1
|
Niu J, Li X, McClements DJ, Ji H, Jin Z, Qiu C. Biopolymer-based emulsion gels as fat replacers: A review of their design, fabrication, and applications. Int J Biol Macromol 2025; 305:141297. [PMID: 39986513 DOI: 10.1016/j.ijbiomac.2025.141297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Excessive intake of fat has been linked to a variety of diet-related chronic diseases, such as diabetes, obesity, cardiovascular disease, and cerebrovascular disease. At the same time, fat provides calories and nutrients to the human body, as well as impacting the appearance, taste, texture, and palatability of foods. Consequently, it is not feasible to simply remove fats from food, without adversely affecting their nutritional, functional, and sensory properties. Emulsion gels are colloidal viscoelastic materials that can be used to mimic the appearance, taste, texture, and other properties of fats, while still providing valuable fat-soluble nutrients, like vitamins and nutraceuticals. In this article, we review the design and preparation of emulsion gels based on different food-grade biopolymers, including proteins, polysaccharides, and their complexes. In addition, we discuss how structural design principles can be used to create emulsion gels that exhibit a diverse range of different properties. The potential applications of emulsion gels as fat replacers in different kinds of foods are briefly summarized. When properly designed, emulsion gels can convert healthy plant-based liquid oils into semi-solid plastic fats that can mimic many of the rheological characteristics of animal fats. In conclusion, emulsion gels provide an effective approach for designing healthier and more nutritious low-fat foods.
Collapse
Affiliation(s)
- Jingxian Niu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu 210037, China
| | | | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Ma L, Yang X, Huo J, Li S. Study on the mechanism of polyphenols regulating the stability of pea isolate protein formed Pickering emulsion based on interfacial effects. Food Chem 2025; 463:141423. [PMID: 39348766 DOI: 10.1016/j.foodchem.2024.141423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
To improve the stability of pea isolate protein (PPI) Pickering emulsions, this study compared the stability effects of tannic acid (TA), epigallocatechin gallate, and gallic acid on PPI, and found PPI-TA the strongest binding and the best stability. When TA concentration increased from 0 to 0.5 mmol/L, the average particle size, zeta potential, and surface hydrophobicity of PPI-TA particles decreased by 23.1 %, 17.1 %, and 63.3 % respectively. The highest viscosity and elastic storage modulus G' which was also higher than and parallel to the loss modulus G", and the lowest Turbiscan stability index were observed in the emulsion with 0.5 mmol/L TA, indicating an elastic-based gel-like texture. The concentrations of conjugated diene and thiobarbituric acid reactive substances (TBARS) were also reduced by more than 58 %, showing improved oxidative stability. The study provides new insights into the interfacial behavior of PPI-polyphenols and technical support for their applications in food industry.
Collapse
Affiliation(s)
- Lulu Ma
- Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Key Laboratory for Agricultural Products Processing of Anhui Province/Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei 230601, China
| | - Xiaofan Yang
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jiaying Huo
- Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Key Laboratory for Agricultural Products Processing of Anhui Province/Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei 230601, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Key Laboratory for Agricultural Products Processing of Anhui Province/Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei 230601, China; School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
3
|
Olsmats E, Rennie AR. Pea protein [Pisum sativum] as stabilizer for oil/water emulsions. Adv Colloid Interface Sci 2024; 326:103123. [PMID: 38502971 DOI: 10.1016/j.cis.2024.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
A map of stability for various water/oil/pea protein compositions has been plotted from the numerous reported results. Two clear regions of stability were identified. High internal oil phase emulsions with 70-80%, v/v oil content stabilized by total pea protein concentration <2.5%, w/v showed stability. Low oil content of 10-30%, v/v for a range of total pea protein concentrations >0.5%, w/v have also been identified as stable. Intermediate oil content and pea protein concentrations >4% w/v are unexplored regions and are likely to be areas of fruitful future research. The wide range of stability suggests that different stabilization mechanisms could be important for different compositions and careful consideration has to be taken to avoid oversimplification. Both stabilization with particles, i.e. Pickering emulsions, and protein unfolding have been suggested as mechanisms. The diverse way of describing stability makes it difficult to intercompare results in different studies. A summary of different oil types used have been presented and several properties such as dynamic viscosity, density, the dielectric constant and interfacial tension have been summarized for common vegetable oils. The type of vegetable oil and emulsion preparation techniques were seen to have rather little effect on emulsion stability. However, the different extraction methods and processing of the pea material had more effect, which could be attributed to changing composition of different proteins and to the states of aggregation and denaturing. Careful consideration has to be taken in the choice of extraction method and an increased understanding of what contributes to the stability is desirable for further progress in research and eventual product formulation.
Collapse
Affiliation(s)
- Eleonora Olsmats
- Macromolecular Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 538, 75121 Uppsala, Sweden.
| | - Adrian R Rennie
- Macromolecular Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 538, 75121 Uppsala, Sweden.
| |
Collapse
|
4
|
Yi J, Chen X, Wen Z, Fan Y. Improving the functionality of pea protein with laccase-catalyzed crosslinking mediated by chlorogenic acid. Food Chem 2024; 433:137344. [PMID: 37669573 DOI: 10.1016/j.foodchem.2023.137344] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/12/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
The influences of laccase-catalyzed crosslinking on the structural, emulsifying and gelling properties of pea protein with chlorogenic acid were intensively probed. Molecular weight analysis illustrated the formation of pea protein aggregates by laccase-induced polymerization in the presence of chlorogenic acid and the increase of incubation time facilitated the aggregation. Particle size of pea protein-laccase-chlorogenic acid progressively enhanced increasing incubation time. Laccase-induced polymerization possessed remarkable impacts on the secondary and tertiary structure of pea protein, confirmed by circular dichroism, and fluorescence spectroscopy. Surface hydrophobicity of pea protein appreciably enhanced with laccase-induced crosslinking due to the exposure of interior hydrophobic amino acid residues. Emulsifying activity, emulsifying capacity, gel strength, and water-holding capacity of pea protein can be considerably enhanced with laccase-catalyzed crosslinking with chlorogenic acid, suggesting excellent functionalities for pea protein were accomplished after being modified by laccase with chlorogenic acid. The obtained information will widen pea protein's application in food systems.
Collapse
Affiliation(s)
- Jiang Yi
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Xiaoting Chen
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Zhen Wen
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Yuting Fan
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Yu C, Shan J, Ju H, Chen X, Xu G, Wu Y. Construction of a Ternary Composite Colloidal Structure of Zein/Soy Protein Isolate/Sodium Carboxymethyl Cellulose to Deliver Curcumin and Improve Its Bioavailability. Foods 2023; 12:2692. [PMID: 37509784 PMCID: PMC10379602 DOI: 10.3390/foods12142692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This work presents the fabrication of ternary nanoparticles (Z/S/C NPs) comprising zein (Z), soy protein isolate (SPI) and carboxymethylcellulose sodium (CMC-Na) through a pH-driven method. The results showed that the smallest particle size (71.41 nm) and the most stable zeta potential, measuring -49.97 mV, were achieved with the following ratio of ternary nanoparticles Z/SPI/CMC-Na (2:3:3). The surface morphology of the nanoparticles was further analyzed using transmission electron microscopy, and the synthesized nanoparticles were utilized to encapsulate curcumin (Cur), a hydrophobic, bioactive compound. The nanoparticles were characterized using a particle size analyzer, infrared spectroscopy, and X-ray diffraction (XRD) techniques. The results revealed that the formation of nanoparticles and the encapsulation of Cur were driven by electrostatic, hydrogen-bonding and hydrophobic interactions. The drug loading efficiency (EE%) of Z/S/C-cur nanoparticles reached 90.90%. The Z/S/C ternary nanoparticles demonstrated enhanced storage stability, photostability and simulated the gastrointestinal digestion of Cur. The release of Cur and variations in the particle size of nanoparticles were investigated across different stages of digestion. The biocompatibility of the Z/S/C ternary nanoparticles was assessed by conducting cell viability assays on HepG2 and L-O2 cells, which showed no signs of cytotoxicity. These results suggested that the ternary composite nanoparticles have potential in delivering nutritional foods and health-promoting bioactive substances.
Collapse
Affiliation(s)
- Chong Yu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jingyu Shan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Hao Ju
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xiao Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Guangsen Xu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yanchao Wu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
6
|
Han J, Zhang T, Zhou Z, Zhang H. Development of a novel ultrasound- and biocrosslinking-enhanced immobilization strategy with application to food enzymes. Food Chem 2023; 417:135810. [PMID: 36917903 DOI: 10.1016/j.foodchem.2023.135810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023]
Abstract
The increasing demand for greener food production makes biocatalysts more desirable than traditional production approaches. One limiting factor for biocatalyst efficiency is the immobilization strategy. In this work, a novel immobilization method was developed with the tyrosine-tag crosslinking mechanism. The immobilization efficiency was further enhanced with ultrasound treatment. Such a strategy was proven to be efficient with food enzyme lipase, d-amino acid oxidase and glucose dehydrogenase when they were immobilized on macroporous resins, amino resins, epoxy resins, and multiwalled carbon nanotubes. For lipase, glucose dehydrogenase and d-amino acid oxidase, the immobilization yield on macroporous resins increased by 20.4%, 21.1% and 24.1%, respectively. In addition, the immobilized enzymes had enhanced reusability, with a high degree of activity (more than 85%) detected after six cycles. Furthermore, the enzyme electrochemical sensors constructed by enzyme crosslinking have higher sensitivity, with peak currents 4-8 times those of sensors with uncrosslinked enzymes. The enzyme immobilization strategy developed in this study paves the way for better application of biocatalysts in the food industry.
Collapse
Affiliation(s)
- Juan Han
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Zhuoyue Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
7
|
Li C, Xie W, Zhang X, Liu J, Zhang M, Shao JH. Pickering emulsion stabilized by modified pea protein-chitosan composite particles as a new fat substitute improves the quality of pork sausages. Meat Sci 2023; 197:109086. [PMID: 36580792 DOI: 10.1016/j.meatsci.2022.109086] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Pickering emulsion is a potential substitute for animal fat due to high stability and solid-like properties. Therefore, the effect of replacing 25%-100% pork backfat with Pickering emulsion (75% corn oil volume fraction) stabilized by modified pea protein-chitosan composite particles on the quality of sausages was studied. All meat pastes exhibited a strong gel-like rheological character (G' > G"). The incorporation of Pickering emulsion in sausages enhanced the textural properties (hardness, springiness, chewiness, cohesiveness and resilience) and the uniformity and compactness of micromorphology, as well as suppressed the cooking loss and TBARS content. In particular, the sausages with a backfat substitution ratio of 100%, showing a similar overall sensory acceptability to the backfat sausage, revealed the best rheological properties, texture properties and micromorphology and the lowest cooking loss and fat oxidation (P < 0.05). The results showed that Pickering emulsion stabilized by modified pea protein-chitosan composite particles is a potential fat substitute for meat products with the desirable characteristics.
Collapse
Affiliation(s)
- Chunqiang Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Wenru Xie
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xue Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jun Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingyun Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
8
|
Lim WS, Kim HW, Lee MH, Park HJ. Improved printability of pea protein hydrolysates for protein-enriched 3D printed foods. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
Shi T, Jia C, Wang X, Xia S, Wang X, Fan C, Zhang X, Swing CJ. Formation mechanism and stability of low environment-sensitive ternary nanoparticles based on zein-pea protein-pectin for astaxanthin delivery. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Salgado AM, Ozturk OK, Hamaker BR, Campanella OH. Matching textural properties of commercial meat and cheese products using zein as the viscoelastic agent and calcium hydroxide as the textural modifier in plant-based formulations. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Souza EM, Ferreira MR, Soares LA. Pickering emulsions stabilized by zein particles and their complexes and possibilities of use in the food industry: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Grossmann L, McClements DJ. The science of plant-based foods: Approaches to create nutritious and sustainable plant-based cheese analogs. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
13
|
Jiménez-Munoz LM, Tavares GM, Corredig M. Design future foods using plant protein blends for best nutritional and technological functionality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Glusac J, Fishman A. Enzymatic and chemical modification of zein for food application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Nikolaivits E, Valmas A, Dedes G, Topakas E, Dimarogona M. Considerations Regarding Activity Determinants of Fungal Polyphenol Oxidases Based on Mutational and Structural Studies. Appl Environ Microbiol 2021; 87:e00396-21. [PMID: 33741634 PMCID: PMC8208164 DOI: 10.1128/aem.00396-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Polyphenol oxidases (PPOs) are an industrially relevant family of enzymes, being involved in the postharvest browning of fruits and vegetables, as well as in human melanogenesis. Their involvement lies in their ability to oxidize phenolic or polyphenolic compounds, which subsequently form pigments. The PPO family includes tyrosinases and catechol oxidases, which, in spite of their high structural similarity, exhibit different catalytic activities. Long-standing research efforts have not yet managed to decipher the structural determinants responsible for this differentiation, as every new theory is disproved by a more recent study. In the present work, we combined biochemical along with structural data in order to better understand the function of a previously characterized PPO from Thermothelomyces thermophila (TtPPO). The crystal structure of a TtPPO variant, determined at 1.55 Å resolution, represents the second known structure of an ascomycete PPO. Kinetic data for structure-guided mutants prove the implication of "gate" residue L306, residue HB1+1 (G292), and HB2+1 (Y296) in TtPPO function against various substrates. Our findings demonstrate the role of L306 in the accommodation of bulky substrates and show that residue HB1+1 is unlikely to determine monophenolase activity, as was suggested from previous studies.IMPORTANCE PPOs are enzymes of biotechnological interest. They have been extensively studied both biochemically and structurally, with a special focus on the plant-derived counterparts. Even so, explicit description of the molecular determinants of their substrate specificity is still pending. For ascomycete PPOs, only one crystal structure has been determined so far, thus limiting our knowledge on this tree branch of the family. In the present study, we report the second crystal structure of an ascomycete PPO. Combined with site-directed mutagenesis and biochemical studies, we depict the amino acids in the vicinity of the active site that affect enzyme activity and perform a detailed analysis on a variety of substrates. Our findings improve current understanding of structure-function relations of microbial PPOs, which is a prerequisite for the engineering of biocatalysts of desired properties.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Grigorios Dedes
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| |
Collapse
|
16
|
Song J, Sun C, Gul K, Mata A, Fang Y. Prolamin-based complexes: Structure design and food-related applications. Compr Rev Food Sci Food Saf 2021; 20:1120-1149. [PMID: 33569884 DOI: 10.1111/1541-4337.12713] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Prolamins are a group of safe food additives that are biocompatible, biodegradable, and sustainable. Zein, gliadin, kafirin, and hordein are common prolamins that have been extensively studied, particularly as these form colloidal particles because of their amphiphilic properties. Prolamin-based binary/ternary complexes, which have stable physicochemical properties and superior functionality, are formed by combining prolamins with polysaccharides, polyphenols, water-soluble proteins, and surfactants. Although the combination of prolamins with other components has received attention, the relationship between the structural design of prolamin-based complexes and their functionalities remains uncertain. This review discusses the production methods of prolamin-based complexes, the factors influencing their structural characteristics, and their applications in the food industry. Further studies are needed to elucidate the structure-function relationships between prolamins and other biopolymers, as well as the toxicological effects of these complexes in food.
Collapse
Affiliation(s)
- Jingru Song
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid Gul
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Analucia Mata
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
|
18
|
Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Krstonošić VS, Kalić MD, Dapčević-Hadnađev TR, Lončarević IS, Hadnađev MS. Physico-chemical characterization of protein stabilized oil-in-water emulsions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Mahdavian Mehr H, Koocheki A. Effect of atmospheric cold plasma on structure, interfacial and emulsifying properties of Grass pea (Lathyrus sativus L.) protein isolate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105899] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Li X, Li S, Liang X, McClements DJ, Liu X, Liu F. Applications of oxidases in modification of food molecules and colloidal systems: Laccase, peroxidase and tyrosinase. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Influence of Various Model Compounds on the Rheological Properties of Zein-Based Gels. Molecules 2020; 25:molecules25143174. [PMID: 32664560 PMCID: PMC7397198 DOI: 10.3390/molecules25143174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
The controlled release of a compound entrapped in a biocompatible formulation is a sought-after goal in modern pharmaceutical technology. Zein is a hydrophobic protein which has several advantageous properties that make it suitable for use as a biocompatible and degradable material under physiological conditions. It is, therefore, proposed for different biomedical and pharmaceutical applications. In particular, due to its gelling properties, it can be used to form a polymeric network able to preserve biomolecules from harsh environments. The current study was designed to investigate the influence of different probes on the rheological properties of gels made up of zein, in order to characterize the systems as a function of the polymer concentration. Four model compounds characterized by different physico-chemical properties were entrapped in zein gels, and different behaviors (viscoelastic or pronounced solid-like characteristics) of the systems were observed. Zein-based gels showed various release profiles of the encapsulated compounds, suggesting that there are different interaction rates between the probes and the polymeric matrix.
Collapse
|
23
|
Maddock RMA, Pollard GJ, Moreau NG, Perry JJ, Race PR. Enzyme-catalysed polymer cross-linking: Biocatalytic tools for chemical biology, materials science and beyond. Biopolymers 2020; 111:e23390. [PMID: 32640085 DOI: 10.1002/bip.23390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Intermolecular cross-linking is one of the most important techniques that can be used to fundamentally alter the material properties of a polymer. The introduction of covalent bonds between individual polymer chains creates 3D macromolecular assemblies with enhanced mechanical properties and greater chemical or thermal tolerances. In contrast to many chemical cross-linking reactions, which are the basis of thermoset plastics, enzyme catalysed processes offer a complimentary paradigm for the assembly of cross-linked polymer networks through their predictability and high levels of control. Additionally, enzyme catalysed reactions offer an inherently 'greener' and more biocompatible approach to covalent bond formation, which could include the use of aqueous solvents, ambient temperatures, and heavy metal-free reagents. Here, we review recent progress in the development of biocatalytic methods for polymer cross-linking, with a specific focus on the most promising candidate enzyme classes and their underlying catalytic mechanisms. We also provide exemplars of the use of enzyme catalysed cross-linking reactions in industrially relevant applications, noting the limitations of these approaches and outlining strategies to mitigate reported deficiencies.
Collapse
Affiliation(s)
- Rosie M A Maddock
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, Tyndall Avenue University of Bristol, Bristol, UK
| | - Gregory J Pollard
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | - Nicolette G Moreau
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | - Justin J Perry
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, Tyndall Avenue University of Bristol, Bristol, UK
| |
Collapse
|
24
|
Ge J, Sun CX, Corke H, Gul K, Gan RY, Fang Y. The health benefits, functional properties, modifications, and applications of pea (Pisum sativum L.) protein: Current status, challenges, and perspectives. Compr Rev Food Sci Food Saf 2020; 19:1835-1876. [PMID: 33337084 DOI: 10.1111/1541-4337.12573] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/31/2020] [Accepted: 05/03/2020] [Indexed: 01/23/2023]
Abstract
In recent years, the development and application of plant proteins have drawn increasing scientific and industrial interests. Pea (Pisum sativum L.) is an important source of high-quality vegetable protein in the human diet. Its protein components are generally considered hypoallergenic, and many studies have highlighted the health benefits associated with the consumption of pea protein. Pea protein and its hydrolysates (pea protein hydrolysates [PPH]) possess health benefits such as antioxidant, antihypertensive, and modulating intestinal bacteria activities, as well as various functional properties, including solubility, water- and oil-holding capacities, and emulsifying, foaming, and gelling properties. However, the application of pea protein in the food system is limited due to its poor functional performances. Several frequently applied modification methods, including physical, chemical, enzymatic, and combined treatments, have been used for pea protein to improve its functional properties and expand its food applications. To date, different applications of pea protein in the food system have been extensively studied, for example, encapsulation for bioactive ingredients, edible films, extruded products and substitution for cereal flours, fats, and animal proteins. This article reviews the current status of the knowledge regarding pea protein, focusing on its health benefits, functional properties, and structural modifications, and comprehensively summarizes its potential applications in the food industry.
Collapse
Affiliation(s)
- Jiao Ge
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Cui-Xia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Harold Corke
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Khalid Gul
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, People's Republic of China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Optimization of pea protein hydrolysate preparation and purification of antioxidant peptides based on an in silico analytical approach. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109126] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|