1
|
Shekhar R, Raghavendra VB, Rachitha P. A comprehensive review of mycotoxins, their toxicity, and innovative detoxification methods. Toxicol Rep 2025; 14:101952. [PMID: 40162074 PMCID: PMC11954124 DOI: 10.1016/j.toxrep.2025.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
A comprehensive overview of food mycotoxins, their toxicity, and contemporary detoxification techniques is given in this article. Mycotoxins, which are harmful secondary metabolites generated by a variety of fungi, including Fusarium, Aspergillus, and Penicillium, provide serious health concerns to humans and animals. These include hepatotoxicity, neurotoxicity, and carcinogenicity. Mycotoxins are commonly found in basic food products, as evidenced by recent studies, raising worries about public health and food safety. The article discusses detection techniques such as enzyme-linked immunosorbent assays (ELISA), and quick strip tests. Moreover, the use of various control systems associated with the detoxification of mycotoxinis highlighted. In addition, novel detoxification strategies such as nanotechnology, plant extracts, and omics studies were also discussed. When taken as a whole, this analysis helps to clarify the pressing need for efficient management and monitoring techniques to prevent mycotoxin contamination in the food chain.
Collapse
Affiliation(s)
| | | | - P. Rachitha
- Department of Biotechnology, Teresian College, Siddarthanagar, Mysore 570011, India
| |
Collapse
|
2
|
Xie L, Feng L, Ren Y, Yang Q, Qu H, Li T, Jiang Y. Transcriptome-wide N 6-methyladenosinem modifications analysis of growth and fumonisins production in Fusarium proliferatum causing banana crown rot. Int J Biol Macromol 2025; 300:140385. [PMID: 39880236 DOI: 10.1016/j.ijbiomac.2025.140385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Crown rot caused by Fusarium proliferatum is a severe postharvest disease of banana fruit. The N6-methyladenosine (m6A) modification is the most common type of RNA modification and regulates gene expression in eukaryotes. Here, we analyzed transcriptome-wide changes in m6A methylation to investigate post-transcriptional regulation mechanisms of growth and fumonisin biosynthesis of F. proliferatum after fluopyram (Flu) treatment. The results demonstrated that Flu treatment inhibited F. proliferatum growth but induced fumonisins (FB1 and FB2) production both in vitro and in vivo. A transcriptome-wide m6A methylation profile showed that m6A hypomethylation was induced by Flu and enriched in start codons and the 3' untranslated region. FpAlkbh8 and FpYthdc1 may contribute to the decrease in m6A modifications after Flu treatment. The expression levels of m6A-containing mRNAs were higher than those of non-m6A-containing mRNAs. Furthermore, Flu decreased the acetyl-CoA content and regulated glycolysis and tricarboxylic acid cycle through m6A modifications, diverting the acetyl-CoA flux into fumonisin biosynthesis. Importantly, Flu-mediated regulation of energy and reactive oxygen species metabolism, cell wall and membrane, and transcription factors was associated with m6A modifications. Collectively, this study provides potential novel targets for improving fungicide efficiency to control fungal disease and highlights the potential of environmental risks of fungicides.
Collapse
Affiliation(s)
- Lihong Xie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Linyan Feng
- Yangjiang Polytechnic, Yangjiang 529500, China
| | - Yanling Ren
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiuxiao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Punsung Y, Pachit P, Kijpornyongpan T, Paliyavuth C, Imwattana K, Piapukiew J. Optimizing conditions of mycelial inoculum immobilized in Ca-alginate beads: a case study in ectomycorrhizal fungus Astraeus odoratus. World J Microbiol Biotechnol 2024; 40:238. [PMID: 38858319 DOI: 10.1007/s11274-024-03962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/19/2024] [Indexed: 06/12/2024]
Abstract
Ectomycorrhizal inoculum has emerged as a critical tool for forest restoration, especially under challenging climate change conditions. The inoculation of selective ectomycorrhizal fungi can enhance seedling survival and subsequent growth in the field. This study optimized the liquid media for mycelial growth of Astraeus odoratus strain K1 and the sodium alginate solution composition for enhanced mycelial viability after entrapment. Using Modified Melin-Norkrans as the optimal media for mycelial cultivation and 2% sodium alginate supplemented with Czapek medium, 0.25% activated charcoal, 5% sucrose, and 5% sorbitol in the alginate solution yielded the highest viability of A. odoratus mycelia. Preservation in distilled water and 10% glycerol at 25 °C for 60 days proved to be the most effective storage condition for the alginate beads. Both fresh and preserved alginate beads were tested for colonizing on Hopea odorata Roxb. seedlings, showing successful colonization and ectomycorrhizal root formation, with over 49% colonization. This study fills a crucial gap in biotechnology and ectomycorrhizal inoculum, paving the way for more effective and sustainable forest restoration practices.
Collapse
Affiliation(s)
- Yanisa Punsung
- Biotechnological Sciences Program, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Pawara Pachit
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | | | - Chanita Paliyavuth
- Department of Botany, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Karn Imwattana
- Department of Botany, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Jittra Piapukiew
- Department of Botany, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand.
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Wang J, Liu M, Mao C, Li S, Zhou J, Fan Y, Guo L, Yu H, Yang X. Comparative proteomics reveals the mechanism of cyclosporine production and mycelial growth in Tolypocladium inflatum affected by different carbon sources. Front Microbiol 2023; 14:1259101. [PMID: 38163081 PMCID: PMC10757567 DOI: 10.3389/fmicb.2023.1259101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Cyclosporine A (CsA) is a secondary cyclopeptide metabolite produced by Tolypocladium inflatum that is widely used clinically as an immunosuppressant. CsA production and mycelial growth differed when T. inflatum was cultured in different carbon source media. During early fermentation, CsA was preferred to be produced in fructose medium, while the mycelium preferred to accumulate in sucrose medium. On the sixth day, the difference was most pronounced. In this study, high-throughput comparative proteomics methods were applied to analyze differences in protein expression of mycelial samples on day 6, revealing the proteins and mechanisms that positively regulate CsA production related to carbon metabolism. The differences included small molecule acid metabolism, lipid metabolism, organic catabolism, exocrine secretion, CsA substrate Bmt synthesis, and transcriptional regulation processes. The proteins involved in the regulation of mycelial growth related to carbon metabolism were also revealed and were associated with waste reoxidation processes or coenzyme metabolism, small molecule synthesis or metabolism, the stress response, genetic information or epigenetic changes, cell component assembly, cell wall integrity, membrane metabolism, vesicle transport, intramembrane localization, and the regulation of filamentous growth. This study provides a reliable reference for CsA production from high-efficiency fermentation. This study provides key information for obtaining more CsA high-yielding strains through metabolic engineering strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiuqing Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
5
|
He D, Shi J, Qiu J, Hou Y, Du Y, Gao T, Huang W, Wu J, Lee YW, Mohamed SR, Liu X, Xu J. Antifungal activities of a novel triazole fungicide, mefentrifluconazole, against the major maize pathogen Fusarium verticillioides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105398. [PMID: 37105621 DOI: 10.1016/j.pestbp.2023.105398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Fusarium ear rot (FER) is a serious fungal disease occurring the late growth stage of maize. FER not only reduces the yield of maize but also causes mycotoxin contamination, which affects the quality of maize and threatens human and animal health. Fusarium verticillioides is the predominant causative pathogen of FER worldwide. At present, there is no registered fungicide for use against maize FER in China. The novel isopropyl alcohol-triazole fungicide mefentrifluconazole (MFZ) has been shown to be effective against several Fusarium spp., but little is known about its specific activity against F. verticillioides. MFZ exhibited strong antifungal activities against 50 strains of F. verticillioides collected from the major maize-growing areas in China. MFZ inhibited mycelial growth, conidium production, germination and germ tube elongation of F. verticillioides. MFZ treatment significantly reduced fumonisin production and the expression levels of fumonisin biosynthetic genes. Genome-wide transcriptional profiling of F. verticillioides in response to MFZ indicated that the expression of genes involved in ergosterol biosynthesis, including fungicide target genes (cyp51 genes), was significantly downregulated by MFZ. MFZ treatment resulted in reduced ergosterol production and increased glycerol and malonaldehyde production as well as relative conductivity in F. verticillioides. A 2-year field experiment showed a significant reduction in FER severity in maize after spraying with MFZ at the tasseling stage. This study evaluated the potential of MFZ to control FER in maize and provides insights into its antifungal activities and mechanism of action against F. verticillioides.
Collapse
Affiliation(s)
- Dan He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Jianbo Qiu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yuzhou Du
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Wenwen Huang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Jiawen Wu
- Jiangsu Plant Protection and Plant Quarantine Station, Nanjing 210036, Jiangsu, PR China
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Sherif Ramzy Mohamed
- Food Toxicology and Contaminants Department, National Research Centre, Egypt, Giza 12411, Egypt
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
6
|
Shi P, Zhang J, Li X, Zhou L, Luo H, Wang L, Zhang Y, Chou M, Wei G. Multiple Metabolic Phenotypes as Screening Criteria Are Correlated With the Plant Growth-Promoting Ability of Rhizobacterial Isolates. Front Microbiol 2022; 12:747982. [PMID: 35069464 PMCID: PMC8767003 DOI: 10.3389/fmicb.2021.747982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Efficient screening method is the prerequisite for getting plant growth-promoting (PGP) rhizobacteria (PGPR) which may play an important role in sustainable agriculture from the natural environment. Many current traditional preliminary screening criteria based on knowledge of PGP mechanisms do not always work well due to complex plant-microbe interactions and may lead to the low screening efficiency. More new screening criteria should be evaluated to establish a more effective screening system. However, the studies focused on this issue were not enough, and few new screening criteria had been proposed. The aim of this study was to analyze the correlation between the metabolic phenotypes of rhizobacterial isolates and their PGP ability. The feasibility of using these phenotypes as preliminary screening criteria for PGPR was also evaluated. Twenty-one rhizobacterial isolates were screened for their PGP ability, traditional PGP traits, and multiple metabolic phenotypes that are not directly related to PGP mechanisms, but are possibly related to rhizosphere colonization. Correlations between the PGP traits or metabolic phenotypes and increases in plant agronomic parameters were analyzed to find the indicators that are most closely related to PGP ability. The utilization of 11 nutrient substrates commonly found in root exudates, such as D-salicin, β-methyl-D-glucoside, and D-cellobiose, was significantly positively correlated with the PGP ability of the rhizobacterial isolates. The utilization of one amino acid and two organic acids, namely L-aspartic acid, α-keto-glutaric acid, and formic acid, was negatively correlated with PGP ability. There were no significant correlations between four PGP traits tested in this study and the PGP ability. The ability of rhizobacterial isolates to metabolize nutrient substrates that are identical or similar to root exudate components may act as better criteria than PGP traits for the primary screening of PGPR, because rhizosphere colonization is a prerequisite for PGPR to affect plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Xie L, Wu Y, Wang Y, Jiang Y, Yang B, Duan X, Li T. Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117793. [PMID: 34274647 DOI: 10.1016/j.envpol.2021.117793] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxins are increasingly considered as micropollutants in the environment. Fumonisins, as one of the most important mycotoxins, cause potential health threats to humans and animals due to their ubiquitous contamination on cereals, fruit, vegetables and other environmental samples around the world. However, the contribution of fumonisins to the interaction of fungi with plant hosts is not still fully understood. Here, we investigated the effect of fumonisin B1 (FB1) on the infection of Fusarium proliferatum on banana fruit and the underlying mechanisms from the host perspective. Our results found that FB1 treatment increased the aggressiveness of F. proliferatum on banana fruit and inhibited the defense ability of banana fruit via decreasing phenylalanine ammonia lyase (PAL), β-1,3-glucanase (GLU) and chitinase (CHI) activities. Meanwhile, FB1 accelerated cell death, indicated by higher relative conductivity, MDA content and higher transcripts of cell death-related genes. FB1 treatment resulted in higher hydrogen peroxide (H2O2) content possibly due to MaRBOHs induction. These consequences accelerated the ROS-dependent cell death, which subsequently result in reduction of disease resistance of banana fruit. Additionally, energy metabolism and MaDORN1s-mediated eATP signaling might involve in FB1-meidiated suppression of banana defense responses. Collectively, results of the current study indicated that FB1 contamination triggered the cell death of banana peel, subsequently instigating the invasion and growth of F. proliferatum on banana fruit. In summary, for the first time, we demonstrated a previously unidentified role of fumonisins as a potential virulence factor of F. proliferatum in modulating fruit defense response, which provides new insight on the biological roles of fumonisins.
Collapse
Affiliation(s)
- Lihong Xie
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanfei Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yong Wang
- Zhongshan Customs Technical Center, Zhongshan, 442000, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Bao Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
8
|
Li T, Su X, Qu H, Duan X, Jiang Y. Biosynthesis, regulation, and biological significance of fumonisins in fungi: current status and prospects. Crit Rev Microbiol 2021; 48:450-462. [PMID: 34550845 DOI: 10.1080/1040841x.2021.1979465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fumonisins are one of the most important mycotoxin classes due to their widespread occurrence and potential health threat to humans and animals. Currently, most of the research focuses on the control of fumonisin contamination in the food supply chain. In recent years, significant progress in biochemistry, enzymology, and genetic regulation of fumonisin biosynthesis has been achieved using molecular technology. Furthermore, new insights into the roles of fumonisins in the interaction between fungi and plant hosts have been reported. This review provides an overview of the current understanding of the biosynthesis and regulation of fumonisins. The ecological significance of fumonisins to Fusarium species that produce the toxins is discussed, and the complex regulatory networks of fumonisin synthesis is proposed.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinguo Su
- Tropical Agriculture and Forestry Department, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
9
|
Tatsch ÉF, Meyer K, Vogel RF, Niessen L. Characterization of the influence of carbon sources on fum1 gene expression in the fumonisin producer Fusarium verticillioides using RT - LAMP assay. Int J Food Microbiol 2021; 354:109323. [PMID: 34298484 DOI: 10.1016/j.ijfoodmicro.2021.109323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 11/25/2022]
Abstract
Fusarium verticillioides is one of the major fumonisin producers. The ingestion of this mycotoxin represents a risk for both human and animal health. The development of F. verticillioides is associated with environmental conditions, especially carbon sources. We developed a reliable and fast reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay and determined fum1 gene expression upon growth of two F. verticillioides strains isolated from maize and wheat in Czapek's medium containing four different sugars as sole carbon sources. Fumonisin B1 (FB1) production was determined by LC-MS/MS analysis. High growth and production of FB1 were observed in fructose-containing medium for the strain that originated from maize. Less production of FB1 occurred using maltose as sole carbon source for both strains. The fum1 gene expression started between 2 and 4 days of incubation, and positive signals were detected prior to the initial production of FB1. The RT-LAMP assay was effective in the detection of fum1 gene expression at very early stages of F. verticillioides growth and allowed the prediction of FB1 formation.
Collapse
Affiliation(s)
- Évelin F Tatsch
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Karsten Meyer
- Chair of Animal Hygiene, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Rudi F Vogel
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Ludwig Niessen
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany.
| |
Collapse
|
10
|
Achimón F, Krapacher CR, Jacquat AG, Pizzolitto RP, Zygadlo JA. Carbon sources to enhance the biosynthesis of useful secondary metabolites in Fusarium verticillioides submerged cultures. World J Microbiol Biotechnol 2021; 37:78. [PMID: 33797632 DOI: 10.1007/s11274-021-03044-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Fusarium verticillioides is a prolific producer of useful secondary metabolites such as naphthoquinone pigments, monoterpenes, and sesquiterpenes, as well as the harmful mycotoxins fumonisins. A strategy to increase their production includes creating a proper nutritional environment that enables the fungus to produce the compounds of interest. The aim of the present work was to study the effect of different carbon sources (glucose, fructose, xylose, sucrose, and lactose) on secondary metabolites biosynthesis in F. verticillioides submerged cultures. The production of volatile terpenes was evaluated through gas chromatography coupled to mass spectrometry. The quantification and identification of pigments was conducted using a UV/VIS spectrophotometer and NMR spectrometer, respectively. The quantification of fumonisin B1 and fumonisin B2 was performed by high-performance liquid chromatography. Our results showed that the biosynthesis of naphthoquinone pigments, monoterpenes, and sesquiterpenes was highest in cultures with fructose (13.00 ± 0.71 mmol/g), lactose [564.52 × 10-11 ± 11.50 × 10-11 μg/g dry weight (DW)], and xylose (54.41 × 10-11 ± 1.55 × 10-11 μg/g DW), respectively, with fumonisin being absent or present in trace amounts in the presence of these carbon sources. The highest biosynthesis of fumonisins occurred in sucrose-containing medium (fumonisin B1: 7.85 × 103 ± 0.25 × 103 μg/g DW and fumonisin B2: 0.38 × 103 ± 0.03 × 103 μg/g DW). These results are encouraging since we were able to enhance the production of useful fungal metabolites without co-production with harmful mycotoxins by controlling the carbon source provided in the culture medium.
Collapse
Affiliation(s)
- Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina.,Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina
| | - Claudio R Krapacher
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina.,Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina
| | - Andrés G Jacquat
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina.,Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina. .,Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina.
| | - Julio A Zygadlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina.,Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina
| |
Collapse
|
11
|
Wang W, Wang B, Sun X, Qi X, Zhao C, Chang X, Khaskheli MI, Gong G. Symptoms and pathogens diversity of Corn Fusarium sheath rot in Sichuan Province, China. Sci Rep 2021; 11:2835. [PMID: 33531583 PMCID: PMC7854677 DOI: 10.1038/s41598-021-82463-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
To elucidate the symptoms and pathogens diversity of corn Fusarium sheath rot (CFSR), diseased samples were collected from 21 county-level regions in 12 prefecture-level districts of Sichuan Province from 2015 to 2018 in the present study. In the field, two symptom types appeared including small black spots with a linear distribution and wet blotches with a tawny or brown color. One hundred thirty-seven Fusarium isolates were identified based on morphological characteristics and phylogenetic analysis (EF1-α), and Koch's postulates were also assessed. The results identified the isolates as 8 species in the Fusarium genus, including F. verticillioides, F. proliferatum, F. fujikuroi, F. asiaticum, F. equiseti, F. meridionale, F. graminearum and F. oxysporum, with isolation frequencies of 30.00, 22.67, 15.33, 7.33, 6.00, 5.33, 3.33 and 1.33%, respectively. Fusarium verticillioides and F. proliferatum were the dominant and subdominant species, respectively. Two or more Fusarium species such as F. verticillioides and F. proliferatum were simultaneously identified at a mixed infection rate of 14.67% in the present study. The pathogenicity test results showed that F. proliferatum and F. fujikuroi exhibited the highest virulence, with average disease indices of 30.28 ± 2.87 and 28.06 ± 1.96, followed by F. equiseti and F. verticillioides, with disease indices of 21.48 ± 2.14 and 16.21 ± 1.84, respectively. Fusarium asiaticum, F. graminearum and F. meridonale showed lower virulence, with disease indices of 13.80 ± 2.07, 11.57 ± 2.40 and 13.89 ± 2.49, respectively. Finally, F. orysporum presented the lowest virulence in CFSR, with a disease index of 10.14 ± 1.20. To the best of our knowledge, this is the first report of F. fujikuroi, F. meridionale and F. asiaticum as CFSR pathogens in China.
Collapse
Affiliation(s)
- Wei Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaofang Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobo Qi
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Conghao Zhao
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Chang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Ibrahim Khaskheli
- Department of Plant Protection, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Guoshu Gong
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
12
|
Wang Y, Li X, Xi D, Wang X. Visual detection of Fusarium proliferatum based on asymmetric recombinase polymerase amplification and hemin/G-quadruplex DNAzyme. RSC Adv 2019; 9:37144-37147. [PMID: 35542282 PMCID: PMC9075509 DOI: 10.1039/c9ra05709a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/29/2019] [Indexed: 11/28/2022] Open
Abstract
A one-step and instrument-free visual method was established based on asymmetric recombinase polymerase amplification coupled with hemin/G-quadruplex DNAzyme for the detection of Fusarium proliferatum. Asymmetric recombinase polymerase amplification and hemin/G-quadruplex DNAzyme-based visual detection of F. proliferatum is demonstrated.![]()
Collapse
Affiliation(s)
- Ying Wang
- College of Life Science
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers
- School of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
| | - Xiangdong Li
- Shandong Province Key Laboratory of Agricultural Microbiology
- College of Plant Protection
- Shandong Agricultural University
- Tai'an
- People's Republic of China
| | - Dongmei Xi
- College of Life Science
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers
- School of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
| | - Xiaoqiang Wang
- Plant Protection Research Center
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences
- Qingdao 266101
- People's Republic of China
| |
Collapse
|