1
|
Sabatini F, Maresca E, Aulitto M, Termopoli V, De Risi A, Correggia M, Fiorentino G, Consonni V, Gosetti F, Orlandi M, Lange H, Contursi P. Exploiting agri-food residues for kombucha tea and bacterial cellulose production. Int J Biol Macromol 2025; 302:140293. [PMID: 39864711 DOI: 10.1016/j.ijbiomac.2025.140293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Bio-valorization of agri-food wastes lies in their possible conversion into fermented foodstuffs/beverages and/or biodegradable polymers such as bacterial cellulose. In this study, three different kombucha cultures were formulated using agri-food waste materials, citrus fruit residues and used coffee grounds, as alternative carbon and nitrogen sources, respectively. Over 21 days of fermentation, the kinetic profile was followed by monitoring cell density, pH variation, minerals, trace elements and production of bacterial cellulose. Moreover, the total phenolic and radical scavenging capacity was measured by spectrophotometric tests on the beverage and bacterial cellulose. Several classes of compounds were detected by gas chromatography coupled with mass spectrometry performing extractions on the headspace above fresh kombucha beverages and their lyophilized fractions, using solid phase micro extraction and liquid phase extraction, respectively. The obtained results allowed assessing molecular profiles of each kombucha beverages. A chemometric meta-analysis of the data revealed the individual impacts of the single ingredients and the effects of the fermentation process.
Collapse
Affiliation(s)
- Francesca Sabatini
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy
| | - Emanuela Maresca
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Martina Aulitto
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Veronica Termopoli
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy
| | - Arianna De Risi
- NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy
| | - Monica Correggia
- University of Naples Federico II, Department of Biology, Naples, Italy
| | | | - Viviana Consonni
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy
| | - Fabio Gosetti
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Orlandi
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy.
| | - Heiko Lange
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå, Sweden
| | - Patrizia Contursi
- NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy.
| |
Collapse
|
2
|
Kitwetcharoen H, Phannarangsee Y, Klanrit P, Thanonkeo S, Tippayawat P, Klanrit P, Klanrit P, Yamada M, Thanonkeo P. Functional kombucha production from fusions of black tea and Indian gooseberry ( Phyllanthus emblica L.). Heliyon 2024; 10:e40939. [PMID: 39720042 PMCID: PMC11667612 DOI: 10.1016/j.heliyon.2024.e40939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024] Open
Abstract
The use of alternative ingredients as supplements to or blends with kombucha tea to improve organoleptic properties and health effects has recently increased. Indian gooseberry fruit is among the most promising alternative raw materials for producing functional kombucha since the berries contain several beneficial substances. In this study, the production of functional kombucha beverages from fusions of black tea and Indian gooseberry fruit homogenate (IGH) was investigated, and the chemical and biological properties of kombucha products were evaluated and compared with those of traditional black tea kombucha products. Chemical composition analysis revealed that IGH contains high amounts of polyphenols (627.4 mg GAE/L or 129.51 mg GAE/g dry weight), flavonoids (98.0 mg QE/L or 9.11 mg QE/g dry weight), and vitamins, specifically ascorbic acid (465.72 mg/100 g fresh weight). It also contains several amino acids, fatty acids, and trace elements. Supplementing or blending black tea kombucha with IGH in the range of 10 %-50 % (v/v) increased the total phenolic content (TPC), total flavonoid content (TFC), and total acidity of the fermented beverages. Several volatile organic compounds associated with the flavor, aroma, and health benefits of kombucha were also detected in black tea and IGH fusion kombucha products. Moreover, the black tea and IGH fusion kombucha products also displayed greater antioxidant and antimicrobial activities than the traditional black tea kombucha. Among the different combinations of black tea and IGH, supplementing black tea kombucha with 20 % IGH was the best combination for producing alternative and unique functional kombucha products with notable nutritional and health benefits.
Collapse
Affiliation(s)
- Haruthairat Kitwetcharoen
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yupaporn Phannarangsee
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sudarat Thanonkeo
- Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham, 44150, Thailand
| | | | - Poramaporn Klanrit
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
3
|
Daute M, Jack F, Walker G. The potential for Scotch Malt Whisky flavour diversification by yeast. FEMS Yeast Res 2024; 24:foae017. [PMID: 38684485 PMCID: PMC11095643 DOI: 10.1093/femsyr/foae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024] Open
Abstract
Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process, which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of 'Scotch'. While each production step contributes significantly to whisky flavour-from malt preparation and mashing to fermentation, distillation, and maturation-the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, e.g. esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of nonconventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.
Collapse
Affiliation(s)
- Martina Daute
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Frances Jack
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Graeme Walker
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
| |
Collapse
|
4
|
Wang X, Cui W, Guo W, Sun B, Huang M, Li J, Li H, Meng N. Separation techniques for manufacturing fruit spirits: From traditional distillation to advanced pervaporation process. Compr Rev Food Sci Food Saf 2024; 23:e13278. [PMID: 38284610 DOI: 10.1111/1541-4337.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Separation process is one of the key processes in the production of fruit spirits, including the traditional distillation method and the new pervaporation membrane method. The separation process significantly determines the constituents and proportions of compounds in the fruit spirit, which has a significant impact on the spirit quality and consumer acceptance. Therefore, it is important and complex to reveal the changing rules of chemical substances and the principles behind them during the separation process of fruit spirits. This review summarized the traditional separation methods commonly used in fruit spirits, covering the types, principles, and corresponding equipment of distillation methods, focused on the enrichment or removal of aroma compounds and harmful factors in fruit spirits by distillation methods, and tried to explain the mechanism behind it. It also proposed a new separation technology for the production of fruit spirits, pervaporation membrane technology, summarized its working principle, operation, working parameters, and application in the production of fruit spirits, and outlined the impact of the separation method on the production of fruit spirits based on existing research, focusing on the separation of flavor compounds, sensory qualities, and hazard factors in fruit spirits, along with a preliminary comparison with distillation. Finally, according to the current researches of the separation methods and the development requirement of the separation process of fruit spirits, the prospect of corresponding research is put forward, in order to propose new ideas and development directions for the research in this field.
Collapse
Affiliation(s)
- Xiaoqin Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Wenwen Cui
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Wentao Guo
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Mingquan Huang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Jinchen Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Nan Meng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
5
|
Corbion C, Smith-Ravin J, Marcelin O, Bouajila J. An Overview of Spirits Made from Sugarcane Juice. Molecules 2023; 28:6810. [PMID: 37836653 PMCID: PMC10574467 DOI: 10.3390/molecules28196810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Among the family of sugarcane spirits, those made from juice are diverse and often produced in a traditional way. They must be distinguished from other sugarcane spirits, which are more widely produced and made from other sugarcane derivatives, such as molasses. These alcoholic beverages contribute significantly to the socio-economic development of many countries. However, despite ancestral know-how, there is a lack of contemporary data required to characterize some sugarcane juice spirits (SCJSs) and to overcome the current and future threats that producers will have to face. While preserving their authenticity and specificity, SCJS producers expect to improve and ensure sufficient yield and a superior quality product. Even if the scientific knowledge on these spirits is not comparable, the available data could help identify the critical points to be improved in the making process. This review aims to present the main SCJSs encountered worldwide, defining their specific features through some important aspects with, notably, references to the complex notion of terroir. To continue, we discuss the main steps of the SCJS process from harvesting to aging. Finally, we expose an inventory of SCJS's chemical compositions and of their sensory description that define the specific organoleptic properties of these spirits.
Collapse
Affiliation(s)
- Claudine Corbion
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS-INPT-UPS, 31062 Toulouse, France;
| | - Juliette Smith-Ravin
- Groupe BIOSPHERES, Campus de Schoelcher, 97275 Schoelcher, Martinique, France; (J.S.-R.); (O.M.)
| | - Odile Marcelin
- Groupe BIOSPHERES, Campus de Schoelcher, 97275 Schoelcher, Martinique, France; (J.S.-R.); (O.M.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS-INPT-UPS, 31062 Toulouse, France;
| |
Collapse
|
6
|
Ratkovich N, Esser C, de Resende Machado AM, Mendes BDA, Cardoso MDG. The Spirit of Cachaça Production: An Umbrella Review of Processes, Flavour, Contaminants and Quality Improvement. Foods 2023; 12:3325. [PMID: 37685257 PMCID: PMC10486784 DOI: 10.3390/foods12173325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
This review provides a comprehensive analysis of the production, classification, and quality control of cachaça, a traditional Brazilian sugarcane spirit with significant cultural importance. It explores the fermentation and distillation of sugarcane juice, the ageing process in wooden containers, and the regulatory aspects of cachaça labelling. It emphasises the role of quality control in maintaining the spirit's integrity, focusing on monitoring copper levels in distillation stills. Ethyl carbamate (EC), a potential carcinogen found in cachaça, is investigated, with the study illuminating factors influencing its formation and prevalence and the importance of its vigilant monitoring for ensuring safety and quality. It also underscores the control of multiple parameters in producing high-quality cachaça, including raw material selection, yeast strains, acidity, and contaminants. Further, the impact of ageing, wood cask type, and yeast strains on cachaça quality is examined, along with potential uses of vinasse, a cachaça by-product, in yeast cell biomass production and fertigation. A deeper understanding of the (bio)chemical and microbiological reactions involved in cachaça production is essential to facilitate quality control and standardisation of sensory descriptors, promoting global acceptance of cachaça. Continued research will address safety concerns, improve quality, and support the long-term sustainability and success of the cachaça industry.
Collapse
Affiliation(s)
- Nicolas Ratkovich
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Christian Esser
- Wineschool3, P.O. Box 11227, Grand Cayman KY1-1008, Cayman Islands;
| | - Ana Maria de Resende Machado
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Avenida Amazonas, 5253, Nova Suiça, Belo Horizonte 30421-169, MG, Brazil;
| | | | - Maria das Graças Cardoso
- Department of Chemistry, University of Lavras (UFLA), Campus Universitário, Lavras 37200-900, MG, Brazil;
| |
Collapse
|
7
|
de Miranda NMZ, de Souza AC, de Souza Costa Sobrinho P, Dias DR, Schwan RF, Ramos CL. Novel yeasts with potential probiotic characteristics isolated from the endogenous ferment of artisanal Minas cheese. Braz J Microbiol 2023; 54:1021-1033. [PMID: 37162703 PMCID: PMC10235398 DOI: 10.1007/s42770-023-01002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/16/2023] [Indexed: 05/11/2023] Open
Abstract
Artisanal Minas cheese (QMA) is traditionally elaborate using raw milk and endogenous ferment (pingo - whey or rala - grated ripened cheese). In the present study, 91 yeast strains were isolated and identified from pingo and rala. Eight yeast species were identified by the MALDI-TOF mass spectrometry and confirmed by sequencing of the ITS region. The yeasts' protease and lipase activities were evaluated in addition to probiotic properties such as tolerance to low pH and bile salts, hydrophobicity, autoaggregation, co-aggregation with pathogens, and antimicrobial susceptibility. The rala ferment showed a greater variety of species. Yarrowia lipolytica was the dominant specie (52.7% of isolates), followed by the Kluyveromyces lactis and Kodamaea ohmeri (9.9 and 6.6%, respectively). From the total yeasts evaluated, 74 strains showed positive enzymatic activity: 52 strains showed lipolytic (51 Y. lipolytica and one Trichosporon japonicum) and 44 proteolytic activities (18 Y. lipolytica, 13 K. ohmeri, 11 K. lactis, and 2 Wickerhamiella sp.). All evaluated isolates demonstrated tolerance to pH 2.0, and 69 isolates supported the presence of bile salts. From them, 12 isolates showed the capacity of autoaggregation (> 30%) and hydrophobicity (> 90.0%) and were then selected for co-aggregation and antibiotic resistance assays. All selected isolates showed co-aggregation with Salmonella Enteritidis, Escherichia coli, and Listeria monocytogenes greater than 30%. None of the yeast showed sensibility to the evaluated antibiotics and antagonistic activity against the evaluated pathogens. The results demonstrated that pingo and rala have different yeast composition with different enzymatic activity, which may affect the characteristics of the cheese. Furthermore, some yeast strains: Y. lipolytica (9 strains isolated from rala) and K. ohmeri (3 strains isolated from pingo) demonstrated attractive probiotic potential.
Collapse
Affiliation(s)
- Nayara Martins Zille de Miranda
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valeys, Rodovia MGT 367 - km 583, no. 5000 – Alto da Jacuba - Diamantina, Minas Gerais, 39100-000 Brazil
| | | | - Paulo de Souza Costa Sobrinho
- Department of Nutrition, Federal University of Jequitinhonha and Mucuri Valeys, Diamantina, Minas Gerais 39100-000 Brazil
| | - Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| | - Rosane Freitas Schwan
- Department of Biology, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| | - Cíntia Lacerda Ramos
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valeys, Rodovia MGT 367 - km 583, no. 5000 – Alto da Jacuba - Diamantina, Minas Gerais, 39100-000 Brazil
| |
Collapse
|
8
|
Phung LT, Kitwetcharoen H, Chamnipa N, Boonchot N, Thanonkeo S, Tippayawat P, Klanrit P, Yamada M, Thanonkeo P. Changes in the chemical compositions and biological properties of kombucha beverages made from black teas and pineapple peels and cores. Sci Rep 2023; 13:7859. [PMID: 37188725 DOI: 10.1038/s41598-023-34954-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Several raw materials have been used as partial supplements or entire replacements for the main ingredients of kombucha to improve the biological properties of the resulting kombucha beverage. This study used pineapple peels and cores (PPC), byproducts of pineapple processing, as alternative raw materials instead of sugar for kombucha production. Kombuchas were produced from fusions of black tea and PPC at different ratios, and their chemical profiles and biological properties, including antioxidant and antimicrobial activities, were determined and compared with the control kombucha without PPC supplementation. The results showed that PPC contained high amounts of beneficial substances, including sugars, polyphenols, organic acids, vitamins, and minerals. An analysis of the microbial community in a kombucha SCOBY (Symbiotic Cultures of Bacteria and Yeasts) using next-generation sequencing revealed that Acetobacter and Komagataeibacter were the most predominant acetic acid bacteria. Furthermore, Dekkera and Bacillus were also the prominent yeast and bacteria in the kombucha SCOBY. A comparative analysis was performed for kombucha products fermented using black tea and a fusion of black tea and PPC, and the results revealed that the kombucha made from the black tea and PPC infusion exhibited a higher total phenolic content and antioxidant activity than the control kombucha. The antimicrobial properties of the kombucha products made from black tea and the PPC infusion were also greater than those of the control. Several volatile compounds that contributed to the flavor, aroma, and beneficial health properties, such as esters, carboxylic acids, phenols, alcohols, aldehydes, and ketones, were detected in kombucha products made from a fusion of black tea and PPC. This study shows that PPC exhibits high potential as a supplement to the raw material infusion used with black tea for functional kombucha production.
Collapse
Affiliation(s)
- Ly Tu Phung
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Haruthairat Kitwetcharoen
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nuttaporn Chamnipa
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nongluck Boonchot
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sudarat Thanonkeo
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | | | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8315, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8315, Japan
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
9
|
Fenner ED, Scapini T, da Costa Diniz M, Giehl A, Treichel H, Álvarez-Pérez S, Alves SL. Nature's Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms. J Fungi (Basel) 2022; 8:984. [PMID: 36294549 PMCID: PMC9605484 DOI: 10.3390/jof8100984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 07/30/2023] Open
Abstract
The importance of insects for angiosperm pollination is widely recognized. In fact, approximately 90% of all plant species benefit from animal-mediated pollination. However, only recently, a third part player in this story has been properly acknowledged. Microorganisms inhabiting floral nectar, among which yeasts have a prominent role, can ferment glucose, fructose, sucrose, and/or other carbon sources in this habitat. As a result of their metabolism, nectar yeasts produce diverse volatile organic compounds (VOCs) and other valuable metabolites. Notably, some VOCs of yeast origin can influence insects' foraging behavior, e.g., by attracting them to flowers (although repelling effects have also been reported). Moreover, when insects feed on nectar, they also ingest yeast cells, which provide them with nutrients and protect them from pathogenic microorganisms. In return, insects serve yeasts as transportation and a safer habitat during winter when floral nectar is absent. From the plant's point of view, the result is flowers being pollinated. From humanity's perspective, this ecological relationship may also be highly profitable. Therefore, prospecting nectar-inhabiting yeasts for VOC production is of major biotechnological interest. Substances such as acetaldehyde, ethyl acetate, ethyl butyrate, and isobutanol have been reported in yeast volatomes, and they account for a global market of approximately USD 15 billion. In this scenario, the present review addresses the ecological, environmental, and biotechnological outlooks of this three-party mutualism, aiming to encourage researchers worldwide to dig into this field.
Collapse
Affiliation(s)
- Eduardo D. Fenner
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Campus Cerro Largo, Cerro Largo 97900-000, RS, Brazil
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim 99700-970, RS, Brazil
| | - Mariana da Costa Diniz
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Anderson Giehl
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim 99700-970, RS, Brazil
| | - Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sérgio L. Alves
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Campus Cerro Largo, Cerro Largo 97900-000, RS, Brazil
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| |
Collapse
|
10
|
Production and characterization of a new distilled beverage from green coffee seed residue. Food Chem 2022; 377:131960. [PMID: 34979400 DOI: 10.1016/j.foodchem.2021.131960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022]
Abstract
This study evaluated green coffee seed residue (GCSR) as an alternative substrate for producing distilled beverages. Two proportions of GCSR, 10% and 20% (w/v), were fermented and distilled in a copper alembic still. The spirits were characterized by GC-FID, HS-SPME GC-MS, and sensory analysis by trained panelists. Most of the 62 identified volatile compounds were affected by the GCSR concentration. Total terpenes, higher alcohols, and acetals showed the highest concentrations in the 10% GCSR spirit. Esters, acetates, and aldehydes were most abundant in the 20% GCSR. In the sensory analysis, the 10% GCSR spirit was characterized by floral, dairy, and almond aromas, while the 20% GCSR spirit was embodied coffee, vegetable, hazelnut, cooked cabbage, and nut descriptors. The results demonstrate the potential of GCSR as a substrate for producing coffee spirits with chemical and sensory qualities, with the 10% GCSR being the better option for fermentation.
Collapse
|
11
|
Gao P, Peng S, Sam FE, Zhu Y, Liang L, Li M, Wang J. Indigenous Non-Saccharomyces Yeasts With β-Glucosidase Activity in Sequential Fermentation With Saccharomyces cerevisiae: A Strategy to Improve the Volatile Composition and Sensory Characteristics of Wines. Front Microbiol 2022; 13:845837. [PMID: 35633724 PMCID: PMC9133630 DOI: 10.3389/fmicb.2022.845837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Non-Saccharomyces (NS) yeasts with high β-glucosidase activity play a vital role in improving the aroma complexity of wines by releasing aroma compounds from glycosidic precursors during fermentation. In this study, the effect of sequential inoculation fermentation of Meyerozyma guilliermondii NM218 and Hanseniaspora uvarum BF345 with two Saccharomyces cerevisiae strains [Vintage Red™ (VR) and Aroma White™ (AW)] on volatile compounds and sensory characteristics of wines was investigated. Prior to winemaking trials, the sequential inoculation times of the two NS yeasts were evaluated in synthetic must, based on changes in strain population and enzyme activity. The intervals for inoculation of NM218 and BF345 with the S. cerevisiae strains were 48 and 24 h, respectively. In the main experiment, sequential inoculation fermentations of the two strains with S. cerevisiae were carried out in Cabernet Sauvignon (CS) and Chardonnay (CH) grape must. The oenological parameters, volatile composition, and sensory characteristics of the final wines were assessed. No clear differences were observed in the oenological parameters of the sequentially fermented CH wines compared with the control, except for residual sugar and alcohol. However, in CS wines, the total acid contents were significantly lower in the wines fermented by sequential inoculation compared to the control. Both NM218 and BF345 improved the aroma complexity of wines by increasing esters and terpenes when inoculated with S. cerevisiae strains compared to inoculation with S. cerevisiae strains alone. NM218 resulted in a more positive effect on CS wine aroma, with higher levels of citronellol and trans-nerolidol. BF345 significantly enhanced the floral and fruity aromas of CH wine by producing higher concentrations of geranyl acetone, β-damascenone, trans-nerolidol, and nerol. Both NM218 and BF345 yeasts could potentially be used to improve wine aroma and overall quality, especially wine floral and fruity aromas, when used in sequential inoculation with S. cerevisiae.
Collapse
Affiliation(s)
- Pingping Gao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Gansu Key Lab of Viticulture and Enology, Lanzhou, China
| | - Shuai Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Gansu Key Lab of Viticulture and Enology, Lanzhou, China
| | - Faisal Eudes Sam
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Gansu Key Lab of Viticulture and Enology, Lanzhou, China
| | - Yatong Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Lihong Liang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Gansu Key Lab of Viticulture and Enology, Lanzhou, China
| | - Min Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Gansu Key Lab of Viticulture and Enology, Lanzhou, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Gansu Key Lab of Viticulture and Enology, Lanzhou, China
- *Correspondence: Jing Wang,
| |
Collapse
|
12
|
A state-of-the-art review of the chemical composition of sugarcane spirits and current advances in quality control. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Yeasts with Fermentative Potential Associated with Fruits of Camu-Camu ( Myrciaria dubia, Kunth) from North of Brazilian Amazon. ScientificWorldJournal 2021; 2021:9929059. [PMID: 34899087 PMCID: PMC8664548 DOI: 10.1155/2021/9929059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/25/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Considering the high biotechnological potential of yeasts associated to edible fruits, a screening for these microorganisms, capable of alcoholic fermentation, was performed in ripe fruits of camu-camu (Myrciaria dubia, Kunth). The fruits were collected from north of Brazilian Amazon, in the floodplain of the Cauamé River. Yeasts were isolated, and fermentation capability was evaluated using Durham tubes. Quantitative assays were performed to calculate ethanol yield (g g-1), specific growth rate (h-1), and ethanol productivity (g L-1·h-1). Taxonomic identification was performed by ribosomal gene nucleotide sequence analysis by alignment using BLASTN. A total of fifteen yeast colonies were isolated, and three of them presented promising ability to ferment glucose to ethanol. These isolates were identified as Candida orthopsilosis, Pichia kudriavzevii, and Meyerozyma caribbica. When cultured in broth containing 180 g·L-1 of glucose, M. caribbica CC003 reached 91.7 percent of the maximum theoretical ethanol concentration (84.4 g·L-1), presenting an ethanol yield and productivity of 0.4688 g·g-1 and 0.781 g·L-1·h-1, respectively. These results indicate a promising potential of this isolate for bioprocess applications. This paper is a rare report of C. orthopsilosis with endophytic habit because most of the references indicate it as a human pathogen. Besides this, M. caribbica is a promising fermenter for alcoholic beverages due to its osmotolerance and high ethanol yield. This is the first paper reporting endophytic yeasts associated with fruits of Myrciaria dubia.
Collapse
|
14
|
Influence of Non- Saccharomyces Strains on Chemical Characteristics and Sensory Quality of Fruit Spirit. Foods 2021; 10:foods10061336. [PMID: 34200596 PMCID: PMC8226489 DOI: 10.3390/foods10061336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
The use of non-Saccharomyces yeasts for alcoholic beverage improvement and diversification has gained considerable attention in recent years. The effect of pure and mixed inocula (of Torulaspora delbrueckii, Lachancea thermotolerans, and Saccharomyces cerevisiae) on apple mash fermentation has been determined for the production of Hungarian fruit spirit (Pálinka), with a special emphasis on the chemical, volatile, and sensory attributes. The enological parameters were followed during the fermentation process. Sugar consumption and organic acid production were determined by HPLC, whereas the aromatic profile of the distillates was characterized by GC-FID. According to the results, single and mixed cultures showed similar characteristics during mash fermentation. The identified volatile compounds included aldehydes, esters, and higher alcohols. Mixed culture fermentation trials revealed a significantly higher concentration of volatile compounds and better sensorial attributes compared to those exhibited by the pure culture of S. cerevisiae.
Collapse
|
15
|
Caetano D, Lima CMG, Sanson AL, Silva DF, Souza Hassemer G, Verruck S, Silva GA, Cássia Franco Afonso RJ, Coutrim MX, Gregório SR. Descriptive screening and lexicon development of non‐aged artisanal cachaça sensorial profile using principal component analysis and Kohonen artificial neural networks. J SENS STUD 2021. [DOI: 10.1111/joss.12645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Daniela Caetano
- Federal Institute of Northern Minas Gerais Salinas Minas Gerais Brazil
- Department of Chemistry Federal University of Ouro Preto Ouro Preto Minas Gerais Brazil
| | - Clara M. G. Lima
- Federal Institute of Northern Minas Gerais Salinas Minas Gerais Brazil
- Department of Food Science and Technology Federal University of Santa Catarina Florianópolis Santa Catarina Brazil
| | - Ananda L. Sanson
- Department of Chemistry Federal University of Ouro Preto Ouro Preto Minas Gerais Brazil
| | - Débora F. Silva
- Department of Chemistry Federal University of Ouro Preto Ouro Preto Minas Gerais Brazil
| | - Guilherme Souza Hassemer
- Department of Food Engineering Integrated Regional University of Upper Uruguai and Missions Erechim Rio Grande do Sul Brazil
| | - Silvani Verruck
- Department of Food Science and Technology Federal University of Santa Catarina Florianópolis Santa Catarina Brazil
| | - Gilmare A. Silva
- Department of Chemistry Federal University of Ouro Preto Ouro Preto Minas Gerais Brazil
- Department of Food Technology Federal Rural University of Rio de Janeiro Seropédica Rio de Janeiro Brazil
| | | | - Mauricio X. Coutrim
- Department of Chemistry Federal University of Ouro Preto Ouro Preto Minas Gerais Brazil
| | - Sandra R. Gregório
- Department of Chemistry Federal University of Ouro Preto Ouro Preto Minas Gerais Brazil
- Department of Chemistry Federal University of Viçosa Minas Gerais Brazil
| |
Collapse
|
16
|
Lopes ACA, Costa R, Andrade RP, Lima LMZ, Santiago WD, das Graças Cardoso M, Duarte WF. Impact of Saccharomyces cerevisiae single inoculum and mixed inoculum with Meyerozyma caribbica on the quality of mead. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03563-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Production and characterization of a new distillate obtained from fermentation of wet processing coffee by-products. Journal of Food Science and Technology 2020; 57:4481-4491. [PMID: 33087961 DOI: 10.1007/s13197-020-04485-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/06/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Coffee is one of the most important commodities worldwide. The industrial processing of coffee cherries generates a considerable volume of by-products such as wastewater, coffee pulp, mucilage, and husk. These by-products have sugars and nutrients that can be converted into value-added products via microbial action. In this study, for the first time, we evaluated the potential of coffee pulp and coffee wastewater as substrate for alcoholic fermentation produce a distilled beverage. The must composed by dry or wet coffee pulp and coffee wastewater added of commercial sucrose or sugarcane molasses was fermented by S. cerevisiae. After a screening step, a larger fermentation was carried out with the wet pulp added of sucrose due to its higher alcoholic fermentation efficiency. The distilled beverage contained 38% (v/v) ethanol and 0.2 g/L of acetic acid. The contaminants furfural, hydroxymethylfurfural and ethyl carbamate were below detection level. Among the 48 volatile compounds detected, the majority (21) were ethyl esters usually associated with floral and sweet aromas. Ethyl decanoate (996.88 µg/L) and ethyl dodecanoate (1088.09 µg/L) were the most abundant esters. Coffee spirit presented taste acceptance of 80% and sugarcane spirit, 70%. The tasters indicated an aroma acceptance of 86% for the coffee spirit and 78% for the sugarcane spirit. The results of this work demonstrate the potential for using coffee by-products to produce a good quality distilled beverage. Considering our results, especially sensorial analysis, we can infer that the produced coffee beverage represents a new alternative for adding value to the coffee production chain.
Collapse
|
18
|
Andrade RP, Oliveira DR, Lopes ACA, de Abreu LR, Duarte WF. Survival of Kluyveromyces lactis and Torulaspora delbrueckii to simulated gastrointestinal conditions and their use as single and mixed inoculum for cheese production. Food Res Int 2019; 125:108620. [PMID: 31554038 DOI: 10.1016/j.foodres.2019.108620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022]
Abstract
The demand for new probiotic products has shown recent increases alongside a growing interest in studying starter cultures of cheeses. This study thus aims to evaluate the ability to survive under simulated gastrointestinal conditions and impact of Torulaspora delbrueckii B14 and Kluyveromyces lactis B10 as single and mixed inocula for cheese production. These two yeast strains were subjected to simulated gastrointestinal tracts and tested for self-aggregation, hydrophobicity, pathogen inhibition, antibiotic resistance, and β-galactosidase production. The yeast strains were also assessed for their ability to survive in different NaCl concentrations (2.5%, 5%, and 10% w/v), multiple temperatures (4 °C and 40 °C), and used as single and mixed starter cultures for cheese production. Yeasts population levels were monitored by YPD plating and MALDI-TOF and metabolites were analyzed by HPLC and GC-MS over the course of the 21 days cheese maturation process. T. delbrueckii B14 and K. lactis B10 both showed >80% viability after the passage through the simulated gastrointestinal tract, had self-aggregation rates >90%, and displayed β-galactosidase activities of 0.35 U/g and 0.53 U/g, respectively. Both yeasts survived at 2.5%, 5%, and 10% NaCl for 21 days and showed growth at 4 °C. In cheese, the single inoculum of K. lactis B10 and mixed inoculum showed the highest levels of lactose consumption. HS-SPME GC-MS analysis of cheese samples allowed the identification of 38 volatile compounds. The highest concentrations of most of these compounds were observed after 21 days of maturation for the cheese produced with mixed inoculum. The most abundant acids detected were hexanoic and decanoic acid; the most abundant alcohols were 2,3-butanediol, 2-phenylethanol and isoamyl alcohol, and the most prevalent ester compounds were isoamyl acetate and phenethyl acetate. Our results therefore show that T. delbrueckii B14 and K. lactis B10 are interesting yeasts for further studies in the context of probiotics and positively impact the composition of desirable volatile compounds in cheeses, particularly when used as mixed inoculum.
Collapse
|
19
|
Correa FT, de Souza AC, de Souza Júnior EA, Isidoro SR, Piccoli RH, Dias DR, de Abreu LR. Effect of Brazilian green propolis on microorganism contaminants of surface of Gorgonzola-type cheese. Journal of Food Science and Technology 2019; 56:1978-1987. [PMID: 30996432 DOI: 10.1007/s13197-019-03664-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/10/2019] [Accepted: 02/17/2019] [Indexed: 11/28/2022]
Abstract
Blue cheeses are susceptible to yeast and bacterial growth on their surface, which causes spoilage during ripening process and the formation of slime. The dairy industry frequently control the proliferation of undesirable microorganisms with natamycin and high salt concentration. The green propolis is a complex of substances that presents antimicrobial properties with great potential as preservative in the food industry. The aims of the present study were to identify the mesophilic aerobic microorganisms present on the surface of Gorgonzola-type cheese, evaluate the antifungal and antibacterial effects of the ethanol extract of green propolis (EEP) on the development of those microorganisms and verify the effects of EEP on the sensory quality of cheese. Ten yeast species belonging to genera Yarrowia, Candida, Debaryomyces and Saccharomyces were identified, as well as seven species of bacteria belonging to genera Staphylococcus, Bacillus, Enterococcus, Corynebacterium and Proteus. The EEP showed minimum biocide concentration (MBC), between 0.3% (weight/weight) and 5% for Bacillus cereus and Proteus vulgaris, respectively. Saccharomyces cerevisiae was the most sensitive species (MBC of 0.63%) and Candida parapsilosis the most resistant one (MBC of 5%). In the sensory analysis, the cheeses involved with EEP at 5% concentration did not differ from the control, while at 10%, there was a slight decrease in acceptance. The EEP has potential and feasibility to be used in Gorgonzola-type cheese, inhibiting the main bacteria and yeasts without affecting largely the sensory characteristics of the product.
Collapse
Affiliation(s)
- Frederico Teixeira Correa
- 1Departament of Food Science, Federal University of Lavras, Campus Universitário, 3037, Lavras, MG 37200-000 Brazil
| | - Angélica Cristina de Souza
- 2Departament of Biology, Federal University of Lavras, Campus Universitário, 3037, Lavras, MG 37200-000 Brazil
| | | | - Silas Rodrigo Isidoro
- 1Departament of Food Science, Federal University of Lavras, Campus Universitário, 3037, Lavras, MG 37200-000 Brazil
| | - Roberta Hilsdorf Piccoli
- 1Departament of Food Science, Federal University of Lavras, Campus Universitário, 3037, Lavras, MG 37200-000 Brazil
| | - Disney Ribeiro Dias
- 1Departament of Food Science, Federal University of Lavras, Campus Universitário, 3037, Lavras, MG 37200-000 Brazil
| | - Luiz Ronaldo de Abreu
- 1Departament of Food Science, Federal University of Lavras, Campus Universitário, 3037, Lavras, MG 37200-000 Brazil
| |
Collapse
|
20
|
Hu L, Wang J, Ji X, Liu R, Chen F, Zhang X. Selection of non- Saccharomyces yeasts for orange wine fermentation based on their enological traits and volatile compounds formation. Journal of Food Science and Technology 2018; 55:4001-4012. [PMID: 30228398 DOI: 10.1007/s13197-018-3325-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/22/2023]
Abstract
In order to select the non-Saccharomyces yeasts for orange wine fermentation, the enological traits and volatile compounds formation of ten non-Saccharomyces yeast strains were evaluated through physicochemical methods and solid-phase microextraction coupled to GC-MS, respectively. The results indicated that non-Saccharomyces yeast fermentation had lower maximum populations (7.8-8.0 Log cfu/mL), longer fermentation period (7-10 days), lower ethanol (4.13-7.79%), lower total acids (7.48-8.51 g/L) and higher volatile acids concentrations (0.08-0.23 g/L) when compared with those of Saccharomyces cerevisiae fermentation. Hanseniaspora uvarum, Hanseniaspora opuntiae, Hanseniaspora occidentalis, Pichia kudriavzevii and Torulaspora delbrueckii were selected as candidates for orange wine fermentation with higher volatile compounds concentration, odor active values and sensory evaluation scores. This study will provide a valuable selection method of non-Saccharomyces yeasts for orange wine fermentation, and an approach to improve the flavor of orange wine or other fruit wine.
Collapse
Affiliation(s)
- Lanlan Hu
- 1College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People's Republic of China
- 2Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 Hubei Province People's Republic of China
| | - Jia Wang
- 1College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People's Republic of China
- 2Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 Hubei Province People's Republic of China
| | - Xueao Ji
- 1College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People's Republic of China
- 2Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 Hubei Province People's Republic of China
| | - Rui Liu
- 1College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People's Republic of China
- 2Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 Hubei Province People's Republic of China
| | - Fusheng Chen
- 1College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People's Republic of China
- 2Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 Hubei Province People's Republic of China
| | - Xiuyan Zhang
- 1College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei Province People's Republic of China
- 2Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 Hubei Province People's Republic of China
| |
Collapse
|
21
|
Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Res Int 2018; 107:518-527. [PMID: 29580515 DOI: 10.1016/j.foodres.2018.02.054] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/19/2018] [Accepted: 02/25/2018] [Indexed: 12/13/2022]
Abstract
Pineapple (Ananas comosus (L.) Merril) is a tropical fruit rich in nutrients characterized by a pleasant taste and widely consumed in several countries. It is used to produce juice, jams and wine. In this work, 150 yeasts isolates were obtained from peel (18) and spontaneously fermented pineapple pulp (132). The probiotic potential of 50 isolates was studied. Survival at pH 2.0, pepsin 3.0 g/L, and tolerance of bile salts (0.1 and 1% (w/v) were determined as indicators of survival potential of the isolates during the passage through the human gastrointestinal tract in simulated conditions. The selected isolates were also evaluated for their resistance to 6 antibiotics, antimicrobial activity against 6 pathogenic bacteria and autoaggregation and hydrophobicity properties. Five of them survived to gastrointestinal conditions, showed antibiotic resistance and autoaggregation properties. They were identified by MALDI-TOF MS and sequencing of ITS region as Candida lusitaniae (3) and Meyerozyma caribbica (2). Among these isolates, M. caribbica 9 D was evaluated in the production of a fermented pineapple beverage. The Saccharomyces cerevisiae var. boulardii was used as control, due to the fact that it is the only commercially available probiotic yeast. With M. caribbica inoculum, the beverage produced showed higher concentrations of residual glucose (24.19 g/L) and fructose (8.67 g/L), lower concentration of acetic acid (0.22 g/L); higher total phenolic compounds (196.93 mg/L), catechin (155.56 mg/L), chlorogenic acid (3.64 mg/L), vanillin (0.18 mg/L) and ferulic acid (33.2 mg/L). It was observed that M. caribbica population remained stable during refrigerated storage with cell counts greater than 7.00 log CFU/mL over 21 days. Compared to beverage produced with S. cerevisiae var. boulardii, the one produced with M. caribbica presented greater acceptance in the sensorial analysis for taste, aroma and general acceptance. The fermented pineapple beverage prepared with M. caribbica proved to be a good alternative in development of a potential probiotic beverage with different sensory and nutritional properties.
Collapse
|
22
|
Portugal CB, de Silva AP, Bortoletto AM, Alcarde AR. How native yeasts may influence the chemical profile of the Brazilian spirit, cachaça? Food Res Int 2017; 91:18-25. [DOI: 10.1016/j.foodres.2016.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022]
|
23
|
Andrade RP, Melo CN, Genisheva Z, Schwan RF, Duarte WF. Yeasts from Canastra cheese production process: Isolation and evaluation of their potential for cheese whey fermentation. Food Res Int 2017; 91:72-79. [DOI: 10.1016/j.foodres.2016.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/21/2016] [Accepted: 11/27/2016] [Indexed: 11/24/2022]
|