1
|
Kumar P, Banik SP, Ohia SE, Moriyama H, Chakraborty S, Wang CK, Song YS, Goel A, Bagchi M, Bagchi D. Current Insights on the Photoprotective Mechanism of the Macular Carotenoids, Lutein and Zeaxanthin: Safety, Efficacy and Bio-Delivery. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:505-518. [PMID: 38393321 DOI: 10.1080/27697061.2024.2319090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Ocular health has emerged as one of the major issues of global health concern with a decline in quality of life in an aging population, in particular and rise in the number of associated morbidities and mortalities. One of the chief reasons for vision impairment is oxidative damage inflicted to photoreceptors in rods and cone cells by blue light as well as UV radiation. The scenario has been aggravated by unprecedented rise in screen-time during the COVID and post-COVID era. Lutein and Zeaxanthin are oxygenated carotenoids with proven roles in augmentation of ocular health largely by virtue of their antioxidant properties and protective effects against photobleaching of retinal pigments, age-linked macular degeneration, cataract, and retinitis pigmentosa. These molecules are characterized by their characteristic yellow-orange colored pigmentation and are found in significant amounts in vegetables such as corn, spinach, broccoli, carrots as well as fish and eggs. Unique structural signatures including tetraterpenoid skeleton with extensive conjugation and the presence of hydroxyl groups at the end rings have made these molecules evolutionarily adapted to localize in the membrane of the photoreceptor cells and prevent their free radical induced peroxidation. Apart from the benefits imparted to ocular health, lutein and zeaxanthin are also known to improve cognitive function, cardiovascular physiology, and arrest the development of malignancy. Although abundant in many natural sources, bioavailability of these compounds is low owing to their long aliphatic backbones. Under the circumstances, there has been a concerted effort to develop vegetable oil-based carriers such as lipid nano-emulsions for therapeutic administration of carotenoids. This review presents a comprehensive update of the therapeutic potential of the carotenoids along with the challenges in achieving an optimized delivery tool for maximizing their effectiveness inside the body.
Collapse
Affiliation(s)
- Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Hiroyoshi Moriyama
- Department of Scientific Affairs, The Japanese Institute for Health Food Standards, Tokyo, Japan
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Yong Sang Song
- Department of Obstetrics and Gynaecology, Seoul National University Hospital, Seoul, South Korea
| | - Apurva Goel
- Regulation Department, Chemical Resources (CHERESO), Panchkula, India
| | | | - Debasis Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
- Department of Biology, College of Arts and Sciences, and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
2
|
Anjum V, Bagale U, Kadi A, Malinin A, Potoroko I, Alharbi AH, Khafaga DS, AlMetwally M, Qenawy AST, Anjum A, Ali F. Process Optimization of Tinospora cordifolia Extract-Loaded Water in Oil Nanoemulsion Developed by Ultrasound-Assisted Homogenization. Molecules 2024; 29:1797. [PMID: 38675617 PMCID: PMC11052499 DOI: 10.3390/molecules29081797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Nanoemulsions are gaining interest in a variety of products as a means of integrating easily degradable bioactive compounds, preserving them from oxidation, and increasing their bioavailability. However, preparing stable emulsion compositions with the desired characteristics is a difficult task. The aim of this study was to encapsulate the Tinospora cordifolia aqueous extract (TCAE) into a water in oil (W/O) nanoemulsion and identify its critical process and formulation variables, like oil (27-29.4 mL), the surfactant concentration (0.6-3 mL), and sonication amplitude (40% to 100%), using response surface methodology (RSM). The responses of this formulation were studied with an analysis of the particle size (PS), free fatty acids (FFAs), and encapsulation efficiency (EE). In between, we have studied a fishbone diagram that was used to measure risk and preliminary research. The optimized condition for the formation of a stable nanoemulsion using quality by design was surfactant (2.43 mL), oil concentration (27.61 mL), and sonication amplitude (88.6%), providing a PS of 171.62 nm, FFA content of 0.86 meq/kg oil and viscosity of 0.597 Pa.s for the blank sample compared to the enriched TCAE nanoemulsion with a PS of 243.60 nm, FFA content of 0.27 meq/kg oil and viscosity of 0.22 Pa.s. The EE increases with increasing concentrations of TCAE, from 56.88% to 85.45%. The RSM response demonstrated that both composition variables had a considerable impact on the properties of the W/O nanoemulsion. Furthermore, after the storage time, the enriched TCAE nanoemulsion showed better stability over the blank nanoemulsion, specially the FFAs, and the blank increased from 0.142 to 1.22 meq/kg oil, while TCAE showed 0.266 to 0.82 meq/kg.
Collapse
Affiliation(s)
- Varisha Anjum
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia; (U.B.); (A.M.); (I.P.)
| | - Uday Bagale
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia; (U.B.); (A.M.); (I.P.)
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia; (U.B.); (A.M.); (I.P.)
| | - Artem Malinin
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia; (U.B.); (A.M.); (I.P.)
| | - Irina Potoroko
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia; (U.B.); (A.M.); (I.P.)
| | - Amal H. Alharbi
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.H.A.); (D.S.K.)
| | - Doaa Sami Khafaga
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.H.A.); (D.S.K.)
| | - Marawa AlMetwally
- Intelligent Systems and Machine Learning Lab, Shenzhen 518000, China; (M.A.); (A.-S.T.Q.)
| | - Al-Seyday T. Qenawy
- Intelligent Systems and Machine Learning Lab, Shenzhen 518000, China; (M.A.); (A.-S.T.Q.)
| | - Areefa Anjum
- Department of Ilmul Advia, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Faraat Ali
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic;
| |
Collapse
|
3
|
Zuccari G, Alfei S. Development of Phytochemical Delivery Systems by Nano-Suspension and Nano-Emulsion Techniques. Int J Mol Sci 2023; 24:9824. [PMID: 37372971 DOI: 10.3390/ijms24129824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The awareness of the existence of plant bioactive compounds, namely, phytochemicals (PHYs), with health properties is progressively expanding. Therefore, their massive introduction in the normal diet and in food supplements and their use as natural therapeutics to treat several diseases are increasingly emphasized by several sectors. In particular, most PHYs possessing antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant properties have been isolated from plants. Additionally, their secondary modification with new functionalities to further improve their intrinsic beneficial effects has been extensively investigated. Unfortunately, although the idea of exploiting PHYs as therapeutics is amazing, its realization is far from simple, and the possibility of employing them as efficient clinically administrable drugs is almost utopic. Most PHYs are insoluble in water, and, especially when introduced orally, they hardly manage to pass through physiological barriers and scarcely reach the site of action in therapeutic concentrations. Their degradation by enzymatic and microbial digestion, as well as their rapid metabolism and excretion, strongly limits their in vivo activity. To overcome these drawbacks, several nanotechnological approaches have been used, and many nanosized PHY-loaded delivery systems have been developed. This paper, by reporting various case studies, reviews the foremost nanosuspension- and nanoemulsion-based techniques developed for formulating the most relevant PHYs into more bioavailable nanoparticles (NPs) that are suitable or promising for clinical application, mainly by oral administration. In addition, the acute and chronic toxic effects due to exposure to NPs reported so far, the possible nanotoxicity that could result from their massive employment, and ongoing actions to improve knowledge in this field are discussed. The state of the art concerning the actual clinical application of both PHYs and the nanotechnologically engineered PHYs is also reviewed.
Collapse
Affiliation(s)
- Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| | - Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| |
Collapse
|
4
|
Islam F, Saeed F, Afzaal M, Hussain M, Ikram A, Khalid MA. Food grade nanoemulsions: promising delivery systems for functional ingredients. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1461-1471. [PMID: 37033316 PMCID: PMC10076486 DOI: 10.1007/s13197-022-05387-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023]
Abstract
Nano-emulsions are receiving great attention in various industries, especially in the food sector. Peculiar properties of nano-sized droplets and high surface area are most suited for the development and delivery of functional ingredients. Nano-emulsions systems are suitable for encapsulation, protection, improving bioavailability, and target release of sensitive functional compounds. Nano-emulsions have promising potential for the delivery of nutraceuticals, probiotics, flavors, and colors. Nano-emulsions with active ingredients (antimicrobials) have a key part in ensuring food safety, nutrition, and quality of food. Nanoemulsions can also be used for biodegradable coating, packaging, antimicrobial coating, and quality and shelf life enhancement of different foods. The current review includes an overview of nanotechnology nano-emulsions, materials, techniques for formulation & production of nano-emulsions for food and nutrition. Furthermore, the analytical approaches used for the characterization of nano-emulsions and finally, the applications and limitations of nano-emulsions in the food industry are discussed in detail. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05387-3.
Collapse
Affiliation(s)
- Fakhar Islam
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Ikram
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
5
|
Xie Y, Guo Y, Yang D, Yang D, Ming P, Zhang C, Li B. Effects of Electrostatic Force and Network Structure on the Stability of Proton-Exchange Membrane Fuel Cell Catalyst Ink. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19459-19469. [PMID: 37017416 DOI: 10.1021/acsami.3c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The stability of the catalyst slurry of a proton-exchange membrane fuel cell (PEMFC) is of great significance to its large-scale production and commercialization. In this study, three kinds of slurries with different stabilities were prepared using different probe ultrasonic powers. The influence of electrostatic force and network structure on slurry stability was also studied. In addition, the catalyst layer (CL) and membrane electrode assembly (MEA) were further tested to determine the relationship between slurry stability, CL, and MEA performance. The results showed that the slurry prepared with 600 W dispersion power had the least agglomeration on day 12, which is due to the clusters in the slurry having the smallest average particle size and the largest surface area, thereby allowing them to absorb the most Nafion and have the largest electrostatic force to inhibit agglomeration. However, the slurry with 1200 W dispersion power had the least sedimentation after 9.4 days because the strength of the network structure in the slurry strengthened the most, resulting in a significant increase in viscosity and inhibition of sedimentation. Electrochemical tests showed that the MEA gradually exhibited worse electrical performance and higher impedance due to the agglomeration of catalyst particles caused by the standing process. Altogether, this study provides insights to better understand and regulate the stability of catalyst slurries.
Collapse
Affiliation(s)
- Yucheng Xie
- School of Automotive Studies, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
| | - Yuqing Guo
- School of Automotive Studies, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
| | - Daozeng Yang
- School of Automotive Studies, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
| | - Daijun Yang
- School of Automotive Studies, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
| | - Pingwen Ming
- School of Automotive Studies, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
| | - Cunman Zhang
- School of Automotive Studies, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
| | - Bing Li
- School of Automotive Studies, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai 201804, China
| |
Collapse
|
6
|
Li Y, Cui Z, Hu L. Recent technological strategies for enhancing the stability of lycopene in processing and production. Food Chem 2022; 405:134799. [DOI: 10.1016/j.foodchem.2022.134799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
7
|
Sudha T, Salaheldin TA, Darwish NHE, Mousa SA. Antitumor/anti-angiogenesis efficacy of epigallocatechin gallate nanoformulated with antioxidant in melanoma. Nanomedicine (Lond) 2022; 17:1039-1053. [DOI: 10.2217/nnm-2021-0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Epigallocatechin gallate (EGCG) derived from green tea has poor stability; therefore, to enhance its bioavailability and anticancer efficiency, we synthesized three different nanoformulations. We hypothesized that these three nanoformulations of EGCG (nano-EGCG) would enhance EGCG’s stability and improve its anticancer and antiangiogenic activity against melanoma compared with free EGCG. Methods: We prepared nano-EGCG using a copolymerization method with the UV blocker ZnO and the antioxidants lycopene and olive oil. Results: The different nano-EGCG formulation exhibited improved EGCG stability and greater suppression of melanoma growth than free EGCG. Nanoformulation preparation methods efficiently prevented the loss of EGCG activity and are a favorable approach for the treatment of melanoma. Conclusion: Nano-EGCG formulations had enhanced stability and produced greater suppression of melanoma tumor growth and angiogenesis compared with free EGCG.
Collapse
Affiliation(s)
- Thangirala Sudha
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Taher A Salaheldin
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Noureldien HE Darwish
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
8
|
Amorim ADGN, Vasconcelos AG, Souza J, Oliveira A, Gullón B, de Souza de Almeida Leite JR, Pintado M. Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting. Antioxidants (Basel) 2022; 11:antiox11020360. [PMID: 35204241 PMCID: PMC8868408 DOI: 10.3390/antiox11020360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of this review was to collect relevant chemical data about lycopene and its isomers, which can be extracted using different non-polar or polar aprotic solvents by SC-CO2 or biosynthesis as a friendly technique. Lycopene and other carotenoids can be identified and quantified by UV–Vis and HPLC using a C18 or C30 column, while their characterization is possible by UV–Vis, Fluorescence, FTIR, MS, NMR, and DSC assays. Among these techniques, the last four can compare lycopene isomers and identify cis or all-trans-lycopene. FTIR, MS, and NMR techniques are more suitable for the verification of the purity of lycopene extracts due to the signal complexity generated for each isomer, which enables identification by subtle differences. Additionally, some biological activities of lycopene isolated from red vegetables have already been confirmed, such as anti-inflammatory, antioxidant, and cytotoxic activity against cancer cells, probably by activating several pathways. The encapsulation of lycopene in nanoparticles demonstrated an improvement in oral delivery, and ex vivo assessments determined that these nanoparticles had better permeation and low cytotoxicity against human cells with enhanced permeation. These data suggest that lycopene has the potential to be applied in the food and pharmaceutical industries, as well as in cosmetic products.
Collapse
Affiliation(s)
- Adriany das Graças Nascimento Amorim
- Rede Nordeste de Biotecnologia, RENORBIO, Campus Ministro Petrônio Portela, Universidade Federal do Piauí, UFPI, Teresina 64049-550, PI, Brazil
- Correspondence: ; Tel.: +55-86-999-652-666
| | - Andreanne Gomes Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasilia 70190-900, DF, Brazil; (A.G.V.); (J.R.d.S.d.A.L.)
- Centro Universitário do Distrito Federal, UDF, Brasília 70390-045, DF, Brazil
- People&Science, Brasília 70340-908, DF, Brazil
| | - Jessica Souza
- Laboratório de Cultura de Célula do Delta, LCC Delta, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaiba 64202-020, PI, Brazil;
| | - Ana Oliveira
- Laboratório Associado, Centro de Biotecnologia e Química Fina, CBQF-ESB, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (A.O.); (M.P.)
| | - Beatriz Gullón
- Departamento de Ingeniería Química, Facultad de Ciencias, Campus Ourense, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain;
| | - José Roberto de Souza de Almeida Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasilia 70190-900, DF, Brazil; (A.G.V.); (J.R.d.S.d.A.L.)
| | - Manuela Pintado
- Laboratório Associado, Centro de Biotecnologia e Química Fina, CBQF-ESB, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (A.O.); (M.P.)
| |
Collapse
|
9
|
Guerra AS, Hoyos CG, Molina-Ramírez C, Velásquez-Cock J, Vélez L, Gañán P, Eceiza A, Goff HD, Zuluaga R. Extraction and preservation of lycopene: A review of the advancements offered by the value chain of nanotechnology. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Smaoui S, Ben Hlima H, Ben Braïek O, Ennouri K, Mellouli L, Mousavi Khaneghah A. Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Sci 2021; 181:108585. [PMID: 34119890 DOI: 10.1016/j.meatsci.2021.108585] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Encapsulation is currently considered as one the most valuable methods for preserving aromatic compounds or hiding odors, enhancing their thermal and oxidative stability, and expanding their food applications. Indeed, this current article was aimed to provide an overview regarding the encapsulation of plant bioactive compounds and the spray-drying and extrusion processes with a focused discussion regarding the encountered challenges for meat and meat product preservation. Furthermore, different ranges of carbohydrates as wall materials (carriers) besides the process conditions' effects on the encapsulation effectiveness and the particle size of the encapsulated bioactive compounds have been discussed. The encapsulation of these compounds ameliorates the quality of the stored meat products by further delaying in microflora growth and lipid/protein oxidation. Therefore, the innovative technologies for plant active compounds encapsulation offer a prospective alternative for natural preservation development in the meat industry.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018 Sfax, Tunisia.
| | - Hajer Ben Hlima
- Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax-Tunisia, 3038 Sfax, Tunisia
| | - Olfa Ben Braïek
- Laboratory of Transmissible Diseases and Biologically Active Substances (LR99ES27), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Karim Ennouri
- Laboratory of Amelioration and Protection of Olive Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018 Sfax, Tunisia
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
11
|
Belgheisi S, Motamedzadegan A, Milani JM, Rashidi L, Rafe A. Impact of ultrasound processing parameters on physical characteristics of lycopene emulsion. Journal of Food Science and Technology 2021; 58:484-493. [PMID: 33568842 DOI: 10.1007/s13197-020-04557-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022]
Abstract
Using ultrasound technology for obtaining O/W lycopene emulsions needs analyzing the parameters for the enhanced application. To this end, O/W lycopene emulsions (30:70) were processed using ultrasound with powers of 240 W and 360 W in 5, 10, and 15 min. Afterward, the poly dispersity index, droplet size, ζ-potential, turbidity, phase separation, lycopene concentration, rheological behavior, surface tension, and morphology of emulsions was investigated. The experimental results showed good emulsifying characteristics with respect to droplet size and ζ-potential. If the mean values of the droplet size were significantly reduced and the ζ-potential increased. The ultrasound application had a significant impact on emulsion stability with no phase separation and significantly high lycopene retention. Ultrasound reduced the apparent viscosity by reducing the particle size due to the energy supplied to the system. The final emulsion that was treated at 360 W, and 2160 J/cm3 in 10 min, presented enhanced technological properties appropriate for food products.
Collapse
Affiliation(s)
- Saba Belgheisi
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), PO Box 578, Sari, Mazandaran Iran
- Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Ali Motamedzadegan
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), PO Box 578, Sari, Mazandaran Iran
| | - Jafar M Milani
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), PO Box 578, Sari, Mazandaran Iran
| | - Ladan Rashidi
- Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Ali Rafe
- Department of Food Science and Technology, Research Institute of Food Science and Technology, Mashhad, Iran
| |
Collapse
|
12
|
Shu G, Lu C, Wang Z, Du Y, Xu X, Xu M, Zhao Z, Chen M, Dai Y, Weng Q, Fang S, Fan K, Liu D, Du Y, Ji J. Fucoidan-based micelles as P-selectin targeted carriers for synergistic treatment of acute kidney injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102342. [PMID: 33253922 DOI: 10.1016/j.nano.2020.102342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
Acute kidney injury (AKI) is a life-threatening disease without effective treatment. The utilization of curcumin (Cur) for the treatment of AKI is still facing challenges due to its poor water-solubility and low bioavailability. Herein, kidney-targeted octenyl succinic anhydride-grafted fucoidan loaded with Cur (OSA-Fucoidan/Cur) was fabricated for synergistic treatment of AKI. It was found that OSA-Fucoidan/Cur micelles had a sustained drug release behavior and excellent physicochemical stability. Cellular uptake studies demonstrated that the specific binding between fucoidan and P-selectin overexpressed on H2O2-stimulated HUVECs contributed to the higher internalization of OSA-Fucoidan/Cur micelles by the cells. In addition, OSA-Fucoidan micelles exhibited an ideal kidney-targeted characteristic in lipopolysaccharide (LPS)-induced AKI mice. In vivo studies showed that the combination of Cur and OSA-Fucoidan endowed the OSA-Fucoidan/Cur micelles with synergistically anti-inflammatory and antioxidant abilities, thereby largely enhancing the therapeutic efficacy of AKI. Therefore, OSA-Fucoidan/Cur micelles may represent a potential kidney-targeted nanomedicine for effective treatment of AKI.
Collapse
Affiliation(s)
- Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Zhixian Wang
- First Clinical College of traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuyin Du
- Department of Chemistry, Faculty of Science, Tohoku University, Sendai, Japan
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Yiyang Dai
- Department of Gastroenterology, The Fourth Affiliated Hospital of Zhejiang University, School of Medicine, YiWu, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Kai Fan
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China.
| |
Collapse
|
13
|
Meléndez-Martínez AJ, Böhm V, Borge GIA, Cano MP, Fikselová M, Gruskiene R, Lavelli V, Loizzo MR, Mandić AI, Brahm PM, Mišan AČ, Pintea AM, Sereikaitė J, Vargas-Murga L, Vlaisavljević SS, Vulić JJ, O'Brien NM. Carotenoids: Considerations for Their Use in Functional Foods, Nutraceuticals, Nutricosmetics, Supplements, Botanicals, and Novel Foods in the Context of Sustainability, Circular Economy, and Climate Change. Annu Rev Food Sci Technol 2021; 12:433-460. [PMID: 33467905 DOI: 10.1146/annurev-food-062220-013218] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carotenoids are versatile isoprenoids that are important in food quality and health promotion. There is a need to establish recommended dietary intakes/nutritional reference values for carotenoids. Research on carotenoids in agro-food and health is being propelled by the two multidisciplinary international networks, the Ibero-American Network for the Study of Carotenoids as Functional Foods Ingredients (IBERCAROT; http://www.cyted.org) and the European Network to Advance Carotenoid Research and Applications in Agro-Food and Health (EUROCAROTEN; http://www.eurocaroten.eu). In this review, considerations for their safe and sustainable use in products mostly intended for health promotion are provided. Specifically, information about sources, intakes, and factors affecting bioavailability is summarized. Furthermore, their health-promoting actions and importance in public health in relation to the contribution of reducing the risk of diverse ailments are synthesized. Definitions and regulatory and safety information for carotenoid-containing products are provided. Lastly, recent trends in research in the context of sustainable healthy diets are summarized.
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Nutrition and Food Science, Toxicology and Legal Medicine Department, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Volker Böhm
- Institute of Nutritional Sciences, Bioactive Plant Products Research Group, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | - M Pilar Cano
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Martina Fikselová
- Department of Food Hygiene and Safety, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia
| | - Ruta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| | - Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Anamarija I Mandić
- Institute of Food Technology in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Paula Mapelli Brahm
- Nutrition and Food Science, Toxicology and Legal Medicine Department, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Aleksandra Č Mišan
- Institute of Food Technology in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Adela M Pintea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| | | | - Sanja S Vlaisavljević
- Departmant of Chemistry, Biochemistry and Environmental Protection, Faculty of Natural Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jelena J Vulić
- Department of Applied and Engineering Chemistry, Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, T12 Cork, Ireland
| |
Collapse
|
14
|
Lin D, Kelly AL, Maidannyk V, Miao S. Effect of structuring emulsion gels by whey or soy protein isolate on the structure, mechanical properties, and in-vitro digestion of alginate-based emulsion gel beads. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106165] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Vasconcelos AG, Valim MO, Amorim AGN, do Amaral CP, de Almeida MP, Borges TKS, Socodato R, Portugal CC, Brand GD, Mattos JSC, Relvas J, Plácido A, Eaton P, Ramos DAR, Kückelhaus SAS, Leite JRSA. Cytotoxic activity of poly-ɛ-caprolactone lipid-core nanocapsules loaded with lycopene-rich extract from red guava (Psidium guajava L.) on breast cancer cells. Food Res Int 2020; 136:109548. [PMID: 32846600 DOI: 10.1016/j.foodres.2020.109548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
The aims of this study were to produce poly-ɛ-caprolactone lipid-core nanocapsules containing lycopene-rich extract from red guava (LEG), to characterize those nanoparticles and to evaluate their cytotoxic effects on human breast cancer cells. Lipid-core nanocapsules containing the extract (nanoLEG) were produced by the method of interfacial deposition of the preformed polymer. The nanoparticles were characterized by Dynamic Light Scattering (DLS), Polydispersity Index, Zeta Potential, pH, Encapsulation Efficiency, Nanoparticle Tracking Analysis (NTA), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). Cell viability was evaluated by the MTT dye reduction method in the human breast cancer MCF-7 cell line and inhibition of ROS and NF-κB was assayed in living human microglial cell line (HMC3) by time-lapse images microscopy. A hemolytic activity assay was carried out with sheep blood. Data showed that nanoparticles average size was around 200 nm, nanoparticles concentration/mL was around 0.1 µM, negative zeta potential, pH < 5.0 and spherical shape, with low variation during a long storage period (7 months) at 5 °C, indicating stability of the system and protection against lycopene degradation. The percentage of encapsulation varied from 95% to 98%. The nanoLEG particles significantly reduced the viability of the MCF-7 cells after 24 h (61.47%) and 72 h (55.96%) of exposure, even at the lowest concentration tested (6.25-200 μg/ml) and improved on the cytotoxicity of free LEG to MCF-7. NanoLEG inhibited LPS-induced NF-kB activation and ROS production in microglial cells. The particles did not affect the membrane integrity of sheep blood erythrocytes at the concentrations tested (6.25-200 μg/mL). Thus, the formulation of lipid-core nanocapsules with a polysorbate 80-coated poly-ɛ-caprolactone wall was efficiently applied to stabilize the lycopene-rich extract from red guava, generating a product with satisfactory physico-chemical and biological properties for application as health-promoting nanotechnology-based nutraceutical, emphasizing its potential to be used as a cancer treatment.
Collapse
Affiliation(s)
- Andreanne G Vasconcelos
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Martina O Valim
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Adriany G N Amorim
- Biotechnology and Biodiversity Research Centre, BIOTEC, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, Parnaíba, Piauí, Brazil
| | - Constança Pais do Amaral
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Peixoto de Almeida
- LAQV/REQUIMTE, Departmento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Tatiana K S Borges
- Laboratory of Cellular Immunology, Pathology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde, i3S, Universidade do Porto, Porto, Portugal
| | - Camila C Portugal
- Instituto de Investigação e Inovação em Saúde, i3S, Universidade do Porto, Porto, Portugal
| | - Guilherme D Brand
- Institute of Chemistry, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | | | - João Relvas
- Instituto de Investigação e Inovação em Saúde, i3S, Universidade do Porto, Porto, Portugal
| | - Alexandra Plácido
- LAQV/REQUIMTE, Departmento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Universidade do Porto, Porto, Portugal
| | - Peter Eaton
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; LAQV/REQUIMTE, Departmento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Doralina A R Ramos
- Laboratory of Molecular Pathology of Cancer, Pathology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Brazil
| | - Selma A S Kückelhaus
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - José Roberto S A Leite
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
16
|
Gao W, Chen F, Wang X, Meng Q. Recent advances in processing food powders by using superfine grinding techniques: A review. Compr Rev Food Sci Food Saf 2020; 19:2222-2255. [DOI: 10.1111/1541-4337.12580] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Wenjie Gao
- School of Ecological Technology and EngineeringShanghai Institute of Technology Shanghai China
| | - Feng Chen
- Department of Food, Nutrition and Packaging SciencesClemson University Clemson South Carolina
| | - Xi Wang
- Department of Food, Nutrition and Packaging SciencesClemson University Clemson South Carolina
- Nutra Manufacturing Greenville South Carolina
| | - Qingran Meng
- Engineering Research Center of Perfume & Aroma and Cosmetics of Ministry of Education, School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| |
Collapse
|
17
|
Ashraf W, Latif A, Lianfu Z, Jian Z, Chenqiang W, Rehman A, Hussain A, Siddiquy M, Karim A. Technological Advancement in the Processing of Lycopene: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1749653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Waqas Ashraf
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Anam Latif
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zhang Lianfu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhang Jian
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wang Chenqiang
- Technical Center, Guannong Fruit & Antler Co.,Ltd, Korla City, Xinjiang, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arif Hussain
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Mahbuba Siddiquy
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Saini RK, A Bekhit AED, Roohinejad S, Rengasamy KRR, Keum YS. Chemical Stability of Lycopene in Processed Products: A Review of the Effects of Processing Methods and Modern Preservation Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:712-726. [PMID: 31891495 DOI: 10.1021/acs.jafc.9b06669] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lycopene, one of the most dominant carotenoids in a person's diet, is a well-known natural compound that has protective effects against chronic diseases. Industrial and domestic processing and storage conditions significantly influence retention and isomerization of lycopene; thus, in recent years, great attention has been given for their preservative effects of lycopene. This review highlights recent strategies that have been developed to preserve lycopene in processed products, especially in tomato pulp, puree, paste, and juice. The key factors influencing lycopene degradation and isomerization, such as ingredients and intensity of thermal treatments, are also discussed. Special attention was paid to the crystalline structures of lycopene which facilitate its resistance to degradation and isomerization. Emerging non-thermal processing methods, such as ultrasound and high-pressure processing (HPP), are critically evaluated for their preservation of thermo-labile compounds. Novel trends to improve lycopene stability by micro- and nanoencapsulation and addition of antioxidants are also included to examine their efficacy to protect against light, heat, oxygen, and other oxidative processes. Finally, recommended processing and storage conditions are discussed to provide strategies to retain the highest possible amount of bioactive lycopene until consumption.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science , Konkuk University , Seoul 143-701 , Republic of Korea
- Institute of Natural Science and Agriculture , Konkuk University , Seoul 143-701 , Republic of Korea
- Department of Crop Science , Konkuk University , Seoul 143-701 , Republic of Korea
| | | | - Shahin Roohinejad
- Burn and Wound Healing Research Center, Division of Food and Nutrition , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Kannan R R Rengasamy
- Department of Bioresources and Food Science , Konkuk University , Seoul 143-701 , Republic of Korea
| | - Young-Soo Keum
- Department of Crop Science , Konkuk University , Seoul 143-701 , Republic of Korea
| |
Collapse
|
19
|
Aswathanarayan JB, Vittal RR. Nanoemulsions and Their Potential Applications in Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00095] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Wang Z, Zhao X, Zu Y, Wu W, Li Y, Guo Z, Wang L, Wang L. Licorice flavonoids nanoparticles prepared by liquid antisolvent re-crystallization exhibit higher oral bioavailability and antioxidant activity in rat. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Chang CK, Ko WC, Chen YA, Chan YJ, Cheng KC, Lai PS, Hsieh CW. Evaluation of using high-pressure homogenization technology in enhancing the aroma synthesis of sorghum spirits. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Rostamabadi H, Falsafi SR, Jafari SM. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J Control Release 2019; 298:38-67. [DOI: 10.1016/j.jconrel.2019.02.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
|
23
|
Enhancing Curcumin Oral Bioavailability Through Nanoformulations. Eur J Drug Metab Pharmacokinet 2019; 44:459-480. [DOI: 10.1007/s13318-019-00545-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Shishir MRI, Xie L, Sun C, Zheng X, Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.018] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Lycopene in Beverage Emulsions: Optimizing Formulation Design and Processing Effects for Enhanced Delivery. BEVERAGES 2018. [DOI: 10.3390/beverages4010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|