1
|
Zhang L, Diao J, Zhao Z, Zhang X, Lou W. Cinnamon essential oil -loaded bagasse cellulose/hydroxypropyl-β-cyclodextrin microparticles with sustained-release property and its application in grapes preservation. Int J Biol Macromol 2025; 304:140972. [PMID: 39952519 DOI: 10.1016/j.ijbiomac.2025.140972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
This study investigate the feasibility of cinnamon essential oil-loaded bagasse cellulose/hydroxypropyl-β-cyclodextrin (CEO/BC/HP-β-CD) microparticles with sustained-release, using BC and HP-β-CD as co-encapsulation agents. CEO/BC/HP-β-CD was prepared by simple and easy-to-operate methods. The SEM confirms that it has a dense flocculent structure, and CEO is fixed to form a three-dimensional (3-D) network and stably arranged. The FTIR and XRD show that the co-cross-links among CEO, BC and HP-β-CD form inclusion complexes. 18 days (25 °C), different humidity and different light intensities of stability experiments show that the co-encapsulation of HP-β-CD and BC can significantly improve the low stability and control the release of CEO. On the antibacterial test, the diameter of inhibition zone of CEO/BC/HP-β-CD is significantly larger than that of CEO (180 mm, and 112 mm). To evaluate the preservation effect, grapes were treated with blank, 0.1 ml /kg CEO, 1.85 g/kg CEO/ HP-β-CD and 2.5 g/kg CEO/ HP-β-CD. Compared with blank, CEO/BC/ HP-β-CD significantly reduce the shedding rate (reductions of 33.97 %), delay the decrease of TSS, DPPH and VC content (delay of 42.95 %, 22.73 % and 44.51 %). Compare with CEO, CEO/BC/ HP-β-CD has a long-term preservation effect and mask strong small. This study improves the utilization value of BC, provides a new method for grape preservation.
Collapse
Affiliation(s)
- Lin Zhang
- South China University of Technology School of Food Science and Engineering, Guangzhou 510640, China
| | - Jiayin Diao
- South China University of Technology School of Food Science and Engineering, Guangzhou 510640, China
| | - Zhengang Zhao
- South China University of Technology School of Food Science and Engineering, Guangzhou 510640, China
| | - Xiaowen Zhang
- South China University of Technology School of Food Science and Engineering, Guangzhou 510640, China
| | - Wenyong Lou
- South China University of Technology School of Food Science and Engineering, Guangzhou 510640, China.
| |
Collapse
|
2
|
Rivera P, Torres A, Pacheco M, Romero J, Arrieta MP, Rodríguez-Mercado F, Bruna J. Integration of Complexed Caffeic Acid into Poly(Lactic Acid)-Based Biopolymer Blends by Supercritical CO 2-Assisted Impregnation and Foaming: Processing, Structural and Thermal Characterization. Polymers (Basel) 2025; 17:803. [PMID: 40292679 DOI: 10.3390/polym17060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Conventional techniques for incorporating active ingredients into polymeric matrices are accompanied by certain disadvantages, primarily attributable to the inherent characteristics of the active ingredient itself, including its sensitivity to temperature. A potential solution to these challenges lies in the utilization of supercritical carbon dioxide (scCO2) for the formation of polymeric foam and the incorporation of active ingredients, in conjunction with the encapsulation of inclusion complexes (ICs), to ensure physical stability and augmented bioactivity. The objective of this study was to assess the impact of IC impregnation and subsequent foam formation on PLA films and PLA/PBAT blends that had been previously impregnated. The study's methodology encompassed the formation and characterization of ICs with caffeic acid (CA) and β-cyclodextrin (β-CD), along with the thermal, structural, and morphological properties of the resulting materials. Higher incorporation of impregnated IC into the PLA(42)/PBAT(58) blend was observed at 12 MPa pressure and a depressurization rate of 1 MPa/min. The presence of IC, in addition to a lower rate of expansion, contributed to the formation of homogeneous cells with a size range of 4-44 um. On the other hand, the incorporation of IC caused a decrease in the crystallinity of the PLA fraction due to the interaction of the complex with the polymer. This study makes a significant contribution to the advancement of knowledge on the incorporation of compounds encapsulated in β-CD by scCO2, as well as to the development of active materials with potential applications in food packaging.
Collapse
Affiliation(s)
- Patricia Rivera
- Packaging Innovation Center (LABEN), Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Engineering Faculty, University of Santiago de Chile, Santiago 9170201, Chile
| | - Alejandra Torres
- Packaging Innovation Center (LABEN), Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Miguel Pacheco
- Packaging Innovation Center (LABEN), Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Engineering Faculty, University of Santiago de Chile, Santiago 9170201, Chile
| | - Julio Romero
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Engineering Faculty, University of Santiago de Chile, Santiago 9170201, Chile
| | - Marina P Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación, Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Francisco Rodríguez-Mercado
- Packaging Innovation Center (LABEN), Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Julio Bruna
- Packaging Innovation Center (LABEN), Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| |
Collapse
|
3
|
Sathuvan M, Min S, Narayanan K, Gaur A, Hong H, Vivek R, Ganapathy A, Cheong KL, Kang H, Thangam R. β-Cyclodextrin-based materials for 3D printing, cancer therapy, tissue engineering, and wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 500:157272. [DOI: 10.1016/j.cej.2024.157272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Rivera P, Torres A, Romero J, Rodríguez F, Arrieta MP, Olea F, Silva T, Maldonado P, Quijada-Maldonado E, Tapia A. Experimental and theoretical characterization of the release kinetic of carvacrol as inclusion complexes with β-cyclodextrin in poly(lactic acid) and Mater-Bi® processed by supercritical impregnation. Int J Biol Macromol 2024; 278:133946. [PMID: 39029825 DOI: 10.1016/j.ijbiomac.2024.133946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The incorporation of active compounds into polymeric matrices using traditional methods has several drawbacks mainly due to the high volatility and thermal sensitivity of these substances. A solution to this problem could be the incorporation of bioactive compounds forming inclusion complexes as a strategy to improve the chemical stability, bioactivity and achieve controlled release. In this work, β-cyclodextrin/carvacrol inclusion complex was prepared by spray drying to be incorporated into poly(lactic acid) (PLA) and Mater-Bi® films by supercritical CO2 impregnation. The impregnation process was carried out at pressures of 10, 15 and 20 MPa and at 40 °C. Both polymers showed the highest amount of incorporated inclusion complex at 15 MPa, where the percentage of impregnation varied from 0.6 % to 7.1 % in Mater-Bi® and PLA, respectively. Release tests for PLA films impregnated with inclusion complex showed a slow release of the active compound, which did not reach equilibrium after 350 h under the experimental conditions. This prolonged release was not observed in Mater-Bi® due to the lower incorporation of the inclusion complex. The release rate was described herein by a comprehensive phenomenological model considering the decomplexation kinetics combined with the equilibrium and mass transfer expressions.
Collapse
Affiliation(s)
- Patricia Rivera
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering and Bioprocess, Engineering Faculty, University of Santiago de Chile, Santiago, Chile; Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Alejandra Torres
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Julio Romero
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering and Bioprocess, Engineering Faculty, University of Santiago de Chile, Santiago, Chile.
| | - Francisco Rodríguez
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Marina P Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Felipe Olea
- Laboratory of Separation Process Intensification (SPI), Department of Chemical Engineering and Bioprocess, University of Santiago de Chile, Santiago, Chile
| | - Tannia Silva
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Paola Maldonado
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Esteban Quijada-Maldonado
- Laboratory of Separation Process Intensification (SPI), Department of Chemical Engineering and Bioprocess, University of Santiago de Chile, Santiago, Chile
| | - Andrea Tapia
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| |
Collapse
|
5
|
Cheng C, Lei Y, Min T, Zhang Y, Yue J. Encapsulation of 4-terpineol with β-cyclodextrin: Inclusion mechanism, characterization and relative humidity-triggered release. Food Chem 2024; 447:138926. [PMID: 38471278 DOI: 10.1016/j.foodchem.2024.138926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/04/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
4-Terpineol (4-TA), a typical monocyclic monoterpene essential oil compound with important biological activities, poor stability and solubility severely hamper its biological activities. To date, β-cyclodextrin (β-CD) encapsulating essential oil to form inclusion complexes (ICs) is considered as a satisfactory treatment. Nevertheless, the detailed inclusion mechanism of β-CD for 4-TA especially the behavior of 4-TA during inclusion formation have not available yet. Herein, 4-TA/β-CD ICs were successfully synthesized by the co-precipitation method, and hydrogen bonds and hydrophobic interactions played a key role in the formation of ICs, and the isopropyl of 4-TA entered the cavity through the wide rim of β-CD. Moreover, the release profile demonstrated that high RH (85 % and 99 %) triggered the release of TA from ICs. This study suggests the great potential of cyclodextrin inclusion strategy for improving the stability and sustained release of 4-TA in food preservation application.
Collapse
Affiliation(s)
- Chuanxiang Cheng
- School of Agriculture and Biology & Bor S. Luh Food Safety Research Center & Shanghai Food Safety Engineering Center & Key Laboratory of Urban Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujie Lei
- School of Agriculture and Biology & Bor S. Luh Food Safety Research Center & Shanghai Food Safety Engineering Center & Key Laboratory of Urban Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Min
- School of Agriculture and Biology & Bor S. Luh Food Safety Research Center & Shanghai Food Safety Engineering Center & Key Laboratory of Urban Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yushan Zhang
- School of Agriculture and Biology & Bor S. Luh Food Safety Research Center & Shanghai Food Safety Engineering Center & Key Laboratory of Urban Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Yue
- School of Agriculture and Biology & Bor S. Luh Food Safety Research Center & Shanghai Food Safety Engineering Center & Key Laboratory of Urban Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Jiao Tong University Sichuan Research Institute, China.
| |
Collapse
|
6
|
Hernández-Tanguma A, Ariza-Castolo A. Dynamics of eugenol included in β-cyclodextrin by nuclear magnetic resonance and molecular simulations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:505-511. [PMID: 38369602 DOI: 10.1002/mrc.5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Eugenol-β-cyclodextrin complex has been widely used because of the enhanced stability and conservation of the properties of eugenol. Applications in food and health sciences have been shown previously, which makes this complex an excellent model to understand and develop methodologies for the analysis and prediction of physical properties. In this work, the dynamics of eugenol incorporated into β-cyclodextrin are presented, using NMR relaxation rates, and the predictive capabilities of molecular dynamics simulations are discussed. Results show a hindered rotation of eugenol around the principal inertial axes when located inside β-cyclodextrin. Moreover, a translational movement of the whole complex is demonstrated.
Collapse
Affiliation(s)
- Alejandro Hernández-Tanguma
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Armando Ariza-Castolo
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
7
|
Wang K, Li W, Wu L, Li Y, Li H. Preparation and characterization of chitosan/dialdehyde carboxymethyl cellulose composite film loaded with cinnamaldehyde@zein nanoparticles for active food packaging. Int J Biol Macromol 2024; 261:129586. [PMID: 38266856 DOI: 10.1016/j.ijbiomac.2024.129586] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
In this study, zein-loaded cinnamaldehyde (Cin@ZN) nanoparticles were incorporated into Chitosan (CS)/dialdehyde carboxymethyl cellulose (DCMC) matrix to fabricate the active food packaging materials possessing outstanding antioxidant and antibacterial properties. The research investigated how varying levels of Cin@ZN nanoparticles affected the morphology, microstructure, physicochemical properties of CS/DCMC composite films. The inclusion of Cin@ZN could significantly improve the mechanical strength, reduce the water vapor and oxygen permeability of CS/DCMC composite films and endow films with UV-light blocking properties. It's worth noting that the antibacterial and antioxidant capacities of CS/DCMC films had an astonishing enhancement with Cin@ZN blending, in which ABTS scavenging ratio of the composite films (100 mg) with different Cin@ZN contents reached >90 %. Furthermore, CS/DCMC/Cin@ZN 35 % composite film has the ability to efficiently protect strawberries from microbial damage and decelerate the spoilage rate of strawberries under ambient condition. Consequently, the CS/DCMC/Cin@ZN composite film can be applied as packaging material to extend the lifespan of fruits.
Collapse
Affiliation(s)
- Kun Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Linhuanyi Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongshi Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
8
|
Lan L, Jiang S, Hu X, Zou L, Ren T. Nanocellulose-based antimicrobial aerogels with humidity-triggered release of cinnamaldehyde. Int J Biol Macromol 2024; 262:130108. [PMID: 38346620 DOI: 10.1016/j.ijbiomac.2024.130108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Active food packaging with controlled release behavior of volatile antimicrobials is highly desirable for enhancing the quality of fresh produce. In this study, humidity-responsive antimicrobial aerogels were developed using chitosan and dialdehyde nanocellulose, loading with cyclodextrin-cinnamaldehyde inclusion complexes (ICs) for achieving humidity-triggered release of the encapsulated antimicrobial agent. Results showed that the prepared aerogels had capable water absorption ability, which could be served as absorbent pads to take in excessive exudate from packaged fresh produce. More importantly, the accumulative release rate of cinnamaldehyde from the antimicrobial aerogels was significantly improved at RH 98 % compared to that at RH 70 %, which accordingly inactivated all the inoculated Escherichia coli, Staphylococcus aureus and Botrytis cinerea. Additionally, strawberries packaged with the antimicrobial aerogels remained in good conditions after 5 d of storage at 22 ± 1 °C. The prepared composite aerogels had the potential to extend the shelf life of fresh strawberries.
Collapse
Affiliation(s)
- Lu Lan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tian Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
9
|
Hou T, Ma S, Wang F, Wang L. A comprehensive review of intelligent controlled release antimicrobial packaging in food preservation. Food Sci Biotechnol 2023; 32:1459-1478. [PMID: 37637837 PMCID: PMC10449740 DOI: 10.1007/s10068-023-01344-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 08/29/2023] Open
Abstract
Intelligent responsive packaging provides informative feedback or control the release of active substances like antimicrobial agents in response to stimuli in food or the environment to ensure food safety. This paper provides an overview of two types of intelligent packaging, information-responsive and intelligent controlled-release, focusing on the recent research progress of intelligent controlled-release antimicrobial packaging with enzyme, pH, relative humidity, temperature, and light as triggering factors. It also summarizes the current status of application in different food categories, as well as the challenges and future prospects. Intelligent controlled-release technology aims to optimize the antimicrobial effect and ensure the quality of food products by synchronizing the release of active substances with food preservation needs through sensing stimuli, which is an innovative and challenging packaging technology. The paper seeks to provide a reference for the research and industrial development of responsive intelligent packaging and controlled-release packaging applications in food.
Collapse
Affiliation(s)
- Tianmeng Hou
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
10
|
Ibrahim AE, El Gohary NA, Aboushady D, Samir L, Karim SEA, Herz M, Salman BI, Al-Harrasi A, Hanafi R, El Deeb S. Recent advances in chiral selectors immobilization and chiral mobile phase additives in liquid chromatographic enantio-separations: A review. J Chromatogr A 2023; 1706:464214. [PMID: 37506464 DOI: 10.1016/j.chroma.2023.464214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
For decades now, the separation of chiral enantiomers of drugs has been gaining the interest and attention of researchers. In 1991, the first guidelines for development of chiral drugs were firstly released by the US-FDA. Since then, the development in chromatographic enantioseparation tools has been fast and variable, aiming at creating a suitable environment where the physically and chemically identical enantiomers can be separated. Among those tools, the immobilization of chiral selectors (CS) on different stationary phases and the chiral mobile phase additives (CMPA) which have been progressed and studied extensively. This review article highlights the major advances in immobilization of CS together with their different recognition mechanisms as well as CMPA as a cheaper and successful alternative for chiral stationary phases. Moreover, the role of molecular modeling tool as a pre-step in the choice of CS for evaluating possible interactions with different ligands has been pointed up. Illustrations of reported methods and updates for immobilized CS and CMPA have been included.
Collapse
Affiliation(s)
- Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Nesrine Abdelrehim El Gohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Dina Aboushady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Liza Samir
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Shereen Ekram Abdel Karim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Magy Herz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Rasha Hanafi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig 38092, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
11
|
Zhang W, Ezati P, Khan A, Assadpour E, Rhim JW, Jafari SM. Encapsulation and delivery systems of cinnamon essential oil for food preservation applications. Adv Colloid Interface Sci 2023; 318:102965. [PMID: 37480830 DOI: 10.1016/j.cis.2023.102965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Food safety threats and deterioration due to the invasion of microorganisms has led to economic losses and food-borne diseases in the food industry; so, development of natural food preservatives is urgently needed when considering the safety of chemically synthesized preservatives. Because of its outstanding antioxidant and antibacterial properties, cinnamon essential oil (CEO) is considered a promising natural preservative. However, CEO's low solubility and easy degradability limits its application in food products. Therefore, some encapsulation and delivery systems have been developed to improve CEO efficiency in food preservation applications. This work discusses the chemical and techno-functional properties of CEO, including its key components and antioxidant/antibacterial properties, and summarizes recent developments on encapsulation and delivery systems for CEO in food preservation applications. Since CEO is currently added to most biopolymeric films/coatings (BFCs) for food preservation, most studies have shown that encapsulation systems can improve the food preservation performance of BFCs containing CEOs. It has been confirmed that various delivery systems could improve the stability and controlled-release properties of CEO, thereby enhancing its ability to extend the shelf life of foods. These encapsulation techniques include spray drying, emulsion systems, complex coacervation (nanoprecipitation), ionic gelation, liposomes, inclusion complexation (cyclodextrins, silica), and electrospinning.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Parya Ezati
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
12
|
Zhang D, Cao G, Bu N, Huang L, Lin H, Mu R, Pang J, Wang L. Multi-functional konjac glucomannan/chitosan bilayer films reinforced with oregano essential oil loaded β-cyclodextrin and anthocyanins for cheese preservation. Int J Biol Macromol 2023:125365. [PMID: 37330095 DOI: 10.1016/j.ijbiomac.2023.125365] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
In this work, a multifunctional bilayer film was prepared by solvent casting method. Elderberry anthocyanins (EA) were incorporated into konjac glucomannan (KGM) film as the inner indicator layer (KEA). β-cyclodextrin (β-CD) loaded with oregano essential oil (OEO) inclusion complexes (β-CD@OEO) was prepared and incorporated into chitosan (CS) film as the outer hydrophobic and antibacterial layer (CS-β-CD@OEO). The impacts of β-CD@OEO on the morphological, mechanical, thermal, water vapor permeability and water resistance properties, pH sensitivity, antioxidant, and antibacterial activities of bilayer films were thoroughly evaluated. The incorporation of β-CD@OEO into bilayer films can significantly improve the mechanical properties (tensile strength (TS): 65.71 MPa and elongation at break (EB): 16.81 %), thermal stability, and water resistance (Water contact angle (WCA): 88.15°, water vapor permeability (WVP): 3.53 g mm/m2 day kPa). In addition, the KEA/CS-β-CD@OEO bilayer films showed color variations in acid-base environments, which could be used as pH-responsive indicators. The KEA/CS-β-CD@OEO bilayer films also presented controlled release of OEO, good antioxidant, and antimicrobial activity, which exhibited good potential for the preservation of cheese. To sum up, KEA/CS-β-CD@OEO bilayer films have potential applications in the field of food packaging industry.
Collapse
Affiliation(s)
- Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoyu Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
| |
Collapse
|
13
|
Thymus vulgaris Essential Oil in Beta-Cyclodextrin for Solid-State Pharmaceutical Applications. Pharmaceutics 2023; 15:pharmaceutics15030914. [PMID: 36986775 PMCID: PMC10051612 DOI: 10.3390/pharmaceutics15030914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Antimicrobial resistance related to the misuse of antibiotics is a well-known current topic. Their excessive use in several fields has led to enormous selective pressure on pathogenic and commensal bacteria, driving the evolution of antimicrobial resistance genes with severe impacts on human health. Among all the possible strategies, a viable one could be the development of medical features that employ essential oils (EOs), complex natural mixtures extracted from different plant organs, rich in organic compounds showing, among others, antiseptic properties. In this work, green extracted essential oil of Thymus vulgaris was included in cyclic oligosaccharides cyclodextrins (CD) and prepared in the form of tablets. This essential oil has been shown to have a strong transversal efficacy both as an antifungal and as an antibacterial agent. Its inclusion allows its effective use because an extension of the exposure time to the active compounds is obtained and, therefore, a more marked efficacy, especially against biofilm-producing microorganisms such as P. aeruginosa and S. aureus, was registered. The efficacy of the tablet against candidiasis opens their possible use as a chewable tablet against oral candidiasis and as a vaginal tablet against vaginal candidiasis. Moreover, the registered wide efficacy is even more positive since the proposed approach can be defined as effective, safe, and green. In fact, the natural mixture of the essential oil is produced by the steam current method; therefore, the manufacturer employs substances that are not harmful, with very low production and management costs.
Collapse
|
14
|
Preparation and Characterization of Tea Tree Oil-β-Cyclodextrin Microcapsules with Super-High Encapsulation Efficiency. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2023. [DOI: 10.1016/j.jobab.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
15
|
Enhanced preservation effects of clove (Syzygium aromaticum) essential oil on the processing of Chinese bacon (preserved meat products) by beta cyclodextrin metal organic frameworks (β-CD-MOFs). Meat Sci 2023; 195:108998. [DOI: 10.1016/j.meatsci.2022.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
|
16
|
Alshati F, Alahmed TAA, Sami F, Ali MS, Majeed S, Murtuja S, Hasnain MS, Ansari MT. Guest-host Relationship of Cyclodextrin and its Pharmacological Benefits. Curr Pharm Des 2023; 29:2853-2866. [PMID: 37946351 DOI: 10.2174/0113816128266398231027100119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
Many methods, including solid dispersion, micellization, and inclusion complexes, have been employed to increase the solubility of potent drugs. Beta-cyclodextrin (βCD) is a cyclic oligosaccharide consisting of seven glucopyranoside molecules, and is a widely used polymer for formulating soluble inclusion complexes of hydrophobic drugs. The enzymatic activity of Glycosyltransferase or α-amylase converts starch or its derivatives into a mixture of cyclodextrins. The βCD units are characterized by α -(1-4) glucopyranose bonds. Cyclodextrins possess certain properties that make them very distinctive because of their toroidal or truncated cage-like supramolecular configurations with multiple hydroxyl groups at each end. This allowed them to encapsulate hydrophobic compounds by forming inclusion complexes without losing their solubility in water. Chemical modifications and newer derivatives, such as methylated βCD, more soluble hydroxyl propyl methyl βCD, and sodium salts of sulfobutylether-βCD, known as dexolve® or captisol®, have envisaged the use of CDs in various pharmaceutical, medical, and cosmetic industries. The successful inclusion of drug complexes has demonstrated improved solubility, bioavailability, drug resistance reduction, targeting, and penetration across skin and brain tissues. This review encompasses the current applications of β-CDs in improving the disease outcomes of antimicrobials and antifungals as well as anticancer and anti-tubercular drugs.
Collapse
Affiliation(s)
- Fatmah Alshati
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Teejan Ameer Abed Alahmed
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| | - Farheen Sami
- Department of Pharmaceutics, Hygia Institute of Pharmaceutical Sciences and Research, Lucknow, India
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Kingdome of Saudi Arabia
| | - Shahnaz Majeed
- Department of Pharmacy, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Sheikh Murtuja
- Department of Pharmacy, Palamu Institute of Pharmacy, Chianki, Jharkhand 822102, India
| | - M Saquib Hasnain
- Department of Pharmacy, Palamu Institute of Pharmacy, Chianki, Jharkhand 822102, India
| | - Mohammed Tahir Ansari
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| |
Collapse
|
17
|
Liu HN, Jiang XX, Naeem A, Chen FC, Wang L, Liu YX, Li Z, Ming LS. Fabrication and Characterization of β-Cyclodextrin/ Mosla Chinensis Essential Oil Inclusion Complexes: Experimental Design and Molecular Modeling. Molecules 2022; 28:37. [PMID: 36615232 PMCID: PMC9822264 DOI: 10.3390/molecules28010037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Essential oils (EOs) are primarily isolated from medicinal plants and possess various biological properties. However, their low water solubility and volatility substantially limit their application potential. Therefore, the aim of the current study was to improve the solubility and stability of the Mosla Chinensis (M. Chinensis) EO by forming an inclusion complex (IC) with β-cyclodextrin (β-CD). Furthermore, the IC formation process was investigated using experimental techniques and molecular modeling. The major components of M. Chinensis 'Jiangxiangru' EOs were carvacrol, thymol, o-cymene, and terpinene, and its IC with β-CD were prepared using the ultrasonication method. Multivariable optimization was studied using a Plackett-Burman design (step 1, identifying key parameters) followed by a central composite design for optimization of the parameters (step 2, optimizing the key parameters). SEM, FT-IR, TGA, and dissolution experiments were performed to analyze the physicochemical properties of the ICs. In addition, the interaction between EO and β-CD was further investigated using phase solubility, molecular docking, and molecular simulation studies. The results showed that the optimal encapsulation efficiency and loading capacity of EO in the ICs were 86.17% and 8.92%, respectively. Results of physicochemical properties were different after being encapsulated, indicating that the ICs had been successfully fabricated. Additionally, molecular docking and dynamics simulation showed that β-CD could encapsulate the EO component (carvacrol) via noncovalent interactions. In conclusion, a comprehensive methodology was developed for determining key parameters under multivariate conditions by utilizing two-step optimization experiments to obtain ICs of EO with β-CD. Furthermore, molecular modeling was used to study the mechanisms involved in molecular inclusion complexation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Liang-Shan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
18
|
Antifungal CoAl layered double hydroxide ultrathin nanosheets loaded with oregano essential oil for cereal preservation. Food Chem 2022; 397:133809. [DOI: 10.1016/j.foodchem.2022.133809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
|
19
|
Paiva-Santos AC, Ferreira L, Peixoto D, Silva F, Soares MJ, Zeinali M, Zafar H, Mascarenhas-Melo F, Raza F, Mazzola PG, Veiga F. Cyclodextrins as an encapsulation molecular strategy for volatile organic compounds – pharmaceutical applications. Colloids Surf B Biointerfaces 2022; 218:112758. [DOI: 10.1016/j.colsurfb.2022.112758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 01/07/2023]
|
20
|
3D printing of essential oil/β-cyclodextrin/popping candy modified atmosphere packaging for strawberry preservation. Carbohydr Polym 2022; 297:120037. [DOI: 10.1016/j.carbpol.2022.120037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
|
21
|
Gao S, Feng W, Sun H, Zong L, Li X, Zhao L, Ye F, Fu Y. Fabrication and Characterization of Antifungal Hydroxypropyl-β-Cyclodextrin/Pyrimethanil Inclusion Compound Nanofibers Based on Electrospinning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7911-7920. [PMID: 35748509 DOI: 10.1021/acs.jafc.2c01866] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pyrimethanil (PMT) is an anilinopyrimidine bactericide with poor water solubility, which limits its applications. To improve the physical and chemical properties of PMT, hydroxypropyl-β-cyclodextrin/pyrimethanil inclusion compound nanofibers (HPβCD/PMT-IC-NFs) were fabricated via electrospinning. A variety of analytical techniques were used to confirm the formation of the inclusion compound. Scanning electron microscopy image displayed that HPβCD/PMT-IC-NF was homogeneous without particles. Thermogravimetric analysis indicated that the formation of the inclusion compound improved the thermostability of PMT. In addition, the phase solubility test illustrated that the inclusion compound formed by PMT and HPβCD had a stronger water solubility. The antifungal effect test exhibited that HPβCD/PMT-IC-NF had better antifungal properties. The release experiment confirmed that HPβCD/PMT-IC-NF had a sustained-release effect, and the release curve conformed to the first-order kinetic model equation. In short, the fabrication HPβCD/PMT-IC-NF inhibited improved solubility and thermostability of PMT, thus promoting the development of pesticide dosage form to water-based and low-pollution direction.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Weiwei Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Han Sun
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lei Zong
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
22
|
Pickering emulsions stabilized by β-cyclodextrin and cinnamaldehyde essential oil/β-cyclodextrin composite: A comparison study. Food Chem 2022; 377:131995. [PMID: 34990944 DOI: 10.1016/j.foodchem.2021.131995] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022]
Abstract
Here, a cinnamaldehyde essential oil (CEO)/β-Cyclodextrin (β-CD) composite with a high embedding rate (91.74 ± 0.82%) was prepared. Its structure was characterized by Fourier transform infrared spectrometer (FT-IR) and X-ray diffractometer (XRD). Pickering emulsions prepared by β-CD and CEO/β-CD at different concentrations (1-5%) were comparatively investigated. The CEO/β-CD emulsions had better storage stability. Rheological results confirmed the emulsions were all gel-like elastic emulsions and had shear thinning phenomenon. Fluorescence microscopy and scanning electron microscopy (SEM) results confirmed that the most of excessive β-CD was adsorbed on the surface of emulsion droplets as crystals, formed thick protective shell in β-CD emulsions, while the most of excessive composites were distributed in the aqueous phase forming a stable network structure in CEO/β-CD emulsions. It caused these two emulsions had different rheological properties, and different changing trends in droplet size.
Collapse
|
23
|
Ahmed J, Mulla MZ, Al-Attar H, Jacob H. Comparison of thermo-rheological, microstructural and antimicrobial properties of β- and γ-cyclodextrin inclusion complexes of cinnamon essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Ravindran Maniam MM, Loong YH, Samsudin H. Understanding the Formation of β‐cyclodextrin Inclusion Complexes and their use in Active Packaging Systems. STARCH-STARKE 2022. [DOI: 10.1002/star.202100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ye Heng Loong
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia 11800 USM Penang Malaysia
| | - Hayati Samsudin
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia 11800 USM Penang Malaysia
| |
Collapse
|
25
|
Tian B, Liu J, Liu Y, Wan JB. Integrating diverse plant bioactive ingredients with cyclodextrins to fabricate functional films for food application: a critical review. Crit Rev Food Sci Nutr 2022; 63:7311-7340. [PMID: 35253547 DOI: 10.1080/10408398.2022.2045560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The popularity of plant bioactive ingredients has become increasingly apparent in the food industry. However, these plant bioactive ingredients have many deficiencies, including low water solubility, poor stability, and unacceptable odor. Cyclodextrins (CDs), as cyclic molecules, have been extensively studied as superb vehicles of plant bioactive ingredients. These CD inclusion compounds could be added into various film matrices to fabricate bioactive food packaging materials. Therefore, in the present review, we summarized the extraction methods of plant bioactive ingredients, the addition of these CD inclusion compounds into thin-film materials, and their applications in food packaging. Furthermore, the release model and mechanism of active film materials based on various plant bioactive ingredients with CDs were highlighted. Finally, the current challenges and new opportunities based on these film materials have been discussed.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
26
|
Lin Y, Huang R, Sun X, Yu X, Xiao Y, Wang L, Hu W, Zhong T. The p-Anisaldehyde/β-cyclodextrin inclusion complexes as a sustained release agent: Characterization, storage stability, antibacterial and antioxidant activity. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Muñoz-Shugulí C, Rodríguez-Mercado F, Mascayano C, Herrera A, Bruna JE, Guarda A, Galotto MJ. Development of Inclusion Complexes With Relative Humidity Responsive Capacity as Novel Antifungal Agents for Active Food Packaging. Front Nutr 2022; 8:799779. [PMID: 35059427 PMCID: PMC8764934 DOI: 10.3389/fnut.2021.799779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Allyl isothiocyanate is an excellent antimicrobial compound that has been applied in the development of active food packaging materials in the last years. However, the high volatility of this compound could prevent a lasting effect over time. In order to avoid this problem, cyclodextrin inclusion complexes have been proposed as an alternative, being beta-cyclodextrin (β-CD) as the main candidate. In addition, β-CD could act as a relative humidity-responsive nanoparticle. In this regard, the aim of this study was to develop inclusion complexes based on β-CD and AITC as relative humidity-responsive agents, which can be used in the design of active food packaging materials. Methods: Two different β-CD:AITC inclusion complexes (2:1 and 1:1 molar ratios) were obtained by the co-precipitation method. Entrapment efficiency was determined by gas chromatography, while inclusion complexes were characterized through thermal, structural, and physicochemical techniques. Antifungal capacity of inclusion complexes was determined in a headspace system. Furthermore, the AITC release from inclusion complexes to headspace at different percentages of relative humidity was evaluated by gas chromatography, and this behavior was related with molecular dynamic studies. Key Findings and Conclusions: The entrapment efficiency of inclusion complexes was over to 60%. Two coexisting structures were proposed for inclusion complexes through spectroscopic analyses and molecular dynamic simulation. The water sorption capacity of inclusion complexes depended on relative humidity, and they exhibited a strong fungicide activity against Botrytis cinerea. Furthermore, the AITC release to headspace occurred in three stages, which were related with changes in β-CD conformational structure by water sorption and the presence of the different coexisting structures. In addition, a strong influence of relative humidity on AITC release was evidenced. These findings demonstrate that β-CD:AITC inclusion complexes could be used as potential antifungal agents for the design of food packaging materials, whose activity would be able to respond to relative humidity changes.
Collapse
Affiliation(s)
- Cristina Muñoz-Shugulí
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Francisco Rodríguez-Mercado
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Department of Food Science and Technology, Technological Faculty, University of Santiago of Chile (USACH), Santiago, Chile
| | - Carolina Mascayano
- Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Andrea Herrera
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Julio E Bruna
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Department of Food Science and Technology, Technological Faculty, University of Santiago of Chile (USACH), Santiago, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Department of Food Science and Technology, Technological Faculty, University of Santiago of Chile (USACH), Santiago, Chile
| | - María J Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Department of Food Science and Technology, Technological Faculty, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
28
|
Chen J, Li Y, Shi W, Zheng H, Wang L, Li L. Release of Cinnamaldehyde and Thymol from PLA/Tilapia Fish Gelatin-Sodium Alginate Bilayer Films to Liquid and Solid Food Simulants, and Japanese Sea Bass: A Comparative Study. Molecules 2021; 26:7140. [PMID: 34885735 PMCID: PMC8659066 DOI: 10.3390/molecules26237140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to develop an active biodegradable bilayer film and to investigate the release behaviors of active compounds into different food matrices. Cinnamaldehyde (CI) or thymol (Ty) was encapsulated in β-cyclodextrin (β-CD) to prepare the active β-CD inclusion complex (β-CD-CI/β-CD-Ty). The tilapia fish gelatin-sodium alginate composite (FGSA) containing β-CD-CI or β-CD-Ty was coated on the surface of PLA film to obtain the active bilayer film. Different food simulants including liquid food simulants (water, 3% acetic acid, 10% ethanol, and 95% ethanol), solid dry food simulant (modified polyphenylene oxide (Tenax TA)), and the real food (Japanese sea bass) were selected to investigate the release behaviors of bilayer films into different food matrixes. The results showed that the prepared β-CD inclusion complexes distributed evenly in the cross-linking structure of FGSA and improved the thickness and water contact angle of the bilayer films. Active compounds possessed the lowest release rates in Tenax TA, compared to the release to liquid simulants and sea bass. CI and Ty sustained the release to the sea bass matrix with a similar behavior to the release to 95% ethanol. The bilayer film containing β-CD-Ty exhibited stronger active antibacterial and antioxidant activities, probably due to the higher release efficiency of Ty in test mediums.
Collapse
Affiliation(s)
- Jingwen Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinxuan Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
| | - Hui Zheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
| |
Collapse
|
29
|
Kringel DH, Lang GH, Dias ÁRG, Gandra EA, Valente Gandra TK, da Rosa Zavareze E. Impact of encapsulated orange essential oil with β-cyclodextrin on technological, digestibility, sensory properties of wheat cakes as well as Aspergillus flavus spoilage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5599-5607. [PMID: 33709436 DOI: 10.1002/jsfa.11211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The majority of studies with essential oils in foods focus mainly on improving the shelf life of products; however, the present study goes further and demonstrates not only the effect of essential oil on conservation properties, but also the effect of free and encapsulated orange essential oil (OEO) on the technological, sensorial and digestibility properties of bakery products. RESULTS OEO was encapsulated into β-cyclodextrin (β-CD) by inclusion complex formation (β-CD/OEO 97.4% of encapsulation efficiency). OEO demonstrated in vitro antifungal activity against Aspergillus flavus (inhibition zone of 11.33 mm on mycelial growth). In situ antifungal activity against A. flavus confirmed that free OEO can effectively delay the fungal growth, unlike encapsulated OEO. Regarding texture profile and starch digestibility: cake with β-CD/OEO showed lower hardness (31.64 N) and lower starch digestibility (69.10%) than cake with free OEO (44.30 N; 82.10%, respectively) and the addition of OEO (both free and encapsulated) decreased the adhesiveness of the cakes. Cake with free OEO showed a higher intensity of orange aroma, being preferred by 60% of panelists, whereas cake with β-CD/OEO presented a very slight orange taste and aroma. CONCLUSION The encapsulation of OEO into β-CD improved the crumb texture of cakes and promoted a lower starch digestibility in the cakes. On the other hand, the encapsulation process was not effective under the conditions tested (OEO concentration and baking temperatures), compromising the action of the OEO as a natural flavoring and preservative agent. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dianini Hüttner Kringel
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Gustavo Heinrich Lang
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Eliezer Avila Gandra
- Laboratory of Food Science and Molecular Biology, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil
| | | | | |
Collapse
|
30
|
Preparation, characterization, and molecular modeling of sesamol/β-cyclodextrin derivatives inclusion complexes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Muhoza B, Qi B, Harindintwali JD, Koko MYF, Zhang S, Li Y. Encapsulation of cinnamaldehyde: an insight on delivery systems and food applications. Crit Rev Food Sci Nutr 2021; 63:2521-2543. [PMID: 34515594 DOI: 10.1080/10408398.2021.1977236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cinnamaldehyde is an essential oil extracted from the leaves, bark, roots and flowers of cinnamon plants (genus Cinnamomum). Cinnamaldehyde has shown biological functions such as antioxidants, antimicrobials, anti-diabetic, anti-obesity and anti-cancer. However, poor solubility in water as well as molecular sensitivity to oxygen, light, and high temperature limit the direct application of cinnamaldehyde. Researchers are using different encapsulation techniques to maximize the potential biological functions of cinnamaldehyde. Different delivery systems such as liposomes, emulsions, biopolymer nanoparticles, complex coacervation, molecular inclusion, and spray drying have been developed for this purpose. The particle size and morphology, composition and physicochemical properties influence the performance of each delivery system. Consequently, the individual delivery system has its advantages and limitations for specific applications. Given the essential role of cinnamaldehyde in functional food and food preservation, appropriate approaches should be applied in the encapsulation and application of encapsulated cinnamaldehyde. This review systematically analyzes available encapsulation techniques for cinnamaldehyde in terms of their design, properties, advantages and limitations, and food application status. The information provided in this manuscript will assist in the development and widespread use of cinnamaldehyde-loaded particles in the food and beverage industries.
Collapse
Affiliation(s)
- Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
32
|
Singh BK, Tiwari S, Dubey NK. Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4879-4890. [PMID: 33852733 DOI: 10.1002/jsfa.11255] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Postharvest food spoilage due to fungal and mycotoxin contamination is a major challenge in tropical countries, leading to severe adverse effects on human health. Because of the negative effects of synthetic preservatives on both human health and the environment, it has been recommended that chemicals that have a botanical origin, with an eco-friendly nature and a favorable safety profile, should be used as green preservatives. Recently, the food industry and consumers have been shifting drastically towards green consumerism because of their increased concerns about health and the environment. Among different plant-based products, essential oils (EOs) and their bioactive components are strongly preferred as antimicrobial food preservatives. Despite having potent antimicrobial efficacy and preservation potential against fungal and mycotoxin contamination, essential oils and their bioactive components have limited practical applicability caused by their high volatility and their instability, implying the development of techniques to overcome the challenges associated with EO application. Essential oils and their bioactive components are promising alternatives to synthetic preservatives. To overcome challenges associated with EOs, nanotechnology has emerged as a novel technology in the food industries. Nanoencapsulation may boost the preservative potential of different essential oils by improving their solubility, stability, and targeted sustainable release. Nanoencapsulation of EOs is therefore currently being practiced to improve the stability and bioactivity of natural products. The present review has dealt extensively with the application of EOs and their nanoformulated products encapsulated in suitable polymeric matrices, so as to recommend them as novel green preservatives against foodborne molds and mycotoxin-induced deterioration of stored food commodities. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bijendra Kumar Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shikha Tiwari
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
33
|
Mazurek AH, Szeleszczuk Ł, Gubica T. Application of Molecular Dynamics Simulations in the Analysis of Cyclodextrin Complexes. Int J Mol Sci 2021; 22:9422. [PMID: 34502331 PMCID: PMC8431145 DOI: 10.3390/ijms22179422] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Cyclodextrins (CDs) are highly respected for their ability to form inclusion complexes via host-guest noncovalent interactions and, thus, ensofance other molecular properties. Various molecular modeling methods have found their applications in the analysis of those complexes. However, as showed in this review, molecular dynamics (MD) simulations could provide the information unobtainable by any other means. It is therefore not surprising that published works on MD simulations used in this field have rapidly increased since the early 2010s. This review provides an overview of the successful applications of MD simulations in the studies on CD complexes. Information that is crucial for MD simulations, such as application of force fields, the length of the simulation, or solvent treatment method, are thoroughly discussed. Therefore, this work can serve as a guide to properly set up such calculations and analyze their results.
Collapse
Affiliation(s)
- Anna Helena Mazurek
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Doctoral School, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland;
| | - Tomasz Gubica
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland;
| |
Collapse
|
34
|
Patiño Vidal C, López de Dicastillo C, Rodríguez-Mercado F, Guarda A, Galotto MJ, Muñoz-Shugulí C. Electrospinning and cyclodextrin inclusion complexes: An emerging technological combination for developing novel active food packaging materials. Crit Rev Food Sci Nutr 2021; 62:5495-5510. [PMID: 33605809 DOI: 10.1080/10408398.2021.1886038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review was focused on describing the combination of electrospinning and cyclodextrin inclusion complexes as one of the newest alternatives for the development of food packaging materials with antimicrobial and/or antioxidant properties. The advantages of this technological combination, the routes to design the active materials, the characterization and application of such materials were reviewed. Electrospinning has allowed developing active packaging materials composed by fibrillary structures with a high ratio surface-to-volume. On the other hand, cyclodextrin inclusion complexes have maintained the properties of active compounds when they have been incorporated in packaging materials. Both methods have been recently combined and novel active food packaging materials have been obtained through three different routes. Polymeric solutions containing preformed (route 1) or in-situ formed (route 2) cyclodextrin inclusion complexes have been electrospun to obtain packaging materials. Furthermore, cyclodextrin inclusion complexes solutions have been directly electrospun (route 3) in order to produce those materials. The developed packaging materials have exhibited a high active compound loading with a long lasting release. Therefore, the protection of different foodstuff against microbial growth, oxidation and quality decay as well as the maintenance of their physical and sensory properties have been achieved when those materials were applied as active packaging.
Collapse
Affiliation(s)
- Cristian Patiño Vidal
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Carol López de Dicastillo
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Francisco Rodríguez-Mercado
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Cristina Muñoz-Shugulí
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
35
|
Zhang L, Huang C, Xu Y, Huang H, Zhao H, Wang J, Wang S. Synthesis and characterization of antibacterial polylactic acid film incorporated with cinnamaldehyde inclusions for fruit packaging. Int J Biol Macromol 2020; 164:4547-4555. [PMID: 32946936 DOI: 10.1016/j.ijbiomac.2020.09.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Abstract
To maintain the quality of postharvest fruits continuously and meet the health requirements of consumers, a high barrier and long-lasting antibacterial polylactic acid film as packaging material was developed in this study. Polylactic acid-based antibacterial films incorporated with Cinnamaldehyde inclusions were used to achieve long-lasting antibacterial activity and improve the barrier properties. Cinnamaldehyde inclusions were prepared via the inclusion method and used as a sustained-release antibacterial agent and reinforcement to be incorporated into polylactic acid-based films within a concentration range of 0-30 wt%. The FT-IR spectrum demonstrated that the Cinnamaldehyde inclusions was physically interacting with PLA. The XRD results showed that the cinnamaldehyde inclusions at a concentration of 10 wt% enhanced the crystallinity of the antibacterial film. The oxygen and water vapor barrier properties of the film were respectively 14.29% and 12.38% higher than those of a pure PLA film. The tensile strength of the antibacterial film increased by 20%. And the antibacterial activity against Escherichia coli and Listeria monocytogenes was 100%. The release rate of cinnamaldehyde of the antibacterial film was slow and varied smoothly for 20 d.
Collapse
Affiliation(s)
- Linyun Zhang
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yangfan Xu
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China
| | - Haohe Huang
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China
| | - Jian Wang
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
36
|
Chen Z, Zong L, Chen C, Xie J. Development and characterization of PVA-Starch active films incorporated with β-cyclodextrin inclusion complex embedding lemongrass (Cymbopogon citratus) oil. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100565] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020; 25:molecules25204711. [PMID: 33066611 PMCID: PMC7587387 DOI: 10.3390/molecules25204711] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils-natural and liquid secondary plant metabolites-are gaining importance for their use in the protection of foods, since they are accepted as safe and healthy. Although research studies indicate that the antibacterial and antioxidant activities of essential oils (EOs) are more common compared to other biological activities, specific concerns have led scientists to investigate the areas that are still in need of research. To the best of our knowledge, there is no review paper in which antifungal and especially antimycotoxigenic effects are compiled. Further, the low stability of essential oils under environmental conditions such as temperature and light has forced scientists to develop and use recent approaches such as encapsulation, coating, use in edible films, etc. This review provides an overview of the current literature on essential oils mainly on antifungal and antimycotoxigenic but also their antibacterial and antioxidant activities. Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined.
Collapse
|
38
|
Marques CSF, Barreto NS, de Oliveira SSC, Santos ALS, Branquinha MH, de Sousa DP, Castro M, Andrade LN, Pereira MM, da Silva CF, Chaud MV, Jain S, Fricks AT, Souto EB, Severino P. β-Cyclodextrin/Isopentyl Caffeate Inclusion Complex: Synthesis, Characterization and Antileishmanial Activity. Molecules 2020; 25:E4181. [PMID: 32932660 PMCID: PMC7570699 DOI: 10.3390/molecules25184181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
Isopentyl caffeate (ICaf) is a bioactive ester widely distributed in nature. Our patented work has shown promising results of this molecule against Leishmania. However, ICaf shows poor solubility, which limits its usage in clinical settings. In this work, we have proposed the development of an inclusion complex of ICaf in β-cyclodextrin (β-CD), with the aim to improve the drug solubility, and thus, its bioavailability. The inclusion complex (ICaf:β-CD) was developed applying three distinct methods, i.e., physical mixture (PM), kneading (KN) or co-evaporation (CO) in different molar proportions (0.25:1, 1:1 and 2:1). Characterization of the complexes was carried out by thermal analysis, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and molecular docking. The ICaf:β-CD complex in a molar ratio of 1:1 obtained by CO showed the best complexation and, therefore, was selected for further analysis. Solubility assay showed a marked improvement in the ICaf:β-CD (CO, 1:1) solubility profile when compared to the pure ICaf compound. Cell proliferation assay using ICaf:β-CD complex showed an IC50 of 3.8 and 2.7 µg/mL against L. amazonesis and L. chagasi promastigotes, respectively. These results demonstrate the great potential of the inclusion complex to improve the treatment options for visceral and cutaneous leishmaniases.
Collapse
Affiliation(s)
- Carine S. F. Marques
- Postgraduation in Biotechnology Program, Industrial and Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; (C.S.F.M.); (N.S.B.); (S.J.); (A.T.F.)
| | - Nathalia S. Barreto
- Postgraduation in Biotechnology Program, Industrial and Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; (C.S.F.M.); (N.S.B.); (S.J.); (A.T.F.)
| | - Simone S. C. de Oliveira
- Departament of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University l Rio de Janeiro, 21941-918 Rio de Janeiro, RJ, Brazil; (S.S.C.d.O.); (A.L.S.S.); (M.H.B.)
| | - André L. S. Santos
- Departament of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University l Rio de Janeiro, 21941-918 Rio de Janeiro, RJ, Brazil; (S.S.C.d.O.); (A.L.S.S.); (M.H.B.)
| | - Marta H. Branquinha
- Departament of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University l Rio de Janeiro, 21941-918 Rio de Janeiro, RJ, Brazil; (S.S.C.d.O.); (A.L.S.S.); (M.H.B.)
| | - Damião P. de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900 Paraíba, Brazil; (D.P.d.S.); (M.C.)
| | - Mayara Castro
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900 Paraíba, Brazil; (D.P.d.S.); (M.C.)
| | - Luciana N. Andrade
- Department of Medicine, Federal University of Sergipe, CEP 49400-000 Lagarto, Sergipe, Brazil;
| | - Matheus M. Pereira
- CICECO-Aveiro Institute of Materials, Departamento f Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Classius F. da Silva
- Department of Exact Sciences and Earth, Federal University of São Paulo (UNIFESP), 09972-270 Diadema CEP, Brazil;
| | - Marco V. Chaud
- Department of Technological and Environmental Processes, Sorocaba University (UNISO), Rod. Raposo Tavares, Km 92.5, 18023-000 Sorocaba, Brazil;
| | - Sona Jain
- Postgraduation in Biotechnology Program, Industrial and Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; (C.S.F.M.); (N.S.B.); (S.J.); (A.T.F.)
| | - Alini T. Fricks
- Postgraduation in Biotechnology Program, Industrial and Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; (C.S.F.M.); (N.S.B.); (S.J.); (A.T.F.)
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciênciasda Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Patricia Severino
- Postgraduation in Biotechnology Program, Industrial and Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; (C.S.F.M.); (N.S.B.); (S.J.); (A.T.F.)
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women′s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| |
Collapse
|
39
|
Lee JU, Lee SS, Lee S, Oh HB. Noncovalent Complexes of Cyclodextrin with Small Organic Molecules: Applications and Insights into Host-Guest Interactions in the Gas Phase and Condensed Phase. Molecules 2020; 25:molecules25184048. [PMID: 32899713 PMCID: PMC7571109 DOI: 10.3390/molecules25184048] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) have drawn a lot of attention from the scientific communities as a model system for host–guest chemistry and also due to its variety of applications in the pharmaceutical, cosmetic, food, textile, separation science, and essential oil industries. The formation of the inclusion complexes enables these applications in the condensed phases, which have been confirmed by nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and other methodologies. The advent of soft ionization techniques that can transfer the solution-phase noncovalent complexes to the gas phase has allowed for extensive examination of these complexes and provides valuable insight into the principles governing the formation of gaseous noncovalent complexes. As for the CDs’ host–guest chemistry in the gas phase, there has been a controversial issue as to whether noncovalent complexes are inclusion conformers reflecting the solution-phase structure of the complex or not. In this review, the basic principles governing CD’s host–guest complex formation will be described. Applications and structures of CDs in the condensed phases will also be presented. More importantly, the experimental and theoretical evidence supporting the two opposing views for the CD–guest structures in the gas phase will be intensively reviewed. These include data obtained via mass spectrometry, ion mobility measurements, infrared multiphoton dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Jae-ung Lee
- Department of Chemistry, Sogang University, Seoul 04107, Korea;
| | - Sung-Sik Lee
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Korea;
| | - Sungyul Lee
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Korea;
- Correspondence: (S.L.); (H.B.O.); Tel.: +82-31-201-2423 (S.L.); +82-2-705-8444 (H.B.O.)
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Korea;
- Correspondence: (S.L.); (H.B.O.); Tel.: +82-31-201-2423 (S.L.); +82-2-705-8444 (H.B.O.)
| |
Collapse
|
40
|
β-Cyclodextrin Inclusion Complex Containing Litsea cubeba Essential Oil: Preparation, Optimization, Physicochemical, and Antifungal Characterization. COATINGS 2020. [DOI: 10.3390/coatings10090850] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Litsea cubeba essential oil (LCEO), as naturally plant-derived products, possess good antimicrobial activities against many pathogens, but their high volatility and poor water solubility limit greatly the application in food industry. In this research, inclusion complex based on β-cyclodextrin (β-CD) and LCEO, was prepared by saturated aqueous solution method. An optimum condition using the response surface methodology (RSM) based on Box–Behnken design (BBD) was obtained with the inclusion time of 2 h and β-CD/LCEO ratio of 4.2 at 44 °C. Under the condition, the greatest yield of 71.71% with entrapment efficiency of 33.60% and loading capacity of 9.07% was achieved. In addition, the structure and characteristic of LCEO/β-CD inclusion complex (LCEO/βCD-IC) were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), which indicated that LCEO/βCD-IC was successfully formed. The particle size of LCEO/βCD-IC was determined to be 17.852 μm. Thermal properties of LCEO/βCD-IC evaluated by thermogravimetric-differential scanning calorimetry (TG-DTA) illustrated better thermal stability of the aimed product compared with the physical mixture. Furthermore, the tests of antifungal activity showed that LCEO/βCD-IC was able to control the growth of Penicillium italicum, Penicillium digitatum, and Geotrichum citri-aurantii isolated from postharvest citrus. Our present study confirmed that LCEO/βCD-IC might be further applied as an alternative to chemical fungicides for protecting citrus fruit from postharvest disease.
Collapse
|
41
|
Preparation of Long-Term Antibacterial SiO2-Cinnamaldehyde Microcapsule via Sol-Gel Approach as a Functional Additive for PBAT Film. Processes (Basel) 2020. [DOI: 10.3390/pr8080897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mesoporous silica wall materials can achieve controlled load and sustained-release of active agents. An antimicrobial nanoscale silica microcapsule containing cinnamaldehyde (CA) was prepared by the sol-gel method and applied in poly (butyleneadipate-co-terephthalate) (PBAT) film. The surface morphology, physical and chemical properties, and antibacterial properties of microcapsules and films were studied. The effects of different temperatures and humidities on the release behavior of microcapsules were also evaluated. Results showed that CA was successfully encapsulated in silica microcapsule which had a diameter of 450–700 nm. The antibacterial CA agent had a long-lasting release time under lower temperature and relative humidity (RH) environment. At low temperature (4 °C), the microcapsules released CA 32.35% in the first 18 h, and then slowly released to 56.08% in 216 h; however, the microcapsules released more than 70% in 18 h at 40 °C. At low humidity (50%RH), the release rates of microcapsules at the 18th h and 9th d were 43.04% and 78.01%, respectively, while it reached to equilibrium state at 72 h under 90% RH. The sustained release process of CA in SiO2-CA microcapsules follows a first-order kinetic model. Physicochemical properties of PBAT films loaded with different amounts of microcapsules were also characterized. Results showed that the tensile strength and water vapor transmission rate (WVTR) of the composite film containing 2.5% microcapsules were increased by 26.98% and 14.61%, respectively, compared to the raw film, while the light transmittance was slightly reduced. The crystallinity of the film was improved and can be kept stable up to 384.1 °C. Furthermore, microcapsules and composite film both exhibited distinctive antibacterial effect on Escherichia coli and Listeria monocytogenes. Therefore, SiO2-CA microcapsules and composite films could be a promising material for the active packaging.
Collapse
|
42
|
Antifungal and Phytotoxic Activities of Essential Oils: In Vitro Assays and Their Potential Use in Crop Protection. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
(1) Background: The use of natural products based on essential oils (EO) is nowadays arousing great interest as an alternative method to control plant pathogens and weeds. However, EO possess low bioavailability and are highly volatile, and their encapsulation in hydroxypropyl-ß-cyclodextrin (HP-β-CD) could be a means to enhance their stability and maintain their bioactivity. Thus, the current study aims at investigating, in the presence and the absence of HP-β-CD, the antifungal and phytotoxic activities of nine EO, distilled from plant species belonging to Alliaceae, Apiaceae, and Cupressaceae families, with considerations for their chemical composition. (2) Methods: EO antifungal activity was assessed by direct contact and volatility assays against Fusarium culmorum, a major phytopathogenic fungi, while phytotoxic effects were evaluated against lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), by seedling’s emergence and growth assays. (3) Results: These EO inhibit fungal growth in both direct contact and volatility assays, with half-maximal inhibitory concentrations (IC50) ranging from 0.01 to 4.2 g L−1, and from 0.08 up to 25.6 g L−1, respectively. Concerning phytotoxicity, these EO have shown great potential in inhibiting lettuce (IC50 ranging from 0.0008 up to 0.3 g L−1) and rye-grass (IC50 ranging from 0.01 to 0.8 g L−1) seedlings’ emergence and growth. However, the EO encapsulation in HP-β-CD has not shown a significant improvement in EO biological properties in our experimental conditions. (4) Conclusion: All tested EO present antifungal and phytotoxic activities, with diverse efficacy regarding their chemical composition, whilst no increase of their biological effects was observed with HP-β-CD.
Collapse
|
43
|
Hui BY, Zain NNM, Mohamad S, Prabu S, Osman H, Raoov M. A comprehensive molecular insight into host-guest interaction of Phenanthrene with native and ionic liquid modified β-cyclodextrins: Preparation and characterization in aqueous medium and solid state. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Han X, Zhang Z, Shen H, Zheng J, Zhang G. Comparison of structures, physicochemical properties and in vitro bioactivity between ferulic acid-β-cyclodextrin conjugate and the corresponding inclusion complex. Food Res Int 2019; 125:108619. [DOI: 10.1016/j.foodres.2019.108619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
|
45
|
Hu Y, Qiu C, Jin Z, Qin Y, Zhan C, Xu X, Wang J. Pickering emulsions with enhanced storage stabilities by using hybrid β-cyclodextrin/short linear glucan nanoparticles as stabilizers. Carbohydr Polym 2019; 229:115418. [PMID: 31826463 DOI: 10.1016/j.carbpol.2019.115418] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 12/11/2022]
Abstract
Stable Pickering emulsions were prepared by using hybrid β-cyclodextrin/short linear glucan nanoparticles (β-CD/SLG NPs). The β-CD/SLG NPs displayed spherical shape and with an average size at around 60 nm. Newly formed SLG-β-CD structure in the nanoparticles was thought the main reason for the improved thermal stability, alleviated aggregation, and improved dispersity in aqueous systems. Depending on the contact angle and zeta-potential results, unique emulsifying mechanism of β-CD/SLG NPs was existed. The formation of inclusion complex between β-CD and oil molecules accelerated the adsorption of the whole nanoparticles at the oil-water interface, while the swelling of SLG contributed to the long-term stability (6 months) of emulsions. Once the hybrid ratio of β-CD/SLG NPs reached saturation (1:1), excess β-CD led to co-emulsifying effect of both the hybrid regions and easily dissociated β-CD regions. These hybrid β-CD/SLG NPs showed superiority with great potential in applications to the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yao Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yang Qin
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chen Zhan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jinpeng Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|