhibited the highest DPP-IV inhibition of 30.51%. The simulated gastrointestinal digestion (SGID) conducted by pepsin and pancreatin increased ACE inhibitory activity from 76.93% to 78.34%, and DPP-IV inhibited activity increased from 58.62% to 77.13%. Pepsin and papain hydrolysates were fractionated using ultrafiltration to measure ACE and DPP-IV inhibition activity. The highest free radical scavenging abilities were exhibited by the <1 kDa hydrolysate fractions with 78.34% ACE inhibitory activities and 79.55% DPP-IV inhibitory activities. This research revealed that pumpkin seeds had the potency to produce bioactive peptides.
Collapse
Affiliation(s)
- Chu‐Ti Lin
- Department of Food ScienceNational Taiwan Ocean UniversityKeelungTaiwan
| | - Lhumen A. Tejano
- Institute of Fish Processing Technology, College of Fisheries and Ocean SciencesUniversity of the Philippines VisayasMiagaoIloiloPhilippines
| | | | | | - Tesalonika Sevi
- Department of Food ScienceNational Taiwan Ocean UniversityKeelungTaiwan
| | - Yu‐Wei Chang
- Department of Food ScienceNational Taiwan Ocean UniversityKeelungTaiwan
| |
Collapse
|
2
|
Wu DT, Li WX, Wan JJ, Hu YC, Gan RY, Zou L. A Comprehensive Review of Pea ( Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023; 12:2527. [PMID: 37444265 DOI: 10.3390/foods12132527] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pisum sativum L., commonly referred to as dry, green, or field pea, is one of the most common legumes that is popular and economically important. Due to its richness in a variety of nutritional and bioactive ingredients, the consumption of pea has been suggested to be associated with a wide range of health benefits, and there has been increasing focus on its potential as a functional food. However, there have been limited literature reviews concerning the bioactive compounds, health-promoting effects, and potential applications of pea up to now. This review, therefore, summarizes the literature from the last ten years regarding the chemical composition, physicochemical properties, processing, health benefits, and potential applications of pea. Whole peas are rich in macronutrients, including proteins, starches, dietary fiber, and non-starch polysaccharides. In addition, polyphenols, especially flavonoids and phenolic acids, are important bioactive ingredients that are mainly distributed in the pea coats. Anti-nutritional factors, such as phytic acid, lectin, and trypsin inhibitors, may hinder nutrient absorption. Whole pea seeds can be processed by different techniques such as drying, milling, soaking, and cooking to improve their functional properties. In addition, physicochemical and functional properties of pea starches and pea proteins can be improved by chemical, physical, enzymatic, and combined modification methods. Owing to the multiple bioactive ingredients in peas, the pea and its products exhibit various health benefits, such as antioxidant, anti-inflammatory, antimicrobial, anti-renal fibrosis, and regulation of metabolic syndrome effects. Peas have been processed into various products such as pea beverages, germinated pea products, pea flour-incorporated products, pea-based meat alternatives, and encapsulation and packing materials. Furthermore, recommendations are also provided on how to better utilize peas to promote their development as a sustainable and functional grain. Pea and its components can be further developed into more valuable and nutritious products.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Xing Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jia-Jia Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
3
|
Chen H, Wu J, Chen M, Cai X, Chen X, Wang S. Evaluation and relationship analysis of pea protein on structure and heat-induced gel performance of myofibrillar protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2502-2511. [PMID: 36606415 DOI: 10.1002/jsfa.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Surimi products occupy a large market in the food industry, and the gel performance is an important index to evaluate them. Thus, it is of great significance and practical value to find better food ingredients to regulate the structure and gel performance of surimi products. In this study, we used pea protein (PP) to restructure fish myofibrillar proteins (MPs) to achieve regulation of protein gel performance. RESULTS PP could enhance MP gel performance in terms of compressive strength, water-holding capacity, and some texture parameters. This may be the result of an increasing β-sheet content and a decreasing trend in the α-helix content, along with enhancements in hydrophobic interactions, nonspecific associations, and ionic bonds in a mixed PP-MP gel. The compressive strength, texture, and water-holding capacity of MP gel were positively correlated with surface hydrophobicity, active sulfhydryl, turbidity, and β-sheet of the mixed PP-MP system. CONCLUSION The findings suggest that PP can regulate the gel performance by remodeling the structure of MP. The regulation and correlation analysis between gel performance, structure, and physicochemical properties were explored and established to provide a theoretical basis for improving the quality of surimi products. This study will broaden the application of PP in the field of food processing and provide theoretical guidance for the manufacture of new surimi products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jiulin Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Meizhen Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
4
|
Quintieri L, Nitride C, De Angelis E, Lamonaca A, Pilolli R, Russo F, Monaci L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023; 15:nu15061509. [PMID: 36986239 PMCID: PMC10054669 DOI: 10.3390/nu15061509] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The increasing size of the human population and the shortage of highly valuable proteinaceous ingredients has prompted the international community to scout for new, sustainable, and natural protein resources from invertebrates (e.g., insects) and underutilized legume crops, unexploited terrestrial and aquatic weeds, and fungi. Insect proteins are known for their nutritional value, being rich in proteins with a good balance of essential amino acids and being a valuable source of essential fatty acids and trace elements. Unconventional legume crops were found rich in nutritional, phytochemical, and therapeutic properties, showing excellent abilities to survive extreme environmental conditions. This review evaluates the recent state of underutilized legume crops, aquatic weeds, fungi, and insects intended as alternative protein sources, from ingredient production to their incorporation in food products, including their food formulations and the functional characteristics of alternative plant-based proteins and edible insect proteins as novel foods. Emphasis is also placed on safety issues due to the presence of anti-nutritional factors and allergenic proteins in insects and/or underutilized legumes. The functional and biological activities of protein hydrolysates from different protein sources are reviewed, along with bioactive peptides displaying antihypertensive, antioxidant, antidiabetic, and/or antimicrobial activity. Due to the healthy properties of these foods for the high abundance of bioactive peptides and phytochemicals, more consumers are expected to turn to vegetarianism or veganism in the future, and the increasing demand for such products will be a challenge for the future.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
5
|
Tawalbeh D, Al-U’datt MH, Wan Ahmad WAN, Ahmad F, Sarbon NM. Recent Advances in In Vitro and In Vivo Studies of Antioxidant, ACE-Inhibitory and Anti-Inflammatory Peptides from Legume Protein Hydrolysates. Molecules 2023; 28:2423. [PMID: 36985395 PMCID: PMC10056053 DOI: 10.3390/molecules28062423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Consumption of legumes has been shown to enhance health and lower the risk of cardiovascular disease and specific types of cancer. ACE inhibitors, antioxidants, and synthetic anti-inflammatories are widely used today; however, they have several undesirable side effects. Thus, researchers have focused on finding ACE inhibitors, antioxidant, and anti-inflammatory peptides from natural sources, such as legumes. Recently, in vitro and in vivo research has shown the bioactive peptides generated from legume protein hydrolysates, such as antioxidant, anti-hypertensive, anticancer, anti-proliferative, anti-inflammatory, etc., in the context of different disease mitigation. Therefore, this review aims to describe the recent advances in in vitro and in vivo studies of antioxidant, anti-hypertensive and anti-inflammatory peptides isolated from legume-derived protein hydrolysates. The results indicated that antioxidant legumes peptides are characterized by short-chain sequence amino acids and possess anti-hypertensive properties by reducing systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR).
Collapse
Affiliation(s)
- Deia Tawalbeh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Muhammad H. Al-U’datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | | | - Fisal Ahmad
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| |
Collapse
|
6
|
Pratami T, Sitanggang AB, Wijaya CH. Produksi Hidrolisat Protein Kacang Koro Benguk dengan Aktivitas Penghambat Kerja Enzim Pengkonversi Angiotensin melalui Kombinasi Fermentasi dan Hidrolisis Enzimatik. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2022. [DOI: 10.6066/jtip.2022.33.2.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mucuna bean (Mucuna pruriens L.) is a legume having high protein content which has the potential as a source of bioactive peptides. One of the bioactive peptides is an angiotensin-converting enzyme (ACE) inhibitor, thus, mucuna beans might be used as a potential source of antihypertensive compounds. This study aimed to increase the functionality of proteins from mucuna beans as ACE inhibitors using a combination of fermentation and enzymatic hydrolysis followed by membrane filtration. The mucuna beans were fermented for 0, 24, 48, 96, and 144 h. The highest ACE inhibitory activity of 54.37%, was obtained by fermentation of the beans at 48 h, with a protein content of 20.82 mg/mL. The 48 h fermented mucuna beans were further hydrolyzed using alcalase or neutrase and subsequently filtered with UF membranes having 20,10 and 5 kDa cut-off. The enzymatic hydrolysis followed by membrane filtration increased the ACE inhibitory activity of mucuna beans. The neutrase hydrolysates resulting from 5 kDa membrane filtration showed the best ACE inhibitory activity (62.96% with a protein content of 10.39 mg/mL). A combination of fermentation and enzymatic hydrolysis followed by filtration using UF-membrane was able to produce ACE inhibitory peptides from mucuna beans. The potential of mucuna beans peptides as ACE inhibitors was due to the presence of negatively charged amino acid residues such as Asp and Glu, positively charged amino acids such as Arg and Lys, and hydrophobic amino acids such as Val, Leu, Ala, and Ile.
Collapse
|
7
|
Potential Role of Bioactive Proteins and Peptides Derived from Legumes towards Metabolic Syndrome. Nutrients 2022; 14:nu14245271. [PMID: 36558429 PMCID: PMC9782127 DOI: 10.3390/nu14245271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Legumes have been widely consumed and used to isolate bioactive compounds, mainly proteins. The aim of this study was to review the beneficial actions of different legumes proteins and peptides updating the main findings that correlate legumes consumption and the effects on non-transmissible chronic diseases, specifically metabolic syndrome. An exhaustive revision of five relevant bioactivities (antioxidant, anti-inflammatory, antihypertensive, hypocholesterolemic -all of them linked to metabolic syndrome- and antitumoral) of proteins and peptides from legumes focused on isolation and purification, enzymatic hydrolysis and in vitro gastrointestinal digestion was carried out. The promising potential of bioactive hydrolysates and peptides from pulses has been demonstrated by in vitro tests. However, only a few studies validated these biological activities using animal models. No clinical trials have been carried out yet; so further research is required to elucidate their effective health implications.
Collapse
|
8
|
Kiersnowska K, Jakubczyk A. Bioactive Peptides Obtained from Legume Seeds as New Compounds in Metabolic Syndrome Prevention and Diet Therapy. Foods 2022; 11:3300. [PMCID: PMC9602117 DOI: 10.3390/foods11203300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, food is regarded not only as a source of nutrients, vitamins, and minerals but also as a source of bioactive compounds that can play a significant role in the prevention and diet therapy of many diseases. Metabolic syndrome (MS) is a complex disorder defined as a set of interrelated factors that increase the risk of cardiovascular disease, atherosclerosis, type 2 diabetes, or dyslipidemia. MS affects not only adults but also children. Peptides are one of the compounds that exhibit a variety of bioactive properties. They are derived from food proteins, which are usually obtained through enzymatic hydrolysis or digestion in the digestive system. Legume seeds are a good source of bioactive peptides. In addition to their high protein content, they contain high levels of dietary fiber, vitamins, and minerals. The aim of this review is to present new bioactive peptides derived from legume seeds and showing inhibitory properties against MS. These compounds may find application in MS diet therapy or functional food production.
Collapse
|
9
|
Gharibzahedi SMT, Smith B, Altintas Z. Bioactive and health-promoting properties of enzymatic hydrolysates of legume proteins: a review. Crit Rev Food Sci Nutr 2022; 64:2548-2578. [PMID: 36200775 DOI: 10.1080/10408398.2022.2124399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study comprehensively reviewed the effect of controlled enzymatic hydrolysis on the bioactivity of pulse protein hydrolysates (PPHs). Proteolysis results in the partial structural unfolding of pulse proteins with an increase in buried hydrophobic groups of peptide sequences. The use of PPHs in a dose-dependent manner can enhance free radical scavenging and improve antioxidant activities regarding inhibition of lipid oxidation, ferric reducing power, metal ion chelation, and β-carotene bleaching inhibition. Ultrafiltered peptide fractions with low molecular weights imparted angiotensin-I converting enzyme (ACE) inhibitory effects during in vitro simulated gastrointestinal digestion and in vivo conditions. Ultrasonication, high-pressure pretreatments, and glycosylation as post-treatments can improve the antiradical, antioxidant, and ACE inhibitory activities of PPHs. The electrostatic attachment of pulse peptides to microbial cells can inhibit the growth and activity of bacteria and fungi. Bioactive pulse peptides can reduce serum cholesterol and triglycerides, and inhibit the formation of adipocyte lipid storage, allergenic factors, inflammatory markers, and arterial thrombus without cytotoxicity. The combination of germination and enzymatic hydrolysis can significantly increase the protein digestibility and bioavailability of essential amino acids. Moreover, the utilization and enrichment of bakery and meat products with functional PPHs ensure quality, safety, and health aspects of food products.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany
| | - Brennan Smith
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
- USDA-ARS-SRRC Food Processing and Sensory Quality, New Orleans, Louisiana, USA
| | - Zeynep Altintas
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany
| |
Collapse
|
10
|
Shanthakumar P, Klepacka J, Bains A, Chawla P, Dhull SB, Najda A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules 2022; 27:5354. [PMID: 36014591 PMCID: PMC9412838 DOI: 10.3390/molecules27165354] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pea (Pisum sativum) is an important source of nutritional components and is rich in protein, starch, and fiber. Pea protein is considered a high-quality protein and a functional ingredient in the global industry due to its low allergenicity, high protein content, availability, affordability, and deriving from a sustainable crop. Moreover, pea protein has excellent functional properties such as solubility, water, and oil holding capacity, emulsion ability, gelation, and viscosity. Therefore, these functional properties make pea protein a promising ingredient in the food industry. Furthermore, several extraction techniques are used to obtain pea protein isolate and concentrate, including dry fractionation, wet fractionation, salt extraction, and mild fractionation methods. Dry fractionation is chemical-free, has no loss of native functionality, no water use, and is cost-effective, but the protein purity is comparatively low compared to wet extraction. Pea protein can be used as a food emulsifier, encapsulating material, a biodegradable natural polymer, and also in cereals, bakery, dairy, and meat products. Therefore, in this review, we detail the key properties related to extraction techniques, chemistry, and structure, functional properties, and modification techniques, along with their suitable application and health attributes.
Collapse
Affiliation(s)
- Parvathy Shanthakumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10719 Olsztyn, Poland
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20280 Lublin, Poland
| |
Collapse
|
11
|
Extraction and Characterization of β-Viginin Protein Hydrolysates from Cowpea Flour as a New Manufacturing Active Ingredient. TECHNOLOGIES 2022. [DOI: 10.3390/technologies10040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The increased mortality rates associated with antibiotic resistance has become a significant public health problem worldwide. Living beings produce a variety of endogenous compounds to defend themselves against exogenous pathogens. The knowledge of these endogenous compounds may contribute to the development of improved bioactive ingredients with antimicrobial properties, useful against conventional antibiotic resistance. Cowpea is an herbaceous legume of great interest due to its high protein content and high productivity rates. The study of genetic homology of vicillin (7S) from cowpea (Vigna unguiculata L.) with vicilins from soybean and other beans, such as adzuki, in addition to the need for further studies about potential biological activities of this vegetable, led us to seek the isolation of the vicilin fraction from cowpea and to evaluate the potential in vitro inhibitory action of pathogenic microorganisms. The cowpea beta viginin protein was isolated, characterized, and hydrolyzed in silico and in vitro by two enzymes, namely, pepsin and chymotrypsin. The antimicrobial activity of the protein hydrolysate fractions of cowpea flour was evaluated against Staphylococcus aureus and Pseudomonas aeruginosa, confirming the potential use of the peptides as innovative antimicrobial agents.
Collapse
|
12
|
Bollati C, Xu R, Boschin G, Bartolomei M, Rivardo F, Li J, Arnoldi A, Lammi C. Integrated Evaluation of the Multifunctional DPP-IV and ACE Inhibitory Effect of Soybean and Pea Protein Hydrolysates. Nutrients 2022; 14:2379. [PMID: 35745109 PMCID: PMC9227613 DOI: 10.3390/nu14122379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Nowadays, notwithstanding their nutritional and technological properties, food bioactive peptides from plant sources garner increasing attention for their ability to impart more than one beneficial effect on human health. Legumes, which stand out thanks to their high protein content, represent valuable sources of bioactive peptides. In this context, this study focused on the characterization of the potential pleotropic activity of two commercially available soybean (SH) and pea (PH) protein hydrolysates, respectively. Since the biological activity of a specific protein hydrolysate is strictly correlated with its chemical composition, the first aim of the study was to identify the compositions of the SH and PH peptides. Peptidomic analysis revealed that most of the identified peptides within both mixtures belong to storage proteins. Interestingly, according to the BIOPEP-UWM database, all the peptides contain more than one active motive with known inhibitory angiotensin converting enzyme (ACE) and dipeptidyl-dipeptidases (DPP)-IV sequences. Indeed, the results indicated that both SH and PH inhibit DPP-IV and ACE activity with a dose-response trend and IC50 values equal to 1.15 ± 0.004 and 1.33 ± 0.004 mg/mL, and 0.33 ± 0.01 and 0.61 ± 0.05 mg/mL, respectively. In addition, both hydrolysates reduced the activity of DPP-IV and ACE enzymes which are expressed on the surface of human intestinal Caco-2 cells. These findings clearly support that notion that SH and PH may represent new ingredients with anti-diabetic and hypotensive effects for the development of innovative multifunctional foods and/or nutraceuticals for the prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| | - Ruoxian Xu
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| | - Fabrizio Rivardo
- A. Costantino & C. Spa, Via Francesco Romana 11, 10083 Torino, Italy;
| | - Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (C.B.); (R.X.); (G.B.); (M.B.); (J.L.); (A.A.)
| |
Collapse
|
13
|
Yuan H, Luo Z, Ban Z, Reiter RJ, Ma Q, Liang Z, Yang M, Li X, Li L. Bioactive peptides of plant origin: distribution, functionality, and evidence of benefits in food and health. Food Funct 2022; 13:3133-3158. [PMID: 35244644 DOI: 10.1039/d1fo04077d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The multiple functions of peptides released from proteins have immense potential in food and health. In the past few decades, research interest in bioactive peptides of plant origin has surged tremendously, and new plant-derived peptides are continually discovered with advances in extraction, purification, and characterization technology. Plant-derived peptides are mainly extracted from dicot plants possessing bioactive functions, including antioxidant, cholesterol-lowering, and antihypertensive activities. Although the distinct functions are said to depend on the composition and structure of amino acids, the practical or industrial application of plant-derived peptides with bioactive features is still a long way off. In summary, the present review mainly focuses on the state-of-the-art extraction, separation, and analytical techniques, functional properties, mechanism of action, and clinical study of plant-derived peptides. Special emphasis has been placed on the necessity of more pre-clinical and clinical trials to authenticate the health claims of plant-derived peptides.
Collapse
Affiliation(s)
- Hemao Yuan
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China. .,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhaojun Ban
- School of Biological and chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, USA
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Ze Liang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Mingyi Yang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Xihong Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China. .,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Vogel C, Paglia EB, Moroni LS, Demiate IM, Prestes RC, Kempka AP. Swine plasma peptides obtained using pepsin: In silico and in vitro properties and biological activities. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1981880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Cristine Vogel
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University–UDESC, Pinhalzinho, Brazil
| | - Eduarda Baggio Paglia
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University–UDESC, Pinhalzinho, Brazil
| | - Liziane Schittler Moroni
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University–UDESC, Pinhalzinho, Brazil
| | - Ivo Mottin Demiate
- Department of Food Engineering, Ponta Grossa State University–UEPG, Ponta Grossa, Brazil
| | - Rosa Cristina Prestes
- Department of Technology and Food Science, Federal University of Santa Maria–UFSM, Santa Maria, Brazil
| | - Aniela Pinto Kempka
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University–UDESC, Pinhalzinho, Brazil
| |
Collapse
|
15
|
Okagu IU, Ndefo JC, Aham EC, Obeme-Nmom JI, Agboinghale PE, Aguchem RN, Nechi RN, Lammi C. Lupin-Derived Bioactive Peptides: Intestinal Transport, Bioavailability and Health Benefits. Nutrients 2021; 13:nu13093266. [PMID: 34579144 PMCID: PMC8469740 DOI: 10.3390/nu13093266] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
There is a renewed interest on the reliance of food-based bioactive compounds as sources of nutritive factors and health-beneficial chemical compounds. Among these food components, several proteins from foods have been shown to promote health and wellness as seen in proteins such as α/γ-conglutins from the seeds of Lupinus species (Lupin), a genus of leguminous plant that are widely used in traditional medicine for treating chronic diseases. Lupin-derived peptides (LDPs) are increasingly being explored and they have been shown to possess multifunctional health improving properties. This paper discusses the intestinal transport, bioavailability and biological activities of LDPs, focusing on molecular mechanisms of action as reported in in vitro, cell culture, animal and human studies. The potentials of several LDPs to demonstrate multitarget mechanism of regulation of glucose and lipid metabolism, chemo- and osteoprotective properties, and antioxidant and anti-inflammatory activities position LDPs as good candidates for nutraceutical development for the prevention and management of medical conditions whose etiology are multifactorial.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (E.C.A.); (R.N.A.)
| | - Joseph C. Ndefo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka 410001, Nigeria
- Correspondence: (J.C.N.); (C.L.)
| | - Emmanuel C. Aham
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (E.C.A.); (R.N.A.)
| | - Joy I. Obeme-Nmom
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria;
| | | | - Rita N. Aguchem
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (E.C.A.); (R.N.A.)
| | - Regina N. Nechi
- Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
- Correspondence: (J.C.N.); (C.L.)
| |
Collapse
|
16
|
Chen M, Pan D, Zhou T, Gao X, Dang Y. Novel Umami Peptide IPIPATKT with Dual Dipeptidyl Peptidase-IV and Angiotensin I-Converting Enzyme Inhibitory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5463-5470. [PMID: 33949854 DOI: 10.1021/acs.jafc.0c07138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel umami peptide, IPIPATKT, showed excellent dual dipeptidyl peptidase-IV (DPP-IV) and angiotensin I-converting enzyme (ACE) inhibitory activities, the IC50 values were 64 and 265 μM, respectively. Molecular docking displayed that IPIPATKT was docked into the S1 and S2 pockets of ACE, and it was close to the active site pocket of DPP-IV. The insulin-resistant-HepG2 (IR-HepG2) cell model and human umbilical vein endothelial cell (HUVEC) model showed that the peptide significantly increased the content of glucose, the activities of hexokinase, pyruvate kinase, and the concentration of nitric oxide (p < 0.01), while it reduced the content of endothelin-1 (ET-1). IPIPATKT exhibited a hypotensive effect (-23.5 ± 2.2 mmHg) and attenuated the increase in glucose levels in vivo, as demonstrated using spontaneous hypertensive rats (SHRs) and C57BL/6N mice. We reported the in vivo activities of the umami peptide with dual hypertensive and hypoglycemic effects for the first time.
Collapse
Affiliation(s)
- Mengdi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Tianqiong Zhou
- Hangzhou Huajin Pharmaceutical Co., Ltd., Hangzhou 310000, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
17
|
Lammi C, Aiello G, Dellafiora L, Bollati C, Boschin G, Ranaldi G, Ferruzza S, Sambuy Y, Galaverna G, Arnoldi A. Assessment of the Multifunctional Behavior of Lupin Peptide P7 and Its Metabolite Using an Integrated Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13179-13188. [PMID: 32223157 PMCID: PMC7997369 DOI: 10.1021/acs.jafc.0c00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
LTFPGSAED (P7) is a multifunctional hypocholesterolemic and hypoglycemic lupin peptide. While assessing its angiotensin-converting enzyme (ACE) inhibitory activity, it was more effective in intestinal Caco-2 cells (IC50 of 13.7 μM) than in renal HK-2 cells (IC50 of 79.6 μM). This discrepancy was explained by the metabolic transformation mediated by intestinal peptidases, which produced two main detected peptides, TFPGSAED and LTFPG. Indeed LTFPG, dynamically generated by intestinal dipeptidyl peptidase IV as well as its parent peptide P7 were linearly absorbed by mature Caco-2 cells. An in silico study demonstrated that the metabolite was a better ligand of the ACE enzyme than P7. These results are in agreement with an in vivo study, previously performed by Aluko et al., which has shown that LTFPG is an effective hypotensive peptide. Our work highlights the dynamic nature of bioactive food peptides that may be modulated by the metabolic activity of intestinal cells.
Collapse
Affiliation(s)
- Carmen Lammi
- Department of Pharmaceutical
Sciences, University of Milan, 20133 Milan, Italy
- Telephone: +39-0250319912. Fax: +39-0250319372. E-mail:
| | - Gilda Aiello
- Department of Pharmaceutical
Sciences, University of Milan, 20133 Milan, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical
Sciences, University of Milan, 20133 Milan, Italy
| | - Giovanna Boschin
- Department of Pharmaceutical
Sciences, University of Milan, 20133 Milan, Italy
| | - Giulia Ranaldi
- Food and Nutrition Research Centre, Council
for Agricultural Research and Economics (CREA), 00178 Rome, Italy
| | - Simonetta Ferruzza
- Food and Nutrition Research Centre, Council
for Agricultural Research and Economics (CREA), 00178 Rome, Italy
| | - Yula Sambuy
- Food and Nutrition Research Centre, Council
for Agricultural Research and Economics (CREA), 00178 Rome, Italy
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical
Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
18
|
Santos-Hernández M, Alfieri F, Gallo V, Miralles B, Masi P, Romano A, Ferranti P, Recio I. Compared digestibility of plant protein isolates by using the INFOGEST digestion protocol. Food Res Int 2020; 137:109708. [PMID: 33233282 DOI: 10.1016/j.foodres.2020.109708] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/21/2020] [Accepted: 09/06/2020] [Indexed: 01/05/2023]
Abstract
The use of ingredients based on plant protein isolates is being promoted due to sustainability and health reasons. However, it is necessary to explore the behaviour of plant protein isolates during gastrointestinal digestion including the profile of released free amino acids and the characterization of resistant domains to gastrointestinal digestion. The aim of the present study was to monitor protein degradation of four legume protein isolates: garden pea, grass pea, soybean and lentil, using the harmonized Infogest in vitro digestion protocol. In vitro digests were characterized regarding protein, peptide and free amino acid content. Soybean was the protein isolate with the highest percentage of insoluble nitrogen at the end of the digestion (12%), being this fraction rich in hydrophobic amino acids. Free amino acids were mainly released during the intestinal digestion, comprising 21-24% of the total nitrogen content, while the percentage of nitrogen corresponding to peptides ranged from 66 to 76%. Legume globulins were resistant to gastric digestion whereas they were hydrolysed into peptides and amino acids during the intestinal phase. However, the molecular weight (MW) distribution demonstrated that all intestinal digests, except those from soybean, contained peptides with MW > 4 kDa at the end of gastrointestinal digestion. The profile of free amino acids released during digestion supports legume protein isolates as an excellent source of essential amino acids to be used in protein-rich food products. Peptides released during digestion matched with previously reported epitopes from the same plant species or others, explaining the ability to induce allergic reactions and cross-linked reactivity.
Collapse
Affiliation(s)
- Marta Santos-Hernández
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Fabio Alfieri
- Department of Agricultural Sciences, Division of Food Science and Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
| | - Veronica Gallo
- Department of Agricultural Sciences, Division of Food Science and Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
| | - Beatriz Miralles
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Paolo Masi
- Department of Agricultural Sciences, Division of Food Science and Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
| | - Annalisa Romano
- Department of Agricultural Sciences, Division of Food Science and Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, Division of Food Science and Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
| | - Isidra Recio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain.
| |
Collapse
|
19
|
Enzyme Selection and Hydrolysis under Optimal Conditions Improved Phenolic Acid Solubility, and Antioxidant and Anti-Inflammatory Activities of Wheat Bran. Antioxidants (Basel) 2020; 9:antiox9100984. [PMID: 33066226 PMCID: PMC7602008 DOI: 10.3390/antiox9100984] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Valorization of wheat bran (WB) into new high-value products is of great interest within the framework of sustainability and circular economy. In the present study, we utilized a multi-step approach to extract nutraceutical compounds (phenolic acids) from WB and improved its antioxidant and anti-inflammatory properties through using sequential hydrothermal and enzymatic hydrolysis. Thirteen commercial glycosidases differing in their specific activity were screened and compared for hydrolytic efficiency to release monosaccharides, ferulic acid, and diferulic acid. Ultraflo XL was selected as the desired enzyme treatment on the basis of its higher WB solubilization, as well as its monosaccharide and phenolic acids yields. The relationships between better hydrolytic performance of Ultraflo XL and its particular activity profile were established. To determine the optimum conditions for Ultraflo XL treatment, we tested different factors (solvent pH, incubation temperature, and time) under 15 experiments. A multicomponent analysis (MCA), including central composite design, model fitness, regression coefficients, analysis of variance, 3D response curves, and desirability, was used for processing optimization. A beneficial effect of autoclave treatment on the release of phenolic compounds was also evidenced. The results of MCA showed involvement of linear, quadratic, and interactive effects of processing factors, although solvent pH was the main determinant factor, affecting enzymatic extraction of phenolics and bioactivity of hydrolysates. As compared to control WB, under optimized conditions (47 °C, pH = 4.4, and 20.8 h), WB hydrolysates showed 4.2, 1.5, 2, and 3 times higher content of ferulic acid (FA) and capacity to scavenge oxygen radicals, chelate transition metals, and inhibit monocyte chemoattractant protein-1 secretion in macrophages, respectively. These approaches could be applied for the sustainable utilization of WB, harnessing its nutraceutical potential.
Collapse
|
20
|
Ge J, Sun CX, Corke H, Gul K, Gan RY, Fang Y. The health benefits, functional properties, modifications, and applications of pea (Pisum sativum L.) protein: Current status, challenges, and perspectives. Compr Rev Food Sci Food Saf 2020; 19:1835-1876. [PMID: 33337084 DOI: 10.1111/1541-4337.12573] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/31/2020] [Accepted: 05/03/2020] [Indexed: 01/23/2023]
Abstract
In recent years, the development and application of plant proteins have drawn increasing scientific and industrial interests. Pea (Pisum sativum L.) is an important source of high-quality vegetable protein in the human diet. Its protein components are generally considered hypoallergenic, and many studies have highlighted the health benefits associated with the consumption of pea protein. Pea protein and its hydrolysates (pea protein hydrolysates [PPH]) possess health benefits such as antioxidant, antihypertensive, and modulating intestinal bacteria activities, as well as various functional properties, including solubility, water- and oil-holding capacities, and emulsifying, foaming, and gelling properties. However, the application of pea protein in the food system is limited due to its poor functional performances. Several frequently applied modification methods, including physical, chemical, enzymatic, and combined treatments, have been used for pea protein to improve its functional properties and expand its food applications. To date, different applications of pea protein in the food system have been extensively studied, for example, encapsulation for bioactive ingredients, edible films, extruded products and substitution for cereal flours, fats, and animal proteins. This article reviews the current status of the knowledge regarding pea protein, focusing on its health benefits, functional properties, and structural modifications, and comprehensively summarizes its potential applications in the food industry.
Collapse
Affiliation(s)
- Jiao Ge
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Cui-Xia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Harold Corke
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Khalid Gul
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, People's Republic of China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Pertiwi MGP, Marsono Y, Indrati R. In vitro gastrointestinal simulation of tempe prepared from koro kratok ( Phaseolus lunatus L.) as an angiotensin-converting enzyme inhibitor. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:1847-1855. [PMID: 32327795 PMCID: PMC7171025 DOI: 10.1007/s13197-019-04219-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/25/2019] [Accepted: 12/11/2019] [Indexed: 06/07/2023]
Abstract
This study investigated the formation of angiotensin-converting enzyme (ACE) inhibitory peptides from koro kratok beans tempe during gastrointestinal digestion. The absorption of bioactive peptides was also investigated in this study. Koro kratok was fermented by commercial culture including Rhizopus oligosporus for 48 h. Gastrointestinal digestion was simulated sequentially by hydrolysis of tempe protein extract with pepsin and pancreatin for 240 min. The peptide content, degree of hydrolysis, molecular weight distribution, and ACE inhibitory activity were analyzed. The absorption of ACE inhibitory peptides was evaluated using the inverted gut sac of Sprague Dawley rats. Results showed that some amino acids, such as Arg, Lys, Asp, Glu, Phe, and Leu, were predominantly found in tempe. After the hydrolysis process, cooked tempe exhibited the highest ACE inhibitory activity (90.05%). Although the ACE inhibitory activity of nonfermented koro kratok was lower than that of tempe, the increase in its inhibitory activity was too large (23.03%). The ACE inhibitory peptides from tempe showed a predominance of peptides with a molecular weight of < 1 kDa and could inhibit ACE activity by 84.34%. The majority of ACE inhibitory peptides from tempe was absorbed in the jejunum and exhibited an ACE inhibitory activity of 81.59%. Based on these results, it can be concluded that the fermentation and boiling process of koro kratok beans improved the release of ACE inhibitory peptides during the gastrointestinal digestion process and had an impact on its absorption.
Collapse
Affiliation(s)
- Made Gendis Putri Pertiwi
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Flora Street No. 1, Bulaksumur, Yogyakarta, 55281 Indonesia
| | - Yustinus Marsono
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Flora Street No. 1, Bulaksumur, Yogyakarta, 55281 Indonesia
| | - Retno Indrati
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Flora Street No. 1, Bulaksumur, Yogyakarta, 55281 Indonesia
| |
Collapse
|
22
|
Sonklin C, Alashi MA, Laohakunjit N, Kerdchoechuen O, Aluko RE. Identification of antihypertensive peptides from mung bean protein hydrolysate and their effects in spontaneously hypertensive rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
23
|
Liao W, Fan H, Liu P, Wu J. Identification of angiotensin converting enzyme 2 (ACE2) up-regulating peptides from pea protein hydrolysate. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Awosika TO, Aluko RE. Inhibition of the
in vitro
activities of α‐amylase, α‐glucosidase and pancreatic lipase by yellow field pea (
Pisum sativum
L.) protein hydrolysates. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14087] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Temitola O. Awosika
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg MB R3T 2N2 Canada
| |
Collapse
|
25
|
Olagunju AI, Omoba OS, Enujiugha VN, Alashi AM, Aluko RE. Antioxidant properties, ACE/renin inhibitory activities of pigeon pea hydrolysates and effects on systolic blood pressure of spontaneously hypertensive rats. Food Sci Nutr 2018; 6:1879-1889. [PMID: 30349677 PMCID: PMC6189607 DOI: 10.1002/fsn3.740] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 01/22/2023] Open
Abstract
Legumes are rich sources of protein in human diet and their consumption has been associated with the prevention of chronic diseases attributable to their bioactive components. Pigeon pea (Cajanus cajan) is an underutilized legume with relatively high protein content (~24%). Protein hydrolysates were prepared from pea isolate by enzymatic hydrolysis using pepsin and pancreatin. Hydrolysates were evaluated for their amino acid composition, antioxidant properties, in vitro and in vivo antihypertensive properties. The hydrolysates had high hydrophobic amino acids, especially isoleucine, phenylalanine, and leucine. Pepsin-pancreatin-hydrolyzed pea protein (PPHPp) showed significantly higher ability to scavenge DPPH˙ while pancreatin-hydrolyzed pea protein (PPHPa) had higher ˙OH, ABTS˙+ scavenging, Fe3+ reducing and linoleic acid peroxidation inhibition. PPHPp exhibited superior angiotensin-converting enzyme inhibition (61.82%) while PPHPa showed higher renin inhibition (14.28%). PPHPp exhibited strong antihypertensive effect, showing an instantaneous systolic blood pressure lowering effect (-26.12 mmHg) within 2-h post-oral administration. Pigeon pea protein hydrolysate (especially from pancreatin digest) could therefore, be a promising source of bioactive peptides and potential ingredient for formulation of functional foods against oxidative stress and hypertension.
Collapse
Affiliation(s)
- Aderonke I. Olagunju
- Department of Food Science and TechnologyFederal University of TechnologyAkureOndo StateNigeria
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegMBCanada
| | - Olufunmilayo S. Omoba
- Department of Food Science and TechnologyFederal University of TechnologyAkureOndo StateNigeria
| | - Victor N. Enujiugha
- Department of Food Science and TechnologyFederal University of TechnologyAkureOndo StateNigeria
| | - Adeola M. Alashi
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegMBCanada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegMBCanada
| |
Collapse
|
26
|
Novel Natural Angiotensin Converting Enzyme (ACE)-Inhibitory Peptides Derived from Sea Cucumber-Modified Hydrolysates by Adding Exogenous Proline and a Study of Their Structure⁻Activity Relationship. Mar Drugs 2018; 16:md16080271. [PMID: 30081563 PMCID: PMC6117704 DOI: 10.3390/md16080271] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Natural angiotensin converting enzyme (ACE)-inhibitory peptides, which are derived from marine products, are useful as antihypertensive drugs. Nevertheless, the activities of these natural peptides are relatively low, which limits their applications. The aim of this study was to prepare efficient ACE-inhibitory peptides from sea cucumber-modified hydrolysates by adding exogenous proline according to a facile plastein reaction. When 40% proline (w/w, proline/free amino groups) was added, the modified hydrolysates exhibited higher ACE-inhibitory activity than the original hydrolysates. Among the modified hydrolysates, two novel efficient ACE-inhibitory peptides, which are namely PNVA and PNLG, were purified and identified by a sequential approach combining a sephadex G-15 gel column, reverse-phase high-performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS), before we conducted confirmatory studies with synthetic peptides. The ACE-inhibitory activity assay showed that PNVA and PNLG exhibited lower IC50 values of 8.18 ± 0.24 and 13.16 ± 0.39 μM than their corresponding truncated analogs (NVA and NLG), respectively. Molecular docking showed that PNVA and PNLG formed a larger number of hydrogen bonds with ACE than NVA and NLG, while the proline at the N-terminal of peptides can affect the orientation of the binding site of ACE. The method developed in this study may potentially be applied to prepare efficient ACE-inhibitory peptides, which may play a key role in hypertension management.
Collapse
|
27
|
dos Santos Aguilar JG, Sato HH. Microbial proteases: Production and application in obtaining protein hydrolysates. Food Res Int 2018; 103:253-262. [DOI: 10.1016/j.foodres.2017.10.044] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 01/26/2023]
|
28
|
Sun H, Chang Q, Liu L, Chai K, Lin G, Huo Q, Zhao Z, Zhao Z. High-Throughput and Rapid Screening of Novel ACE Inhibitory Peptides from Sericin Source and Inhibition Mechanism by Using in Silico and in Vitro Prescriptions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10020-10028. [PMID: 29086555 DOI: 10.1021/acs.jafc.7b04043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Several novel peptides with high ACE-I inhibitory activity were successfully screened from sericin hydrolysate (SH) by coupling in silico and in vitro approaches for the first time. Most screening processes for ACE-I inhibitory peptides were achieved through high-throughput in silico simulation followed by in vitro verification. QSAR model based predicted results indicated that the ACE-I inhibitory activity of these SH peptides and six chosen peptides exhibited moderate high ACE-I inhibitory activities (log IC50 values: 1.63-2.34). Moreover, two tripeptides among the chosen six peptides were selected for ACE-I inhibition mechanism analysis which based on Lineweaver-Burk plots indicated that they behave as competitive ACE-I inhibitors. The C-terminal residues of short-chain peptides that contain more H-bond acceptor groups could easily form hydrogen bonds with ACE-I and have higher ACE-I inhibitory activity. Overall, sericin protein as a strong ACE-I inhibition source could be deemed a promising agent for antihypertension applications.
Collapse
Affiliation(s)
- Huaju Sun
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Qing Chang
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Long Liu
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Kungang Chai
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Guangyan Lin
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Qingling Huo
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Zhenxia Zhao
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Zhongxing Zhao
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| |
Collapse
|
29
|
Ribéreau S, Aryee ANA, Tanvier S, Han J, Boye JI. Composition, digestibility, and functional properties of yellow pea as affected by processing. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sabine Ribéreau
- Food Research and Development Centre; 3600 Casavant Blvd. W. St. Hyacinthe, Québec J2S 8E3, Canada
| | - Alberta N. A. Aryee
- Food Research and Development Centre; 3600 Casavant Blvd. W. St. Hyacinthe, Québec J2S 8E3, Canada
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University; 1250 Grand Lake Rd. Sydney Nova Scotia B1P 6L2, Canada
| | - Siriane Tanvier
- Food Research and Development Centre; 3600 Casavant Blvd. W. St. Hyacinthe, Québec J2S 8E3, Canada
- Département Génie Biologique, Spécialisation dans les industries alimentaires et biologiques; Institut Universitaire de Technologie Créteil-Vitry; Créteil Cedex 94010, France
| | - Jay Han
- Alberta Agriculture and Rural Development; Food Processing Development Centre; 6309 - 45 Street Leduc AB T9E 7C5, Canada
| | - Joyce I. Boye
- Summerland Research and Development Centre; 4200 Highway 97 South, PO Box 5000, Summerland, British Columbia V0H 1Z0
| |
Collapse
|
30
|
Gong K, Deng L, Shi A, Liu H, Liu L, Hu H, Adhikari B, Wang Q. High-pressure microfluidisation pretreatment disaggregate peanut protein isolates to prepare antihypertensive peptide fractions. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kuijie Gong
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
- Crop Research Institute; Shandong Academy of Agricultural Sciences; Jinan 250100 China
| | - Lei Deng
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
| | - Aimin Shi
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
| | - Hongzhi Liu
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
| | - Li Liu
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
| | - Hui Hu
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
| | - Benu Adhikari
- School of Applied Sciences; RMIT University; City Campus Melbourne VIC 3001 Australia
| | - Qiang Wang
- Institute of Agro-products Processing and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; P.O. Box 5109 Beijing 100193 China
| |
Collapse
|
31
|
Rizzello CG, Tagliazucchi D, Babini E, Sefora Rutella G, Taneyo Saa DL, Gianotti A. Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.023] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
32
|
García-Mora P, Martín-Martínez M, Angeles Bonache M, González-Múniz R, Peñas E, Frias J, Martinez-Villaluenga C. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chem 2016; 221:464-472. [PMID: 27979228 DOI: 10.1016/j.foodchem.2016.10.087] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/28/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022]
Abstract
The objective was to identify peptides with dual antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities released from lentil proteins by Savinase®. The influence of gastrointestinal digestion on peptide bioactivity was also assayed. Fragments from vicilin, convicilin and legumin were the most abundant peptides identified. Peptides LLSGTQNQPSFLSGF, NSLTLPILRYL, TLEPNSVFLPVLLH showed the highest antioxidant (0.013-1.432μmol Trolox eq./μmol peptide) and ACE inhibitory activities (IC50=44-120μM). Gastrointestinal digestion of peptides improved their dual activity (10-14μmol Trolox eq./μmol peptide; IC50=11-21μM). In general, C-terminal heptapeptide was crucial for their dual activity. ACE inhibition relies on the formation of hydrogen bonds between C-terminal residues of lentil peptides and residues of the ACE catalytic site. The present study helps clarifying the relationship between structure and dual antioxidant/antihypertensive activity of lentil peptides opening new opportunities to food industry such as the application of lentil protein hydrolysates as ingredients for development of functional foods.
Collapse
Affiliation(s)
- Patricia García-Mora
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain.
| | | | - María Angeles Bonache
- Medicinal Chemistry Institute (IQM-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain.
| | | | - Elena Peñas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain.
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain.
| | | |
Collapse
|
33
|
de Castro RJS, Sato HH. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res Int 2015; 74:185-198. [PMID: 28411983 DOI: 10.1016/j.foodres.2015.05.013] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/01/2015] [Accepted: 05/08/2015] [Indexed: 12/01/2022]
Abstract
Recent technological advances have created great interest in the use of biologically active peptides. Bioactive peptides can be defined as specific portions of proteins with 2 to 20 amino acids that have desirable biological activities, including antioxidant, anti-hypertensive, antithrombotic, anti-adipogenic, antimicrobial and anti-inflammatory effects. Specific characteristics, including low toxicity and high specificity, make these molecules of particular interest to the food and pharmaceutical industries. This review focuses on the production of bioactive peptides, with special emphasis on fermentation and enzymatic hydrolysis. The combination of different technologies and the use of auxiliary processes are also addressed. A survey of isolation, purification and peptide characterization methods was conducted to identify the major techniques used to determine the structures of bioactive peptides. Finally, the antioxidant, antimicrobial, anti-hypertensive, anti-adipogenic activities and probiotic-bacterial growth-promoting aspects of various peptides are discussed.
Collapse
Affiliation(s)
- Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil.
| | - Hélia Harumi Sato
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| |
Collapse
|