1
|
Agulló V, García-Viguera C, Medina S, Domínguez-Perles R. Bioaccessible (Poly)phenols of Winery Byproducts Modulate Pathogenic Mediators of Intestinal Bowel Disease: In Vitro Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40267141 DOI: 10.1021/acs.jafc.5c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Intestinal inflammation entails a multifactorial pathophysiology, frequently treated by using anti-inflammatory drugs with severe side effects. At the same time, bioactive compounds present in plant materials and derived residues could contribute to reducing the use of such medications in terms of dosage and treatment length. Thus, the phytochemicals of winery byproducts, mainly represented by (poly)phenols, display significant anti-inflammatory and antioxidant potential. However, the functionality of bioaccessible fractions remains underexplored. This study uncovers the capacity of bioaccessible (poly)phenols of winery byproducts to modulate inflammatory mediators and secondary oxidative stress (OS). After in vitro simulated digestion, bioaccessible (poly)phenols exhibited significant inhibitory capacity of nitric oxide, interleukin (IL)-6, IL-8, and TNF-α production and prevented OS, lowering reactive oxygen species (ROS) resulting from disturbed cell metabolism while preserving the molecular machinery of cells, involving glutathione, catalase, superoxide dismutase, and glutathione peroxidase. The results retrieved suggested the relevance of specific profiles for efficiently preventing inflammation.
Collapse
Affiliation(s)
- Vicente Agulló
- Departamento de Tecnología Agroalimentaria, EPSO, Universidad Miguel Hernández, Carretera Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| |
Collapse
|
2
|
Milinčić DD, Stanisavljević NS, Pešić MM, Kostić AŽ, Stanojević SP, Pešić MB. The Bioaccessibility of Grape-Derived Phenolic Compounds: An Overview. Foods 2025; 14:607. [PMID: 40002051 PMCID: PMC11854561 DOI: 10.3390/foods14040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Grape-derived phenolic compounds possess many health benefits, but their biological effectiveness and their effects on human health depend directly on bioaccessibility. Different physiological conditions, interactions with food compounds (proteins, lipids, and carbohydrates), and/or microbial transformations affect the solubilization and stability of phenolic compounds, thus altering their bioaccessibility and biological activity. Previously published review articles on grape-derived phenolic compounds have focused on characterization, transformation during winemaking, various applications, and health benefits, but the literature lacks a comprehensive overview of the bioaccessibility of these compounds during gastrointestinal digestion. In this context, models of gastrointestinal digestion and factors affecting the bioaccessibility of phenolic compounds were considered to understand the behavior of grape-derived phenolic compounds during digestion in the absence or presence of different food matrices. Finally, this review should enable the development of novel food products with targeted bioaccessibility of grape-derived phenolic compounds.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (M.M.P.); (A.Ž.K.); (S.P.S.)
| | - Nemanja S. Stanisavljević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O. Box 23, 11010 Belgrade, Serbia;
| | - Milica M. Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (M.M.P.); (A.Ž.K.); (S.P.S.)
| | - Aleksandar Ž. Kostić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (M.M.P.); (A.Ž.K.); (S.P.S.)
| | - Slađana P. Stanojević
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (M.M.P.); (A.Ž.K.); (S.P.S.)
| | - Mirjana B. Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (M.M.P.); (A.Ž.K.); (S.P.S.)
| |
Collapse
|
3
|
Kondrashina A, Arranz E, Cilla A, Faria MA, Santos-Hernández M, Miralles B, Hashemi N, Rasmussen MK, Young JF, Barberá R, Mamone G, Tomás-Cobos L, Bastiaan-Net S, Corredig M, Giblin L. Coupling in vitro food digestion with in vitro epithelial absorption; recommendations for biocompatibility. Crit Rev Food Sci Nutr 2024; 64:9618-9636. [PMID: 37233192 DOI: 10.1080/10408398.2023.2214628] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As food transits the gastrointestinal tract, food structures are disrupted and nutrients are absorbed across the gut barrier. In the past decade, great efforts have focused on the creation of a consensus gastrointestinal digestion protocol (i.e., INFOGEST method) to mimic digestion in the upper gut. However, to better determine the fate of food components, it is also critical to mimic food absorption in vitro. This is usually performed by treating polarized epithelial cells (i.e., differentiated Caco-2 monolayers) with food digesta. This food digesta contains digestive enzymes and bile salts, and if following the INFOGEST protocol, at concentrations that although physiologically relevant are harmful to cells. The lack of a harmonized protocol on how to prepare the food digesta samples for downstream Caco-2 studies creates challenges in comparing inter laboratory results. This article aims to critically review the current detoxification practices, highlight potential routes and their limitations, and recommend common approaches to ensure food digesta is biocompatible with Caco-2 monolayers. Our ultimate aim is to agree a harmonized consensus protocol or framework for in vitro studies focused on the absorption of food components across the intestinal barrier.
Collapse
Affiliation(s)
- Alina Kondrashina
- Global Research and Technology Centre, H&H Group, H&H Research, Fermoy, Ireland
| | - Elena Arranz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Miguel A Faria
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| | - Marta Santos-Hernández
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research laboratories, Addenbrooke's Hospital, Cambridge, UK
| | - Beatriz Miralles
- Institute of Food Science Research CIAL (CSIC-UAM), Madrid, Spain
| | - Negin Hashemi
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | | | - Jette F Young
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Gianfranco Mamone
- Institute of Food Sciences - National Research Council, Avellino, Italy
| | - Lidia Tomás-Cobos
- In vitro preclinical studies department, AINIA, Avenida Benjamín Franklin 5-11, Parque Tecnológico de Valencia, Paterna, Spain
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, WG Wageningen, The Netherlands
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork, Ireland
| |
Collapse
|
4
|
Chen X, Liu S, Song H, Yuan C, Li J. Evaluation of biological activity and prebiotic properties of proanthocyanidins with different degrees of polymerization through simulated digestion and in vitro fermentation by human fecal microbiota. Food Chem 2024; 447:139015. [PMID: 38513492 DOI: 10.1016/j.foodchem.2024.139015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
The bioactive activity of proanthocyanidins (PAs) is closely associated with their degree of polymerization (DP), however, the effects of PAs with different DP on digestion and gut microbiota have remained unclear. To investigate this, we conducted in vitro simulated digestion and colonic fermentation studies on samples of PAs with different DP. The results showed that PAs was influenced by both protein precipitation and enzymolysis, resulting in a decrease in functional activity. PAs with a high DP were more sensitive to the gastrointestinal environment. The significant clustering trend in colonic fermentation verified the reliability of multivariate statistical techniques for screening samples with distinct functional differences. The gut microbiota analysis showed that oligomeric PAs had a stronger promoting effect on beneficial bacteria, while high polymeric PAs had a greater inhibitory effect on harmful bacteria. This study offers new insights into the biological activity and microbiological mechanisms of PAs with different DP.
Collapse
Affiliation(s)
- Xiaoyi Chen
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Shuai Liu
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Hong Song
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China.
| | - Junjun Li
- College of Enology, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
5
|
Altuntas S, Korukluoglu M. Biological activity of optimized phenolic extracts of quince (Cydonia oblonga Miller) parts before and after simulated in vitro gastrointestinal digestion. Food Chem 2024; 437:137846. [PMID: 37924760 DOI: 10.1016/j.foodchem.2023.137846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
In this study, the phenolic extracts of Eşme quince parts (pulp, peel, seed, juice, and leaf) were obtained under optimized extraction conditions. Then, the total phenolic content (TPC), the quantities of main phenolic compounds, antioxidant, and antimicrobial activity and the change in bioactivity properties (TPC, antioxidant capacity, and antimicrobial activity on the same sixteen microorganisms) after in vitro digestion of each quince part were evaluated. The order of TPC and antioxidant activity was determined as leaf > peel > juice > pulp > seed. After in vitro gastrointestinal digestion, a decrease was observed for the TPC (average 5-fold reduction) and antioxidant activity (more than 2.5-fold reduction) in all quince parts except quince seed than their extract forms. The quince leaf extract exhibited the highest antibacterial activity. Overall, this study exhibited that the quince leaf was considered a promising, cheap, and natural source for nutritional or pharmaceutical applications with biological activity properties.
Collapse
Affiliation(s)
- Seda Altuntas
- Bursa Technical University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, 16330 Bursa, Turkey.
| | - Mihriban Korukluoglu
- Bursa Uludağ University, Faculty of Agriculture, Department of Food Engineering, 16059 Bursa, Turkey
| |
Collapse
|
6
|
Fabjanowicz M, Różańska A, Abdelwahab NS, Pereira-Coelho M, Haas ICDS, Madureira LADS, Płotka-Wasylka J. An analytical approach to determine the health benefits and health risks of consuming berry juices. Food Chem 2024; 432:137219. [PMID: 37647705 DOI: 10.1016/j.foodchem.2023.137219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Food products composition analysis is a prerequisite for verification of product quality, fulfillment of regulatory enforcements, checking compliance with national and international food standards, contracting specifications, and nutrient labeling requirements and providing quality assurance for use of the product for the supplementation of other foods. These aspects also apply to the berry fruit and berry juice. It also must be noted that even though fruit juices are generally considered healthy, there are many risks associated with mishandling both fruits and juices themselves. The review gathers information related with the health benefits and risk associated with the consumption of berry fruit juices. Moreover, the focus was paid to the quality assurance of berry fruit juice. Thus, the analytical methods used for determination of compounds influencing the sensory and nutritional characteristics of fruit juice as well as potential contaminants or adulterations.
Collapse
Affiliation(s)
- Magdalena Fabjanowicz
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Anna Różańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Nada S Abdelwahab
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marina Pereira-Coelho
- Departament of Chemistry, Federal University of Santa Catarina, Des. Vitor Lima Av., Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Isabel Cristina da Silva Haas
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga Rd., 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | | | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| |
Collapse
|
7
|
Nicolescu A, Babotă M, Barros L, Rocchetti G, Lucini L, Tanase C, Mocan A, Bunea CI, Crișan G. Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Front Nutr 2023; 10:1184535. [PMID: 37575331 PMCID: PMC10415696 DOI: 10.3389/fnut.2023.1184535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Nutraceuticals and functional foods are composed of especially complex matrices, with polyphenols, carotenoids, minerals, and vitamins, among others, being the main classes of phytochemicals involved in their bioactivities. Despite their wide use, further investigations are needed to certify the proper release of these phytochemicals into the gastrointestinal medium, where the bioaccessibility assay is one of the most frequently used method. The aim of this review was to gather and describe different methods that can be used to assess the bioaccessibility of nutraceuticals and functional foods, along with the most important factors that can impact this process. The link between simulated digestion testing of phytochemicals and their in vitro bioactivity is also discussed, with a special focus on the potential of developing nutraceuticals and functional foods from simple plant materials. The bioactive potential of certain classes of phytochemicals from nutraceuticals and functional foods is susceptible to different variations during the bioaccessibility assessment, with different factors contributing to this variability, namely the chemical composition and the nature of the matrix. Regardless of the high number of studies, the current methodology fails to assume correlations between bioaccessibility and bioactivity, and the findings of this review indicate a necessity for updated and standardized protocols.
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Lillian Barros
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Claudiu I. Bunea
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Jakobek L, Blesso C. Beneficial effects of phenolic compounds: native phenolic compounds vs metabolites and catabolites. Crit Rev Food Sci Nutr 2023; 64:9113-9131. [PMID: 37140183 DOI: 10.1080/10408398.2023.2208218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the human body, the positive effects of phenolic compounds are increasingly observed through their presence in tissues and organs in their native form or in the form of metabolites or catabolites formed during digestion, microbial metabolism, and host biotransformation. The full extent of these effects is still unclear. The aim of this paper is to review the current knowledge of beneficial effects of native phenolic compounds or their metabolites and catabolites focusing on their role in the health of the digestive system, including disorders of the gastrointestinal and urinary tracts and liver. Studies are mostly connecting beneficial effects in the gastrointestinal and urinary tract to the whole food rich in phenolics, or to the amount of phenolic compounds/antioxidants in food. Indeed, the bioactivity of parent phenolic compounds should not be ignored due to their presence in the digestive tract, and the impact on the gut microbiota. However, the influence of their metabolites and catabolites might be more important for the liver and urinary tract. Distinguishing between the effects of parent phenolics vs metabolites and catabolites at the site of action are important for novel areas of food industry, nutrition and medicine.
Collapse
Affiliation(s)
- Lidija Jakobek
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - Christopher Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
9
|
Dutra MDCP, Martins da Silva AB, de Souza Ferreira E, Carvalho AJDBA, Lima MDS, Telles Biasoto AC. Bioaccessibility of phenolic compounds from Brazilian grape juices using a digestion model with intestinal barrier passage. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
10
|
Muñoz-Bernal ÓA, Vazquez-Flores AA, de la Rosa LA, Rodrigo-García J, Martínez-Ruiz NR, Alvarez-Parrilla E. Enriched Red Wine: Phenolic Profile, Sensory Evaluation and In Vitro Bioaccessibility of Phenolic Compounds. Foods 2023; 12:foods12061194. [PMID: 36981121 PMCID: PMC10048746 DOI: 10.3390/foods12061194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
The beneficial health effect of red wine depends on its phenolic content and the phenolic content in red wines is affected by ecological, agricultural, and enological practices. Enriched wines have been proposed as an alternative to increase the phenolic content in wines. Nevertheless, phenolic compounds are related to the sensory characteristics of red wines, so enrichment of red wines requires a balance between phenolic content and sensory characteristics. In the present study, a Merlot red wine was enriched with a phenolic extract obtained from Cabernet Sauvignon grape pomace. Two levels of enrichment were evaluated: 4 and 8 g/L of total phenolic content (gallic acid equivalents, GAE). Wines were evaluated by a trained panel to determine their sensory profile (olfactive, visual, taste, and mouthfeel phases). The bioaccessibility of phenolic compounds from enriched red wines was evaluated using an in vitro digestive model and phenolic compounds were quantified by High Performance Liquid Chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Enrichment increased mainly flavonols and procyanidins. Such an increase impacted astringency and sweetness perceived by judges. This study proposes an alternative to increase the phenolic content in wines without modifying other main sensory characteristics and offers a potential beneficial effect on the health of consumers.
Collapse
Affiliation(s)
- Óscar A. Muñoz-Bernal
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Alma A. Vazquez-Flores
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Laura A. de la Rosa
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Joaquín Rodrigo-García
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Nina R. Martínez-Ruiz
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Emilio Alvarez-Parrilla
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
- Correspondence: ; Tel.: +52-(656)-688-21-00 (ext. 1562)
| |
Collapse
|
11
|
Nieto JA, Fernández-Jalao I, Siles-Sánchez MDLN, Santoyo S, Jaime L. Implication of the Polymeric Phenolic Fraction and Matrix Effect on the Antioxidant Activity, Bioaccessibility, and Bioavailability of Grape Stem Extracts. Molecules 2023; 28:molecules28062461. [PMID: 36985434 PMCID: PMC10051231 DOI: 10.3390/molecules28062461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The bioaccessibility and bioavailability of phenolics compounds of two grape stem extracts with different composition were studied. High polymeric extract (HPE) presented a higher content of total phenolics (TPC), procyanidins, hemicelluloses, proteins, and ashes, whereas low procyanidin extract (LPE) showed a higher fat, soluble sugars, and individual phenolic compounds content. Corresponding to its higher total phenolics content, HPE possesses a higher antioxidant activity (TEAC value). The digestion process reduced the antioxidant activity of the HPE up to 69%, due to the decrease of TPC (75%) with a significant loss of polymeric compounds. LPE antioxidant activity was stable, and TPC decreased by only 13% during the digestion process. Moreover, a higher antioxidant phenolic compounds bioavailability was shown in LPE in contrast to HPE. This behaviour was ascribed mainly to the negative interaction of polymeric fractions and the positive interaction of lipids with phenolic compounds. Therefore, this study highlights the convenience of carrying out previous studies to identify the better extraction conditions of individual bioavailable phenolic compounds with antioxidant activity, along with those constituents that could increase their bioaccessibility and bioavailability, such as lipids, although the role played by other components, such as hemicelluloses, cannot be ruled out.
Collapse
Affiliation(s)
- Juan Antonio Nieto
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Irene Fernández-Jalao
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - María de Las Nieves Siles-Sánchez
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| |
Collapse
|
12
|
Bojarczuk A, Dzitkowska-Zabielska M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients 2022; 15:nu15010158. [PMID: 36615815 PMCID: PMC9823453 DOI: 10.3390/nu15010158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Antioxidants in sports exercise training remain a debated research topic. Plant-derived polyphenol supplements are frequently used by athletes to reduce the negative effects of exercise-induced oxidative stress, accelerate the recovery of muscular function, and enhance performance. These processes can be efficiently modulated by antioxidant supplementation. The existing literature has failed to provide unequivocal evidence that dietary polyphenols should be promoted specifically among athletes. This narrative review summarizes the current knowledge regarding polyphenols' bioavailability, their role in exercise-induced oxidative stress, antioxidant status, and supplementation strategies in athletes. Overall, we draw attention to the paucity of available evidence suggesting that most antioxidant substances are beneficial to athletes. Additional research is necessary to reveal more fully their impact on exercise-induced oxidative stress and athletes' antioxidant status, as well as optimal dosing methods.
Collapse
|
13
|
Bioavailability Assessment of Yarrow Phenolic Compounds Using an In Vitro Digestion/Caco-2 Cell Model: Anti-Inflammatory Activity of Basolateral Fraction. Molecules 2022; 27:molecules27238254. [PMID: 36500344 PMCID: PMC9740014 DOI: 10.3390/molecules27238254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, a combined in vitro digestion/Caco-2 model was performed with the aim to determine the phenolic compounds bioavailability of two yarrow extracts. HPLC-PAD characterisation indicated that the main components in both extracts were 3,5-dicaffeoylquinic acid (DCQA) and luteolin-7-O-glucoside. Analyses after the simulated digestion process revealed that phenolic composition was not affected during the oral phase, whereas gastric and intestinal phases represented critical steps for some individual phenolics, especially intestinal step. The transition from gastric medium to intestinal environment caused an important degradation of 3,5-DCQA (63-67% loss), whereas 3,4-DCQA and 4,5-DCQA increased significantly, suggesting an isomeric transformation within these caffeic acid derivatives. However, an approx. 90% of luteolin-7-O-glucoside was recovered after intestinal step. At the end of Caco-2 absorption experiments, casticin, diosmetin and centaureidin represented the most abundant compounds in the basolateral fraction. Moreover, this fraction presented anti-inflammatory activity since was able to inhibit the secretion of IL-1β and IL-6 pro-inflammatory cytokines. Thus, the presence in the basolateral fraction of flavonoid-aglycones from yarrow, could be related with the observed anti-inflammatory activity from yarrow extract.
Collapse
|
14
|
Yang C, Han Y, Tian X, Sajid M, Mehmood S, Wang H, Li H. Phenolic composition of grape pomace and its metabolism. Crit Rev Food Sci Nutr 2022; 64:4865-4881. [PMID: 36398354 DOI: 10.1080/10408398.2022.2146048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Grape pomace is the most important residual after wine making, and it is considered to be a very abundant source for the extraction of a wide range of polyphenols. These polyphenols exhibit a variety of bioactivities, such as antioxidant, anti-inflammatory, and anti-cancer. They are also beneficial in alleviating metabolic syndrome and regulating intestinal flora, etc. These health effects are most likely contributed by polyphenol metabolite, which are formed by the grape pomace phenolics after a complex metabolic process in vivo. Therefore, understanding the phenolic composition of grape pomace and its metabolism is the basis for an in-depth study of the biological activity of grape pomace polyphenols. In this paper, we first summarize the composition of phenolics in grape pomace, then review the recent studies on the metabolism of grape pomace phenolics, including changes in phenolics in the gastrointestinal tract, their pharmacokinetics in the systemic circulation, the tissue distribution of phenolic metabolites, and the beneficial effects of metabolites on intestinal health, and finally summarize the effects of human health status and dietary fiber on the metabolism of grape polyphenols. It is expected to provide help for the in-depth research on the metabolism and biological activity of grape pomace polyphenol extracts, and to provide theoretical support for the development and utilization of grape pomace.
Collapse
Affiliation(s)
- Chenlu Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yulei Han
- College of Enology, Northwest A&F University, Yangling, China
| | - Xuelin Tian
- College of Enology, Northwest A&F University, Yangling, China
| | - Marina Sajid
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajid Mehmood
- College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
15
|
Jakobek L, Ištuk J, Tomac I, Matić P. β-Glucan and Aronia (<i>Aronia melanocarpa</i>) Phenolics: Interactions During <i>In Vitro</i> Simulated Gastrointestinal Digestion and Adsorption. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/155281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Simulated Gastric and Intestinal Fluid Electrolyte Solutions as an Environment for the Adsorption of Apple Polyphenols onto β-Glucan. Molecules 2022; 27:molecules27196683. [PMID: 36235220 PMCID: PMC9570717 DOI: 10.3390/molecules27196683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Interactions with dietary fibers in the gastrointestinal tract might affect the potential bioactivities of phenolic compounds. In this study, the interactions between apple phenolic compounds and β-glucan (a dietary fiber) were studied by studying the adsorption process in simulated gastric and intestinal fluid electrolyte solutions. Phenolic compounds were extracted from apples, adsorbed onto β-glucan (2 h, 37 °C, in gastric or intestinal fluid electrolyte solutions), and determined using high performance liquid chromatography. Phenolic compounds (flavan-3-ols, flavonols, phenolic acids, and dihydrochalcone) were stable in the gastric fluid (pH 3). In the intestinal fluid (pH 7), flavan-3-ols were not found and chlorogenic acid isomerized. Polyphenols from the apple peel (up to 182 and 897 mg g−1) and flesh (up to 28 and 7 mg g−1) were adsorbed onto β-glucan in the gastric and intestinal fluids, respectively. The adsorption was affected by the initial concentration of the polyphenols and β-glucan and by the environment (either gastric or intestinal fluid electrolyte solution). By increasing the initial polyphenol amount, the quantity of adsorbed polyphenols increased. Increasing the amount of β-glucan decreased the amount adsorbed. The results can be helpful in explaining the fate of phenolic compounds in the gastrointestinal tract.
Collapse
|
17
|
Assessing bioaccessibility and bioavailability in vitro of phenolic compounds from freeze-dried apple pomace by LC-Q-TOF-MS. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Gao Y, Yu XA, Wang B, Gu L, Ge Y, Zhu G, Sun K, Lu Y, Wang T, Bi K. Comparative pharmacokinetic study of twelve phenolic acids and flavonoids from red wine between control and coronary heart disease model rats by UFLC–MS/MS. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Grape Pomace Extract Attenuates Inflammatory Response in Intestinal Epithelial and Endothelial Cells: Potential Health-Promoting Properties in Bowel Inflammation. Nutrients 2022; 14:nu14061175. [PMID: 35334833 PMCID: PMC8953566 DOI: 10.3390/nu14061175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) implies the chronic inflammation of the gastrointestinal tract, combined with systemic vascular manifestations. In IBD, the incidence of cardiovascular disease appears to be related to an increase of oxidative stress and endothelial dysfunction. Grape pomace contains high levels of anti-oxidant polyphenols that are able to counteract chronic inflammatory symptoms. The aim of this study was to determine whether grape pomace polyphenolic extract (GPE) was able to mitigate the overwhelming inflammatory response in enterocyte-like cells and to improve vascular function. Intestinal epithelial Caco-2 cells, grown in monolayers or in co-culture with endothelial cells (Caco-2/HMEC-1), were treated with different concentrations of GPE (1, 5, 10 µg/mL gallic acid equivalents) for 2 h and then stimulated with lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α for 16 h. Through multiple assays, the expression of intestinal and endothelial inflammatory mediators, intracellular reactive oxygen species (ROS) levels and NF-κB activation, as well as endothelial-leukocyte adhesion, were evaluated. The results showed that GPE supplementation prevented, in a concentration-dependent manner, the intestinal expression and release of interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, and matrix metalloproteinases (MMP)-9 and MMP-2. In Caco-2 cells, GPE also suppressed the gene expression of several pro-inflammatory markers, such as IL-1β, TNF-α, macrophage colony-stimulating factor (M-CSF), C-X-C motif ligand (CXCL)-10, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and cyclooxygenase (COX)-2. The GPE anti-inflammatory effect was mediated by the inhibition of NF-κB activity and reduced intracellular ROS levels. Furthermore, transepithelial GPE suppressed the endothelial expression of IL-6, MCP-1, VCAM-1, and ICAM-1 and the subsequent adhesion of leukocytes to the endothelial cells under pro-inflammatory conditions. In conclusion, our findings suggest grape pomace as a natural source of polyphenols with multiple health-promoting properties that could contribute to the mitigation of gut chronic inflammatory diseases and improve vascular endothelial function.
Collapse
|
20
|
Ozkan K, Karadag A, Sagdic O. The effects of different drying methods on the in vitro bioaccessibility of phenolics, antioxidant capacity, minerals and morphology of black ‘Isabel’ grape. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Kongdang P, Dukaew N, Pruksakorn D, Koonrungsesomboon N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114547. [PMID: 34425138 DOI: 10.1016/j.jep.2021.114547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Amaranthus is phytonutrients-rich plant distributed worldwide and has been recognized as having medicinal value in traditional use against several diseases and conditions. There are a large amount of research data on the polyphenol profiles of Amaranthus plants and their links with potential benefits against gastrointestinal disorders. AIM OF THE REVIEW This review article aims to provide a comprehensive review of Amaranthus phenolic compounds and their microbial metabolites, as well as the biological and/or pharmacological effects of those compounds/metabolites. METHODOLOGY The relevant information about the genus Amaranthus was collected from various sources and databases, including Google Scholar, Google Books, PubMed, Web of Science, Scopus, Science Direct, and other internet sources. The World Flora Online (2021) database was used to verify the scientific names of the plants. RESULTS Comprehensive review of identified compounds in Amaranthus plants revealed the presence of phenolic acids, flavonoids, and coumarins in each part of the plants. The biotransformation by gut microbiota enzymes prominently produces diverse bioactive metabolites that are potentially active than their precursors. Lines of the evidence support the beneficial roles of Amaranthus extracts in several gastrointestinal diseases, particularly with the polar extracts of several plant parts. Dietary fibers in Amaranthus plants also coordinate the alteration of gut microbiota-related metabolisms and may be beneficial to certain gastrointestinal disorders in particular, such as constipation. CONCLUSIONS Amaranthus plants are rich in polyphenols and dietary fibers. Several microbial metabolites are biologically active, so alteration of gut microbiota is largely linked to the metabolic feature of the plants. Based on the evidence available to date, several Amaranthus plants containing a combination of phytonutrients, particularly polyphenols and dietary fibers, may be a promising candidate that is of interest to be further developed for use in the treatment of certain gastrointestinal conditions/disorders.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
22
|
García-Martínez DJ, Arroyo-Hernández M, Posada-Ayala M, Santos C. The High Content of Quercetin and Catechin in Airen Grape Juice Supports Its Application in Functional Food Production. Foods 2021; 10:foods10071532. [PMID: 34359402 PMCID: PMC8306294 DOI: 10.3390/foods10071532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Ensuring healthy lives and well-being constitutes one of the Sustainable Development Goals of the UN 2030 agenda. Consequently, research into how natural products may promote health is essential for the new generation of nutraceuticals and functional foods that are in high demand today. Grape juice is a natural foodstuff composed of water, sugars, minerals, vitamins and a wide array of polyphenols. Polyphenols are bioactive compounds of great interest due to their antioxidant properties and benefits to health, supporting antimicrobial, anti-aging, and anticarcinogenic activity. The majority of grape juice produced in the world is used for the production of wine, although a small part is used in the food industry, mainly in baby food and sports drinks. The aim of this work is to determine the polyphenol content in the natural and concentrated juice of Airen grapes, the main white grape variety produced in Spain. For this, fresh juices from five grape varietals (Airen, Sauvignon Blanc, Gewürztraminer, Verdejo and Tempranillo) and concentrated Airen juice were analyzed and compared. Results showed similar contents of phenolic acids and stilbenes in all grape varietals studied, although the Airen variety demonstrated a higher concentration of two flavonoids: quercetin and catechin. It can be concluded that the grape juice concentration process negatively affects the stability of these compounds, causing a reduction in the polyphenol content that ranges between 54–71%, with the exception of quercetin and catechin.
Collapse
|
23
|
Jakobek L, Ištuk J, Matić P, Skendrović Babojelić M. Interactions of polyphenols from traditional apple varieties 'Bobovac', 'Ljepocvjetka' and 'Crvenka' with β-Glucan during in vitro simulated digestion. Food Chem 2021; 363:130283. [PMID: 34120042 DOI: 10.1016/j.foodchem.2021.130283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/08/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Interactions between β-glucan and polyphenols might have an effect on polyphenol digestion and bioaccessibility. The influence of β-glucan on in vitro gastrointestinal digestion of polyphenols of traditional apple varieties was studied. Polyphenols were chemically and enzymatically extracted, and identified and quantified with high-performance liquid chromatography. Simulated digestion of peel and flesh of apples was conducted. Polyphenols released in digestion in lower amounts than occur naturally in apples. Their content increased from the oral to the gastric, then decreased in the intestinal phase (up to 21% (peel) and 16% (flesh) were recovered) where anthocyanins and flavan-3-ols were not found. β-glucan decreased (oral and intestinal digestion of peel) or increased (gastric digestion of peel; oral, gastric, intestinal digestion of flesh) the recovered polyphenols. Interactions between β-glucan, polyphenols and enzymes might have influenced these effects. β-glucan is suggested to increase the polyphenol content reaching lower parts of the digestive tract.
Collapse
Affiliation(s)
- Lidija Jakobek
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR 31000 Osijek, Croatia.
| | - Jozo Ištuk
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR 31000 Osijek, Croatia.
| | - Petra Matić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR 31000 Osijek, Croatia.
| | | |
Collapse
|
24
|
Szczepaniak O, Jokiel M, Stuper-Szablewska K, Szymanowska D, Dziedziński M, Kobus-Cisowska J. Can cornelian cherry mask bitter taste of probiotic chocolate? Human TAS2R receptors and a sensory study with comprehensive characterisation of new functional product. PLoS One 2021; 16:e0243871. [PMID: 33556063 PMCID: PMC7869990 DOI: 10.1371/journal.pone.0243871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022] Open
Abstract
Cornelian cherry (Cornus mas L.) fruits are a valuable source of bioactive compounds that are responsible for the perception of bitter taste of chocolate products. The aim of the study was to validate the inhibitory effect of Cornus mas on the TAS2R3 and TAS2R13 bitter taste receptors and to assess the effect of masking the bitter taste of dark chocolate with the help of the sensory panel. Dark chocolate was prepared with an addition of 5% of freeze-dried cornelian cherry fruits and 108 CFU/g of Bacillus coagulans probiotic strains. Effect on the TAS2R receptors was evaluated in specially transfected HEK293T cells, and the inhibition ratio was measured using the calcium release test. Moreover, the total polyphenol content, antioxidant activity and simulated intestinal in vitro digestion were determined for the samples. The tested chocolate products were rich in chlorogenic, caffeic and sinapic acids. The addition of cornelian cherry positively affected the antioxidant activity. The phytochemicals of Cornus mas decreased the TAS2R13 activity by 132% after a 2-minute interaction and, % at the same time, inhibited the TAS2R3 activity by 11.5. Meanwhile, chocolate with the addition of fruit was less bitter according to the sensory panel.
Collapse
Affiliation(s)
- Oskar Szczepaniak
- Department of Gastronomy Sciences and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
- * E-mail:
| | - Maria Jokiel
- PORT Polish Center for Technology Development, Wrocław, Poland
| | | | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Marcin Dziedziński
- Department of Gastronomy Sciences and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Sciences and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
25
|
Ferreira-Santos P, Ibarz R, Fernandes JM, Pinheiro AC, Botelho C, Rocha CMR, Teixeira JA, Martín-Belloso O. Encapsulated Pine Bark Polyphenolic Extract during Gastrointestinal Digestion: Bioaccessibility, Bioactivity and Oxidative Stress Prevention. Foods 2021; 10:foods10020328. [PMID: 33557122 PMCID: PMC7913864 DOI: 10.3390/foods10020328] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Polyphenolic extracts from pine bark have reported different biological actions and promising beneficial effects on human health. However, its susceptibility to environmental stresses (temperature, storage, etc.) and physiological human conditions prequires the development of efficient protection mechanisms to allow effective delivering of functionality. The aim of this work was to encapsulate pine bark extract rich phenolic compounds by spray-drying using maltodextrin, and understand the influence of encapsulation on the antioxidant and antimicrobial activity and bioaccessibility of phenolic compounds during gastrointestinal digestion. The optimized process conditions allowed good encapsulation efficiency of antioxidant phenolic compounds. The microencapsulation was effective in protecting those compounds during gastrointestinal conditions, controlling their delivery and enhancing its health benefits, decreasing the production of reactive oxygen species implicated in the process of oxidative stress associated with some pathologies. Finally, this encapsulation system was able to protect these extracts against acidic matrices, making the system suitable for the nutritional enrichment of fermented foods or fruit-based beverages, providing them antimicrobial protection, because the encapsulated extract was effective against Listeria innocua. Overall, the designed system allowed protecting and appropriately delivering the active compounds, and may find potential application as a natural preservative and/or antioxidant in food formulations or as bioactive ingredient with controlled delivery in pharmaceuticals or nutraceuticals.
Collapse
Affiliation(s)
- Pedro Ferreira-Santos
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.-M.F.); (A.C.P.); (C.B.); (C.M.R.R.)
| | - Raquel Ibarz
- Agrotecnio Center, Department of Food Technology, University of Lleida, 25003 Lleida, Spain; (R.I.); (O.M.-B.)
| | - Jean-Michel Fernandes
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.-M.F.); (A.C.P.); (C.B.); (C.M.R.R.)
| | - Ana Cristina Pinheiro
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.-M.F.); (A.C.P.); (C.B.); (C.M.R.R.)
| | - Cláudia Botelho
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.-M.F.); (A.C.P.); (C.B.); (C.M.R.R.)
| | - Cristina M. R. Rocha
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.-M.F.); (A.C.P.); (C.B.); (C.M.R.R.)
| | - José António Teixeira
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.-M.F.); (A.C.P.); (C.B.); (C.M.R.R.)
- Correspondence: ; Tel.: +351-253604406
| | - Olga Martín-Belloso
- Agrotecnio Center, Department of Food Technology, University of Lleida, 25003 Lleida, Spain; (R.I.); (O.M.-B.)
| |
Collapse
|
26
|
Brito C, Bertotti T, Primitivo MJ, Neves M, Pires CL, Cruz PF, Martins PAT, Rodrigues AC, Moreno MJ, Brito RMM, Campos MJ, Vaz DC, Pessoa MF, Lidon F, Reboredo F, Ribeiro VS. Corema album spp: Edible wild crowberries with a high content in minerals and organic acids. Food Chem 2020; 345:128732. [PMID: 33341558 DOI: 10.1016/j.foodchem.2020.128732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/04/2020] [Accepted: 11/21/2020] [Indexed: 11/30/2022]
Abstract
Edible wild plants are part of the ethnobotanical and gastronomic heritage of different geographical areas. Corema album (L.) D. Don is an endemic species of the dune systems of the Atlantic coast of the Iberian Peninsula. The aerial parts of Corema album are a source of nutrients and antioxidants. The Corema album white berry (Portuguese crowberry) is rich in calcium, iron, and zinc. The plant also shows high phenolic content and antioxidant capacity associated with the leaves, fruit, and flowers. The presence of organic acids, namely phenolic acids, such as hydroxycinnamic acids, and long chain polyunsaturated fatty acids (PUFAs) omega-3 and omega-6 has also been confirmed. Toxicity studies evaluated by cell viability tests with human intestinal epithelium model cells (Caco-2) have shown that, at low concentrations, plant extracts may present beneficial effects.
Collapse
Affiliation(s)
- Catarina Brito
- GeoBioTec, GeoBioSciences, GeoTechnologies and GeoEngineering, Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Taciana Bertotti
- MARE-IPLeiria, Marine and Environmental Sciences Centre, School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Maria João Primitivo
- GeoBioTec, GeoBioSciences, GeoTechnologies and GeoEngineering, Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Marta Neves
- MARE-IPLeiria, Marine and Environmental Sciences Centre, School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-630 Peniche, Portugal.
| | - Cristiana L Pires
- University of Coimbra, Coimbra Chemistry Centre (CQC), Chemistry Department, 3004-535 Coimbra, Portugal
| | - Pedro F Cruz
- University of Coimbra, Coimbra Chemistry Centre (CQC), Chemistry Department, 3004-535 Coimbra, Portugal.
| | - Patrícia A T Martins
- University of Coimbra, Coimbra Chemistry Centre (CQC), Chemistry Department, 3004-535 Coimbra, Portugal
| | - Ana Cristina Rodrigues
- CiTechCare, Centre for Innovative Care and Health Technology, School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal.
| | - Maria João Moreno
- University of Coimbra, Coimbra Chemistry Centre (CQC), Chemistry Department, 3004-535 Coimbra, Portugal.
| | - Rui M M Brito
- University of Coimbra, Coimbra Chemistry Centre (CQC), Chemistry Department, 3004-535 Coimbra, Portugal.
| | - Maria Jorge Campos
- MARE-IPLeiria, Marine and Environmental Sciences Centre, School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-630 Peniche, Portugal.
| | - Daniela C Vaz
- University of Coimbra, Coimbra Chemistry Centre (CQC), Chemistry Department, 3004-535 Coimbra, Portugal; CiTechCare, Centre for Innovative Care and Health Technology, School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal.
| | - Maria Fernanda Pessoa
- GeoBioTec, GeoBioSciences, GeoTechnologies and GeoEngineering, Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Fernando Lidon
- GeoBioTec, GeoBioSciences, GeoTechnologies and GeoEngineering, Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Fernando Reboredo
- GeoBioTec, GeoBioSciences, GeoTechnologies and GeoEngineering, Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Vânia S Ribeiro
- GeoBioTec, GeoBioSciences, GeoTechnologies and GeoEngineering, Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; CiTechCare, Centre for Innovative Care and Health Technology, School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal.
| |
Collapse
|
27
|
Šikuten I, Štambuk P, Andabaka Ž, Tomaz I, Marković Z, Stupić D, Maletić E, Kontić JK, Preiner D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020; 25:E5604. [PMID: 33260583 PMCID: PMC7731206 DOI: 10.3390/molecules25235604] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Željko Andabaka
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Zvjezdana Marković
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Stupić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
28
|
Moreno-Ortega A, Pereira-Caro G, Ordóñez JL, Moreno-Rojas R, Ortíz-Somovilla V, Moreno-Rojas JM. Bioaccessibility of Bioactive Compounds of 'Fresh Garlic' and 'Black Garlic' through In Vitro Gastrointestinal Digestion. Foods 2020; 9:E1582. [PMID: 33142731 PMCID: PMC7693347 DOI: 10.3390/foods9111582] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have reported health benefits associated with the consumption of fresh and black garlic, which are characterized by the presence of polyphenols and organosulfur compounds (OS). This study aims to analyze the bioaccessibility of the bioactive compounds in fresh and black garlic after in vitro gastrointestinal digestion by monitoring the individual profile of these compounds by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). Polyphenols decreased from the beginning of the digestive process, is mainly affected during intestinal digestion. Regarding the OS, the S-alk(en)yl-L-cysteine (SACs) derivatives were more influenced by the acidic conditions of the gastric digestion, while the γ-glutamyl-S-alk(en)yl-L-cysteine (GSAk) derivatives were more susceptible to intestinal digestion conditions in both the fresh and black garlic samples. In conclusion, after in vitro gastrointestinal digestion, the compounds with the highest bioaccessibility were vanillic acid (69%), caffeic acid (52%), γ-glutamyl-S-methyl-L-cysteine sulfoxide (GSMCS) (77%), and S-allylmercapto-L-cysteine (SAMC) (329%) in fresh garlic. Meanwhile, in black garlic, the main bioaccessible compounds were caffeic acid (65%), GSMCS (89%), methionine sulfoxide (262%), trans-S-(1-propenyl)-L-cysteine (151%), and SAMC (106%). The treatment (heating + humidity) to obtain black garlic exerted a positive effect on the bioaccessibility of OS compounds, 55.3% of them remaining available in black garlic, but only 15% in fresh garlic. Polyphenols showed different behavior regarding bioaccessibility.
Collapse
Affiliation(s)
- Alicia Moreno-Ortega
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (A.M.-O.); (G.P.-C.); (J.L.O.); (V.O.-S.)
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-anexo Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Gema Pereira-Caro
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (A.M.-O.); (G.P.-C.); (J.L.O.); (V.O.-S.)
| | - José Luis Ordóñez
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (A.M.-O.); (G.P.-C.); (J.L.O.); (V.O.-S.)
| | - Rafael Moreno-Rojas
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-anexo Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Víctor Ortíz-Somovilla
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (A.M.-O.); (G.P.-C.); (J.L.O.); (V.O.-S.)
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (A.M.-O.); (G.P.-C.); (J.L.O.); (V.O.-S.)
| |
Collapse
|
29
|
Haas ICDS, Marmitt DJ, Fedrigo IMT, Goettert MI, Bordignon-Luiz MT. Evaluation of antiproliferative and anti-inflammatory effects of non-pomace sediment of red grape juices (Vitis labrusca L.) in healthy and cancer cells after in vitro gastrointestinal simulation. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|