1
|
Santos AD, Oliveira AS, Carvalho MTB, Barreto AS, Quintans JDSS, Quintans Júnior LJ, Barreto RDSS. H. pectinata (L.) Poit - Traditional uses, phytochemistry and biological-pharmacological activities in preclinical studies: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118478. [PMID: 38909822 DOI: 10.1016/j.jep.2024.118478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE H. pectinata (L.) Poit, popularly known as "sambacaitá" or "canudinho", is a plant endemic to north-eastern Brazil. Its aerial parts, leaves and flowers have traditionally been used to treat gastrointestinal disorders, rhinopharyngitis, nasal congestion, bacterial and fungal infections, fever, colic, inflammation, and pain. AIM OF THE STUDY The aim of this review was to provide information on the botanical characteristics, ethnomedicinal uses, phytochemistry and biological-pharmacological activities of H. pectinata. MATERIALS AND METHODS This systematic review followed the Cochrane Handbook Collaboration and the PRISMA guidelines. The review question was what are the biological-pharmacological activities of H. pectinata presented in non-clinical studies. The search for articles was conducted in the Medline (via PubMed), Embase, Web of Science, Scopus, Virtual Health Library, SciELO, Google Scholar and the Brazilian Digital Library of Theses and Dissertations databases. Two reviewers independently selected the studies that met the inclusion criteria, extracted the data, and assessed the risk of bias of the included studies. RESULTS 39 articles were included in this review, of which 19 reported in vitro experiments, 16 in vivo studies and 4 in vivo and in vitro experiments. H. pectinata is a plant widely used in folk medicine in north-eastern Brazil for the treatment of various ailments, such as respiratory diseases, gastrointestinal disorders, bacterial and fungal infections, and general inflammation. Supporting its popular use, several in vitro and in vivo pharmacological investigations of the essential oil and extract of H. pectinata have demonstrated their anti-inflammatory, antinociceptive, antioxidant, antidepressant, anticancer, hepatoregenerative, healing, and antimicrobial activities. H. pectinata has been reported to contain 75 bioactive constituents, comprising 9 flavonoids, 54 terpenes, and 12 other compounds. CONCLUSION H. pectinata is a plant commonly used in traditional medicine. Phytochemically, it contains several bioactive constituents, including terpenes and flavonoids, and has been shown to have antinociceptive, anti-inflammatory, antimicrobial and antitumour activity, as well as hepatorregenerative and healing effects, and low toxicity.
Collapse
Affiliation(s)
- Adenilson Dos Santos
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Alan Santos Oliveira
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - André Sales Barreto
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Jullyana de Souza Siqueira Quintans
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Lucindo José Quintans Júnior
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Rosana de Souza Siqueira Barreto
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil.
| |
Collapse
|
2
|
Moon H, Kang K, Kim M. Potential Prebiotic Effects of Artemisia capillaris-Derived Transglycosylated Product. Foods 2024; 13:3267. [PMID: 39456329 PMCID: PMC11507088 DOI: 10.3390/foods13203267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the impact of a transglycosylated product (ACOD) catalyzed by Leuconostoc mesenteroides MKSR dextransucrase using sucrose as a glucosyl donor and both maltose and Artemisia capillaris as acceptors on gut microbiota through fecal fermentation. ACOD promoted the growth of probiotics such as Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lacticaseibacillus rhamnosus GG, and Leuconostoc mesenteroides MKSR, while inhibiting the growth of pathogenic bacteria such as Escherichia coli, E. coli O157:H7, Enterococcus faecalis, Listeria monocytogenes, Staphylococcus aureus, Shigella flexneri, Streptococcus mutans, Pseudomonas aeruginosa, and Bacillus cereus during independent cultivation. Fecal fermentation for 24 h revealed that ACOD significantly increased the production of short-chain fatty acids (SCFAs) compared to the blank and fructoooligosaccharide (FOS) groups. Specifically, ACOD led to a 4.5-fold increase in acetic acid production compared to FOSs and a 3.3-fold increase in propionic acid production. Both the ACOD and FOS groups exhibited higher levels of butyric acid than the blank. Notably, ACOD significantly modulated the composition of the gut microbiota by increasing the relative abundances of Lactobacillus and decreasing Escherichia/Shigella and Salmonella. In contrast, FOSs remarkably promoted the growth of Salmonella. These findings suggest that ACOD is a potential candidate for prebiotics that improve the intestinal environment by being actively used by beneficial bacteria.
Collapse
Affiliation(s)
- Heewon Moon
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea;
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Misook Kim
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
3
|
Herman-Lara E, Rodríguez-Miranda J, Ávila-Manrique S, Dorado-López C, Villalva M, Jaime L, Santoyo S, Martínez-Sánchez CE. In Vitro Antioxidant, Anti-Inflammatory Activity and Bioaccessibility of Ethanolic Extracts from Mexican Moringa oleifera Leaf. Foods 2024; 13:2709. [PMID: 39272475 PMCID: PMC11394894 DOI: 10.3390/foods13172709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to assess the antioxidant and anti-inflammatory properties, and bioaccessibility of Moringa oleifera ethanolic extracts using pressurized liquid extraction with varying ethanol concentrations (0%, 30%, 50%, 70%, and 100%) in water-ethanol mixtures. Quercetin derivatives and neochlorogenic acid were identified as major compounds via high-performance liquid chromatography with diode array detection. The 70% ethanol extract displayed the highest antioxidant activity and phenolic content, highlighting a strong correlation between phenolics and antioxidant potential. Extracts prepared with 50% and 70% ethanol (30 μg/mL) significantly inhibited TNF-α, IL-1β, and IL-6 cytokine secretion, with the 70% ethanol extract demonstrating robust anti-inflammatory effects. During in vitro digestion (oral, gastric, and intestinal phases), minimal changes were noted in most phenolic compounds' post-oral phase, but reductions occurred after the gastric phase. Substantial decreases in major compounds and antioxidant activity were observed in post-gastric and intestinal phases. Overall, ethanolic extracts of Moringa oleifera, particularly those with 70% ethanol, exhibit promising antioxidant and anti-inflammatory properties, suggesting potential for developing therapeutic agents against oxidative stress and inflammation-related disorders. However, it is essential to protect these compounds to prevent their degradation during digestion.
Collapse
Affiliation(s)
- Erasmo Herman-Lara
- Tecnológico Nacional de México Campus, Tuxtepec, Calzada Victor Bravo Ahuja, No. 561, Col. Predio el Paraíso, San Juan Bautista Tuxtepec 68350, Oaxaca, Mexico
| | - Jesús Rodríguez-Miranda
- Tecnológico Nacional de México Campus, Tuxtepec, Calzada Victor Bravo Ahuja, No. 561, Col. Predio el Paraíso, San Juan Bautista Tuxtepec 68350, Oaxaca, Mexico
| | - Stefany Ávila-Manrique
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI, UAM-CSIC), 28049 Madrid, Spain
| | - Celia Dorado-López
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI, UAM-CSIC), 28049 Madrid, Spain
| | - Marisol Villalva
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI, UAM-CSIC), 28049 Madrid, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI, UAM-CSIC), 28049 Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI, UAM-CSIC), 28049 Madrid, Spain
| | - Cecilia E Martínez-Sánchez
- Tecnológico Nacional de México Campus, Tuxtepec, Calzada Victor Bravo Ahuja, No. 561, Col. Predio el Paraíso, San Juan Bautista Tuxtepec 68350, Oaxaca, Mexico
| |
Collapse
|
4
|
Rocchi R, Pellegrini M, Pittia P, Pace L. Wild and Micropropagated Artemisia eriantha Infusions: In Vitro Digestion Effects on Phenolic Pattern and Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2023; 13:85. [PMID: 38202393 PMCID: PMC10780599 DOI: 10.3390/plants13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
This study investigated the in vitro simulated gastrointestinal digestion (GID) effects on wild and micropropagated Apennines Genepì infusions. Wild and micropropagated infusions were compared for their antioxidant activity, phenolic contents, and polyphenolic profiles before and after GID. Before digestion, the wild infusions had higher amounts of phenolic compounds and antioxidant activity than the micropropagated ones. Instead, after digestion, the differences in the total phenolic content (TPC) and antioxidant activity between wild and micropropagated infusions were less pronounced. The changes in the TPC and phenolic profiles revealed the presence of several chemical transformations and rearrangements that resulted in compounds with different reactivity and antioxidant potential. Without enzyme actions, the wild infusion digest undergoes higher modifications than those obtained from the micropropagated ones. The current study offers the first concrete proof of the impact of GID on the polyphenolic chemicals present in infusions of wild and micropropagated Apennines Genepì and their antioxidant properties. Our findings are essential for future in-depth analyses of Apennine Genepì infusions and their potential impacts on human health.
Collapse
Affiliation(s)
- Rachele Rocchi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy;
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.P.); (L.P.)
| | - Paola Pittia
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Balzarini, 1, 64100 Teramo, Italy
| | - Loretta Pace
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.P.); (L.P.)
| |
Collapse
|
5
|
Lima K, Malmir M, Camões SP, Hasan K, Gomes S, Moreira da Silva I, Figueira ME, Miranda JP, Serrano R, Duarte MP, Silva O. Quality, Safety and Biological Studies on Campylanthus glaber Aerial Parts. Pharmaceuticals (Basel) 2023; 16:1373. [PMID: 37895844 PMCID: PMC10610246 DOI: 10.3390/ph16101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
In Cabo Verde, several endemic species are used in traditional medicine. However, no scientific studies have been conducted on the quality, efficacy, and safety of most of these plants. This study focused on establishing the botanical and chemical identification parameters required for a quality monograph of Campylanthus glaber Benth. aerial parts, a medicinal plant of Cabo Verde traditionally used to treat fever and muscular pain. In addition, in vitro antioxidant and antihyperglycemic activity, cytotoxicity, and genotoxicity were assessed for this medicinal plant. Optical microscopy, LC/UV-DAD-ESI/MS, and colorimetric assays were used for botanical, chemical, and biological studies, respectively. Cytotoxicity was assessed by the MTT assay with HepG2 cells, and genotoxicity by the Ames test. Microscopically, the xeromorphic leaf of C. glaber presents a thick cuticle (13.6-25.5 µm), thick-walled epidermal cells, anomocytic-type stomata, glandular trichomes (stalk length = 49.4-120.8 µm), and idioblasts containing calcium oxalate microcrystals. The chemical screening of aqueous and hydroethanolic extracts of this medicinal plant revealed the presence of organic acids, iridoids, phenylethanoids, and flavonoids as the main classes of marker compounds, with malic acid, citric acid, and verbascoside being the main marker compounds identified. Both extracts showed similar LC/UV-DAD/ESI-MS qualitative profiles and DPPH radical scavenger activity (IC50 = 130.9 ± 1.4; 134.3 ± 3.1 µg/mL). The hydroethanolic extract inhibited both α-amylase and α-glucosidase enzymes in a dose-dependent manner. Both extracts showed no cytotoxicity (up to 1000 µg/mL) by the MTT assay and no genotoxic potential with or without metabolic activation up to 5 mg /plate. The results obtained are an important contribution to the monographic quality assessment of C. glaber aerial parts and suggest that this medicinal plant may be safe and potentially used as an herbal drug raw material for pharmaceutical purposes.
Collapse
Affiliation(s)
- Katelene Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Maryam Malmir
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Sérgio P. Camões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Kamrul Hasan
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Samuel Gomes
- Instituto Nacional de Investigação e Desenvolvimento Agrário (INIDA), São Jorge dos Orgãos, Santiago CP 84, Cabo Verde;
| | - Isabel Moreira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Maria Eduardo Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Rita Serrano
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| | - Maria Paula Duarte
- The Mechanical Engineering and Resource Sustainability Center (MEtRICs), Nova School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (K.L.); (M.M.); (S.P.C.); (K.H.); (I.M.d.S.); (M.E.F.); (J.P.M.); (R.S.)
| |
Collapse
|
6
|
Dantas AM, Fernandes FG, Magnani M, da Silva Campelo Borges G. Gastrointestinal digestion assays for evaluating the bioaccessibility of phenolic compounds in fruits and their derivates: an overview. Food Res Int 2023; 170:112920. [PMID: 37316040 DOI: 10.1016/j.foodres.2023.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
Fruits and their derivatives are sources of phenolic compounds, which contribute to the maintenance of health benefits. In order to exert such properties, these compounds must be exposed to gastrointestinal conditions during digestion. In vitro methods of gastrointestinal digestion have been developed to simulate and evaluate the changes that compounds undergo after being exposed to various conditions. We present, in this review, the major in vitro methods for evaluating the effects of gastrointestinal digestion of phenolic compounds in fruits and their derivatives. We discuss the concept of bioaccessibility, bioactivity, and bioavailability, as well as the conceptual differences and calculations among studies. Finally, the main changes caused by in vitro gastrointestinal digestion in phenolic compounds are also discussed. The significant variation of parameters and concepts observed hinders a better evaluation of the real effects on the antioxidant activity of phenolic compounds, thus, the use of standardized methods in research would contribute for a better understanding of these changes.
Collapse
Affiliation(s)
- Aline Macedo Dantas
- Department of Food Technology, Federal University of Paraiba, João Pessoa, PB, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Graciele da Silva Campelo Borges
- Department of Food Technology, Federal University of Paraiba, João Pessoa, PB, Brazil; Center of Chemistry, Pharmaceutical and Foods Sciences, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Romeiras MM, Essoh AP, Catarino S, Silva J, Lima K, Varela E, Moura M, Gomes I, Duarte MC, Duarte MP. Diversity and biological activities of medicinal plants of Santiago island (Cabo Verde). Heliyon 2023; 9:e14651. [PMID: 37009246 PMCID: PMC10060590 DOI: 10.1016/j.heliyon.2023.e14651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Plants continue to constitute key elements of medical practice in West African countries. The Cabo Verde archipelago hosts a great diversity of medicinal plants and local markets are considered important sites for trading plants harvested by rural communities. This study has two main goals: (i) to assess the medicinal uses of native species in Santiago, the biggest island of the archipelago, and (ii) to evaluate the antioxidant, antimicrobial and antidiabetic/antihyperglycemic activities of two native trees (Tamarix senegalensis and Sideroxylon marginatum) used in traditional medicine and traded in local markets. Our results revealed that on Santiago Island, 24 native plants are used in traditional medicine. The main uses of these species (e.g., forage, timber, food and fibres), their medicinal applications, the plant parts used, their mode of administration and conservation status are presented here for the first time. Moreover, the pharmacological characterization of two native tree species revealed that hydroethanolic extracts were richer in phenolic compounds and more active than their aqueous counterparts. All the studied extracts revealed significant antioxidant properties (DPPH and FRAP assays) and were generally moderately active against Gram-positive bacteria. All the extracts inhibited the activities of the carbohydrate digestive enzymes α-glucosidase and α-amylase in a dose-dependent manner. For α-glucosidase, the detected inhibitory activity (IC50 values from 2.0 ± 0.2 μg/mL to 9.9 ± 1.2 μg/mL) was significantly higher than that of acarbose, suggesting that extracts of both species can delay glucose absorption, thereby assisting in slowing down the progression of diabetes. Our findings highlight the crucial importance that medicinal plants have for the Cabo Verdean population, while also raising awareness on the need for sustainable use and conservation of native flora, and of tree species traded in local markets in particular.
Collapse
|
8
|
Bioavailability Assessment of Yarrow Phenolic Compounds Using an In Vitro Digestion/Caco-2 Cell Model: Anti-Inflammatory Activity of Basolateral Fraction. Molecules 2022; 27:molecules27238254. [PMID: 36500344 PMCID: PMC9740014 DOI: 10.3390/molecules27238254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, a combined in vitro digestion/Caco-2 model was performed with the aim to determine the phenolic compounds bioavailability of two yarrow extracts. HPLC-PAD characterisation indicated that the main components in both extracts were 3,5-dicaffeoylquinic acid (DCQA) and luteolin-7-O-glucoside. Analyses after the simulated digestion process revealed that phenolic composition was not affected during the oral phase, whereas gastric and intestinal phases represented critical steps for some individual phenolics, especially intestinal step. The transition from gastric medium to intestinal environment caused an important degradation of 3,5-DCQA (63-67% loss), whereas 3,4-DCQA and 4,5-DCQA increased significantly, suggesting an isomeric transformation within these caffeic acid derivatives. However, an approx. 90% of luteolin-7-O-glucoside was recovered after intestinal step. At the end of Caco-2 absorption experiments, casticin, diosmetin and centaureidin represented the most abundant compounds in the basolateral fraction. Moreover, this fraction presented anti-inflammatory activity since was able to inhibit the secretion of IL-1β and IL-6 pro-inflammatory cytokines. Thus, the presence in the basolateral fraction of flavonoid-aglycones from yarrow, could be related with the observed anti-inflammatory activity from yarrow extract.
Collapse
|
9
|
Evaluation of the Polyphenolic Composition and Bioactivities of Three Native Cabo Verde Medicinal Plants. Pharmaceuticals (Basel) 2022; 15:ph15091162. [PMID: 36145383 PMCID: PMC9501242 DOI: 10.3390/ph15091162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/18/2022] Open
Abstract
The use of medicinal plants in a variety of health conditions remains essential for the discovery of new treatments. The present study aimed to investigate the bioactive properties of three native plants from Cabo Verde Islands, namely Artemisia gorgonum Webb, Sideroxylon marginatum (Decne. ex Webb) Cout., and Tamarix senegalensis DC., contributing to the characterization of less-known medicinal plants and their potential benefits for human health. Known compounds, such as kaempferol, quercetin, caffeyolquinic, and apigenin derivatives, among others, were detected in the plant species under study. Overall, all species demonstrated good antioxidant capacity, especially the ethanolic extracts of A. gorgonum (EC50 = 0.149 mg/mL) in TBARS assay. Moreover, the ethanolic extracts of the studied plants showed cytotoxic properties against tumor cells, and again the A. gorgonum extract proved to be the most effective in inhibiting tumor growth, mainly in the CaCO2 (GI50 = 17.3 μg/mL) and AGS (GI50 = 18.2 μg/mL) cell lines. Only the ethanolic extracts of T. senegalensis and S. marginatum demonstrated anti-inflammatory activity, albeit weak (EC50 = 35 and 43 μg/mL, respectively). The present study contributed to increased knowledge about the bioactive properties of these plants commonly used in traditional medicine, some of which was discussed for the first time, opening new perspectives for their use in a wider range of health conditions, especially in African countries, where access to modern health care is more limited.
Collapse
|
10
|
Simulated Gastrointestinal Digestion of Bioprocessed Spelt Seeds: Bioaccessibility and Bioactivity of Phenolics. Antioxidants (Basel) 2022; 11:antiox11091703. [PMID: 36139778 PMCID: PMC9495461 DOI: 10.3390/antiox11091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of this research was to evaluate the impact of different bioprocessing techniques on improved bioaccessibility of phenolics from spelt seeds. Despite the negative influence of gastrointestinal digestion, fermentation of germinated seeds significantly increased the bioaccessibility of total phenolics and their antioxidant activity compared to digested raw seeds. Enzymatic treated fermented seeds showed the highest relative bioaccessibility of p-coumaric and trans-ferulic acids, while their absolute contents were significantly higher in “germinated + fermented” seeds. Our research suggests that pretreatment of spelt seeds with hydrolytic enzymes improves access of fermenting microorganisms to structural elements, resulting in an increased content of extractable and bound trans-ferulic acid. Significantly higher biostability of phenolics was observed in raw seeds. Some major quality changes in the composition of extracts were observed under simulated in vitro digestion, since antioxidants of the same extract showed a different relative decrease in DPPH• and ABTS•+ scavenging activities compared to the raw seeds or their corresponding undigested counterparts. It is therefore important to increase the content of extractable antioxidants in seeds by bioprocessing, since they are strongly diminished during digestion.
Collapse
|
11
|
Li G, Yan N, Li G. The Effect of In Vitro Gastrointestinal Digestion on the Antioxidants, Antioxidant Activity, and Hypolipidemic Activity of Green Jujube Vinegar. Foods 2022; 11:foods11111647. [PMID: 35681396 PMCID: PMC9180043 DOI: 10.3390/foods11111647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
Healthy fruit vinegar has been extensively favored in China in recent years. As a new type of fruit vinegar developed by our laboratory, green jujube vinegar has the characteristics of good taste and rich nutrition. To study the effect of in vitro gastrointestinal digestion on the antioxidant and hypolipidemic activity of green jujube vinegar, so as to provide basic data for research and the development of healthy food antioxidants, including the total phenolic content (TPC), total flavonoid content (TFC), total acid content, and volatile acid content, were measured. The antioxidant activity was measured by using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) free radical scavenging methods and the ferric reducing antioxidant power assay (FRAP), and the hypolipidemic activity was measured by cholesterol adsorption and the sodium cholate adsorption capacities. The results show that gastric digestion significantly (p < 0.05) decreased the TPC, TFC, total acid content, and volatile acid content, for which the highest reductions were up to 54.17%, 72%, 88.83% and 82.35%, respectively. During intestinal digestion, the TFC remained at a high level and unchanged, and the TFC and volatile acid content significantly (p < 0.05) decreased by 72.66% and 89.05%, respectively. The volatile acid content did not significantly (p > 0.05) change within 2 h. The ABTS free radical scavenging ability and the reducing power free radical scavenging rate were correlated with the TPC, TFC, and total acid contents, and the DPPH free radical scavenging ability and cholesterol adsorption capacity were not. These findings suggest that green jujube vinegar can be a potential functional food for people’s use.
Collapse
|
12
|
In vitro assessment of the effect of microencapsulation techniques on the stability, bioaccessibility and bioavailability of mulberry leaf bioactive compounds. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Inal A, Yenipazar H, Şahin-Yeşilçubuk N. Preparation and characterization of nanoemulsions of curcumin and echium oil. Heliyon 2022; 8:e08974. [PMID: 35243093 PMCID: PMC8861391 DOI: 10.1016/j.heliyon.2022.e08974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/13/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
The search for the plant origin bioactive compounds is increasing over animal origin compounds. Echium oil (EO) contains high amounts of plant based omega-3 fatty acids. Moreover, curcumin addition may increase the release of these omega-3 fatty acids during digestion. The study's objective is to determine the bioaccessibility of curcumin in simulated intestinal digestion conditions and the release behavior of fatty acids of echium oil from nanoemulsions. We prepared curcumin and EO nanoemulsions with a microfluidizer using two different concentrations of surfactant, Tween 80 (5% and 10%). Emulsion stability tests, antioxidant analysis, in vitro oil release and fatty acid composition assays were conducted. Results showed that curcumin-containing nanoemulsions provide higher radical scavenging activity than the EO nanoemulsions. In addition, in vitro bioaccessibility of curcumin after in vitro simulated intestinal digestion was calculated as 35.5%. Gas chromatography results of the digested nanoemulsions revealed that curcumin addition decreases oleic acid release while increasing stearidonic acid (SDA) release. Curcumin addition increased antioxidant activities of EO nanoemulsions. Curcumin incorporated nanoemulsions had significantly higher SDA content after in vitro digestion. In nanoemulsion form, in vitro curcumin bioaccessibility was 35.5%.
Collapse
|
14
|
Garavand F, Jalai-Jivan M, Assadpour E, Jafari SM. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chem 2021; 364:130376. [PMID: 34171813 DOI: 10.1016/j.foodchem.2021.130376] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022]
Abstract
Phenolic compounds (phenolics) have received great attention in the food, pharmaceutical and nutraceutical industries due to their health-promoting attributes. However, their extensive use is limited mainly due to their poor water dispersibility and instability under both processing conditions and/or gastrointestinal interactions, affecting their bioavailability/bioaccessibility. Therefore, different nanocarriers have been widely used to encapsulate phenolics and overcome the aforementioned challenges. To the best of our knowledge, besides many research studies, no comprehensive review on encapsulation of phenolics by microemulsions (MEs) and nanoemulsions (NEs) has been published so far. The present study was therefore attempted to review the loading of phenolics into MEs and NEs. In addition, the fundamental characteristics of the developed systems such as stability, encapsulation efficiency, cytotoxicity, bioavailability and releasing rate are also discussed. Both MEs and NEs are proved as appropriate vehicles to encapsulate and protect phenolics which may expand their applications in foods, supplements and pharmaceuticals.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | - Mehdi Jalai-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
15
|
Espinosa-González AM, Estrella-Parra EA, Nolasco-Ontiveros E, García-Bores AM, García-Hernández R, López-Urrutia E, Campos-Contreras JE, González-Valle MDR, Benítez-Flores JDC, Céspedes-Acuña CL, Alarcón-Enos J, Rivera-Cabrera JC, Avila-Acevedo JG. Hyptis mociniana: phytochemical fingerprint and photochemoprotective effect against UV-B radiation-induced erythema and skin carcinogenesis. Food Chem Toxicol 2021; 151:112095. [PMID: 33689855 DOI: 10.1016/j.fct.2021.112095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Skin cancer is a public health problem due to its high incidence. Ultraviolet radiation (UVR) is the main etiological agent of this disease. Photochemoprotection involves the use of substances to avoid damage caused by UV exposure. The aim of this work was to determine the phytochemical fingerprint and photochemoprotective effect against UVB radiation-induced skin damage such as erythema and carcinogenesis of H. mociniana methanolic extract (MEHm). The chemical composition of the MEHm was analysed by LC/ESI-MS/MS. Three quercetin derivatives, two pectinolides, and two caffeic acid derivatives were identified in the methanolic extract. MEHm has antioxidant effect and it is not cytotoxic in HaCaT cells. Phytochemicals from H. mociniana have a photochemopreventive effect because they absorb UV light and protect HaCaT cells from UVR-induced cell death. Also, in SKH-1 mice -acute exposure-, it decreased erythema formation, modulating the inflammatory response, reduced the skin damage according to histological analysis and diminished p53 expression. Finally, MEHm protects from photocarcinogenesis by reducing the incidence and multiplicity of skin carcinomas in SKH-1 mice exposed chronically to UVB radiation.
Collapse
Affiliation(s)
- A M Espinosa-González
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - E A Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - E Nolasco-Ontiveros
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - A M García-Bores
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - R García-Hernández
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - E López-Urrutia
- Laboratorio de Genómica Funcional Del Cáncer, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - J E Campos-Contreras
- Laboratorio de Bioquímica Molecular, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - M Del R González-Valle
- Laboratorio de Histología, UMF, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - J Del C Benítez-Flores
- Laboratorio de Histología, UMF, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - C L Céspedes-Acuña
- Laboratorio de Fitoquímica-Ecológica, Grupo de Química y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Del Bio Bio, Avenida Andrés Bello, 3780000, Chillan, Chile.
| | - J Alarcón-Enos
- Laboratorio de Fitoquímica-Ecológica, Grupo de Química y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Del Bio Bio, Avenida Andrés Bello, 3780000, Chillan, Chile.
| | - J C Rivera-Cabrera
- Laboratorio de Cromatografía de Líquidos, Departamento de Farmacología, Escuela Médico Militar, Cda, Palomas s/n, Lomas de San Isidro, 11200, Ciudad de México, México.
| | - J G Avila-Acevedo
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| |
Collapse
|
16
|
Brilhante M, Varela E, P. Essoh A, Fortes A, Duarte MC, Monteiro F, Ferreira V, Correia AM, Duarte MP, Romeiras MM. Tackling Food Insecurity in Cabo Verde Islands: The Nutritional, Agricultural and Environmental Values of the Legume Species. Foods 2021; 10:foods10020206. [PMID: 33498384 PMCID: PMC7909421 DOI: 10.3390/foods10020206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Legume species are important food sources to reduce hunger and deal with malnutrition; they also play a crucial role in sustainable agriculture in the tropical dry islands of Cabo Verde. To improve the knowledge of the heritage of plant genetic resources in this Middle Income Country, this study had three main goals: (i) to provide a checklist of food legumes; (ii) to investigate which species are traded in local markets and, based on field surveys, to compare species for their chemical, phenolic, antioxidant, and nutritional composition; and (iii) to discuss the agronomic value and contribution to food security in this archipelago. Our results revealed that 15 species are used as food and 5 of them are locally traded (Cajanus
cajan, Lablab
purpureus, Phaseolus
lunatus, Phaseolus vulgaris, and Vigna
unguiculata). The role of these species as sources of important minerals, antioxidants, and nutritional components for food security is highlighted, and the native ones (Lablab
purpureus and Vigna
unguiculata) stand-out as particularly well-adapted to the climate of these islands, which are already experiencing the adverse effects of climate change. We conclude that the sustainable use of these genetic resources can contribute to the reduction of hunger and poverty, thus meeting some challenges of the Sustainable Development Goals.
Collapse
Affiliation(s)
- Miguel Brilhante
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisboa, Portugal; (M.B.); (E.V.); (A.P.E.); (F.M.)
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Eromise Varela
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisboa, Portugal; (M.B.); (E.V.); (A.P.E.); (F.M.)
| | - Anyse P. Essoh
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisboa, Portugal; (M.B.); (E.V.); (A.P.E.); (F.M.)
- Research Centre in Biodiversity and Genetic Resources (CIBIO), InBIO Associate Laboratory, Pole of Azores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
- Nova School of Business and Economics, Campus de Carcavelos, 2775-405 Carcavelos, Portugal
| | - Arlindo Fortes
- Escola Superior de Ciências Agrárias e Ambientais, Universidade de Cabo Verde, Santiago, Praia CP 379, Cape Verde; (A.F.); (V.F.)
- Centro de Estudos sobre África para o Desenvolvimento (CEsA), Instituto Superior de Economia e Gestão, Universidade de Lisboa, 1200-781 Lisboa, Portugal
| | - Maria Cristina Duarte
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Filipa Monteiro
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisboa, Portugal; (M.B.); (E.V.); (A.P.E.); (F.M.)
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Vladimir Ferreira
- Escola Superior de Ciências Agrárias e Ambientais, Universidade de Cabo Verde, Santiago, Praia CP 379, Cape Verde; (A.F.); (V.F.)
| | - Augusto Manuel Correia
- Centre of Tropical Studies for Development (CENTROP), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal;
| | - Maria Paula Duarte
- MEtRICs/DCTB, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Correspondence: (M.P.D.); (M.M.R.)
| | - Maria M. Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisboa, Portugal; (M.B.); (E.V.); (A.P.E.); (F.M.)
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- Correspondence: (M.P.D.); (M.M.R.)
| |
Collapse
|
17
|
Lou X, Guo X, Wang K, Wu C, Jin Y, Lin Y, Xu H, Hanna M, Yuan L. Phenolic profiles and antioxidant activity of Crataegus pinnatifida fruit infusion and decoction and influence of in vitro gastrointestinal digestion on their digestive recovery. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Pavez-Guajardo C, Ferreira SRS, Mazzutti S, Guerra-Valle ME, Sáez-Trautmann G, Moreno J. Influence of In Vitro Digestion on Antioxidant Activity of Enriched Apple Snacks with Grape Juice. Foods 2020; 9:E1681. [PMID: 33212925 PMCID: PMC7698461 DOI: 10.3390/foods9111681] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
Fruits are sources of bioactive compounds (BACs), such as polyphenols. This research aimed to study the in vitro bioaccessibility of polyphenols from enriched apple snacks with grape juice and determine their antioxidant capacity. Impregnation (I) treatments were carried out at atmospheric pressure and in a vacuum (IV) at 30, 40, and 50 °C and their combinations with ohmic heating (OH), I/OH, and IV/OH. Later, samples were dehydrated by forced convection at 40, 50, and 60 °C. Enriched samples were subjected to in vitro digestion. The total polyphenols, monomeric polyphenols, and antioxidant activities were determined from recovered extracts. Results showed that total polyphenols present in higher concentrations in the gastric phase, 271.85 ± 7.64 mg GAE/100 g d.m. Monomeric polyphenols' behavior during in vitro digestion for the VI/OH 50 °C and dried treatment (60 °C) was descending, mainly in quercetin, which decreased by 49.38% concerning the initial concentration, before digestion. The cyanin, catechin, epicatechin, and epigallocatechin decreased by 26.66%, 20.71%, 23.38%, and 21.73%, respectively. Therefore, based on obtained results, the IV/OH 50 °C treatment (dried 60 °C) is the best combination to incorporate polyphenols from grape juice.
Collapse
Affiliation(s)
- Constanza Pavez-Guajardo
- Food Engineering Department, Universidad del Bío-Bío, Casilla 447, Chillán 4081112, Chile; (C.P.-G.); (M.E.G.-V.); (G.S.-T.)
| | - Sandra R. S. Ferreira
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (S.R.S.F.); (S.M.)
| | - Simone Mazzutti
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (S.R.S.F.); (S.M.)
| | - María Estuardo Guerra-Valle
- Food Engineering Department, Universidad del Bío-Bío, Casilla 447, Chillán 4081112, Chile; (C.P.-G.); (M.E.G.-V.); (G.S.-T.)
| | - Guido Sáez-Trautmann
- Food Engineering Department, Universidad del Bío-Bío, Casilla 447, Chillán 4081112, Chile; (C.P.-G.); (M.E.G.-V.); (G.S.-T.)
| | - Jorge Moreno
- Food Engineering Department, Universidad del Bío-Bío, Casilla 447, Chillán 4081112, Chile; (C.P.-G.); (M.E.G.-V.); (G.S.-T.)
| |
Collapse
|
19
|
A New Italian Purple Corn Variety (Moradyn) Byproduct Extract: Antiglycative and Hypoglycemic In Vitro Activities and Preliminary Bioaccessibility Studies. Molecules 2020; 25:molecules25081958. [PMID: 32340142 PMCID: PMC7221992 DOI: 10.3390/molecules25081958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
The reuse of byproducts from agricultural and food industries represents the key factor in a circular economy, whose interest has grown in the last two decades. Thus, the extraction of bioactives from agro-industrial byproducts is a potential source of valuable molecules. The aim of this work was to investigate the in vitro capacity of byproducts from a new Italian corn variety, named Moradyn, to inhibit the accumulation of advanced glycation end products (AGEs) involved in several chronic age-related disorders. In addition, the hypoglycemic effect of Moradyn was tested by in vitro enzymatic systems. A Moradyn phytocomplex and its purified anthocyanin fraction were able to inhibit fructosamine formation and exhibited antiglycative properties when tested using BSA-sugars and BSA-methylglyoxal assays. These properties could be attributed to the polyphenols, mainly anthocyanins and flavonols, detected by RP-HPLC-DAD-ESI-MSn. Finally, a Moradyn phytocomplex was submitted to a simulated in vitro digestion process to study its bioaccessibility. Moradyn could be considered as a promising food ingredient in the context of typical type 2 diabetes risk factors and the study will continue in the optimization of the ideal formulation to preserve its bioactivities from digestion.
Collapse
|
20
|
Guimarães JT, Silva EK, Arruda HS, Freitas MQ, Pastore GM, Meireles MAA, Cruz AG. How does the degree of inulin polymerization affect the bioaccessibility of bioactive compounds from soursop whey beverage during in vitro gastrointestinal digestion? Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Potential Application of Propolis Extracts to Control the Growth of Stemphylium vesicarium in “Rocha” Pear. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10061990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stemphylium vesicarium (Wallr.) E. G. Simmons is the pathogen responsible of brown spot disease in pear and has become one of the main concerns for European pear producers. In Portugal, S. vesicarium is responsible for significant yield reduction and economic losses in “Rocha” pear (Pyrus communis L. cv Rocha) production. Considering the antimicrobial potential of propolis, the high incidence of brown spot in pears and the emergence of fungicides resistance in S. vesicarium, this study aimed to evaluate the potential of Portuguese propolis as an alternative strategy to control brown spot disease in “Rocha” pear. In vitro assays showed that propolis extracts were able to inhibit up to 90% the S. vesicarium mycelial growth. In vivo assays in artificially wounded and inoculated “Rocha” pears showed that, compared to the control, the disease incidence decreased up to 25% and the lesions diameter up to 57%, in fruits treated with propolis. Moreover, propolis seems to be more efficient in reducing the disease incidence when applied after pathogen inoculation (curative assay) than when applied before pathogen inoculation (prophylactic assay). Thus, the results suggest that propolis extracts have potential to be applied as part of an integrated approach for the control of brown spot of pear.
Collapse
|
22
|
Villalva M, Jaime L, Arranz E, Zhao Z, Corredig M, Reglero G, Santoyo S. Nanoemulsions and acidified milk gels as a strategy for improving stability and antioxidant activity of yarrow phenolic compounds after gastrointestinal digestion. Food Res Int 2019; 130:108922. [PMID: 32156370 DOI: 10.1016/j.foodres.2019.108922] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022]
Abstract
The aim of this study was to improve the stability and antioxidant activity of yarrow phenolic compounds upon an in vitro simulated gastrointestinal digestion. Therefore, two types of caseins-based delivery systems, sodium caseinate stabilized nanoemulsions (NEs) and glucono delta-lactone acidified milk gels (MGs), were formulated containing an ultrasound-assisted yarrow extract (YE) at two concentrations (1 and 2.5 mg/mL). Formulations with 1 mg/mL of YE were chosen based on their higher encapsulation efficiency to perform the in vitro digestion experiments. After digestion, YE-loaded NEs only partially protected phenolic compounds from degradation; meanwhile the phenolic composition of YE including in MGs after digestion was quite similar to undigested YE. Moreover, the antioxidant activity of MGs after digestion was higher than NEs digested samples, which confirms the higher protection of YE phenolic compound by the milk gels systems. This research demonstrated the potential use of acidified MGs as carriers to improve the stability and antioxidant activity of yarrow phenolic compounds. Therefore, these matrices could be employed to develop new dairy products enriched with phenolic compounds.
Collapse
Affiliation(s)
- M Villalva
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain
| | - L Jaime
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain
| | - E Arranz
- Department of Food Science, University of Guelph, Ontario N1G 2W1, Canada; Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland
| | - Z Zhao
- Department of Food Science, University of Guelph, Ontario N1G 2W1, Canada
| | - M Corredig
- Department of Food Science, University of Guelph, Ontario N1G 2W1, Canada; iFood Center, Food Science Department, Aarhus University, 8830 Tjele, Denmark
| | - G Reglero
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain
| | - S Santoyo
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain.
| |
Collapse
|
23
|
Olennikov DN, Kashchenko NI, Chirikova NK, Vasil'eva AG, Gadimli AI, Isaev JI, Vennos C. Caffeoylquinic Acids and Flavonoids of Fringed Sagewort ( Artemisia frigida Willd.): HPLC-DAD-ESI-QQQ-MS Profile, HPLC-DAD Quantification, in Vitro Digestion Stability, and Antioxidant Capacity. Antioxidants (Basel) 2019; 8:E307. [PMID: 31416222 PMCID: PMC6720735 DOI: 10.3390/antiox8080307] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
Fringed sagewort (Artemisia frigida Willd., Compositae family) is a well-known medicinal plant in Asian medical systems. Fifty-nine hydroxycinnamates and flavonoids have been found in A. frigida herbs of Siberian origin by high-performance liquid chromatography with diode array and electrospray triple quadrupole mass detection (HPLC-DAD-ESI-QQQ-MS). Their structures were determined after mass fragmentation analysis as caffeoylquinic acids, flavone O-/C-glycosides, flavones, and flavonol aglycones. Most of the discovered components were described in A. frigida for the first time. It was shown that flavonoids with different types of substitution have chemotaxonomic significance for species of Artemisia subsection Frigidae (section Absinthium). After HPLC-DAD quantification of 16 major phenolics in 21 Siberian populations of A. frigida and subsequent principal component analysis, we found substantial variation in the selected compounds, suggesting the existence of two geographical groups of A. frigida. The antioxidant activity of A. frigida herbal tea was determined using 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH•) and hydrophilic/lipophilic oxygen radical absorbance capacity (ORAC) assays and DPPH•-HPLC profiling, revealing it to be high. The effect of digestive media on the phenolic profile and antioxidant capacity of A. frigida herbal tea was assessed under simulated gastrointestinal digestion. We found a minor reduction in caffeoylquinic acid content and ORAC values, but remaining levels were satisfactory for antioxidant protection. These results suggest that A. frigida and its food derivate herbal tea could be recommended as new plant antioxidants rich in phenolics.
Collapse
Affiliation(s)
- Daniil N Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh'yanovoy Street, Ulan-Ude 670047, Russia.
| | - Nina I Kashchenko
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh'yanovoy Street, Ulan-Ude 670047, Russia
| | - Nadezhda K Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia
| | - Aina G Vasil'eva
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia
| | - Aydan I Gadimli
- Department of Pharmacognosy, Azerbaijan Medical University, Anvar Gasimzade Street 14, Baku AZ1022, Azerbaijan
| | - Javanshir I Isaev
- Department of Pharmacognosy, Azerbaijan Medical University, Anvar Gasimzade Street 14, Baku AZ1022, Azerbaijan
| | - Cecile Vennos
- Regulatory and Medical Scientific Affairs, Padma AG, 1 Underfeldstrasse, CH-8340 Hinwil, Switzerland
| |
Collapse
|