1
|
Xu J, CailianWang, Liu T, Luo R, Zheng C, Zhang Y, Lang X. Meat quality differences and protein molecular mechanisms affecting meat flavor in different breeds of Tibetan sheep analyzed by 4D label-free quantitative proteomics. Food Chem 2025; 480:143977. [PMID: 40138833 DOI: 10.1016/j.foodchem.2025.143977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/22/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
To evaluate the meat quality of the new breed of Panou sheep, the longissimus dorsi (LD) muscles of 1.5-year-old Panou sheep and the local breed of Oula sheep were selected for comparative analysis in terms of meat quality, and the molecular mechanisms influencing flavor were investigated using 4D label-free proteomics technology. The results revealed that the fiber density, tenderness, and brightness of the Panou sheep meat were lower than those of the Oula sheep, and the composition of amino acids and flavor substances made it possible to determine that the Panou sheep meat has a high-quality and distinctive flavor. Proteomic analysis indicated that the metabolic pathways that may be associated with meat flavor are amino acid catabolism and sugar metabolism. This study explored the role of proteins in the regulation of meat flavor in Tibetan sheep, which provides a reference for the identification of meat products and subsequent breed improvement.
Collapse
Affiliation(s)
- Jianfeng Xu
- Institute of Animal & Pasture Science and Green Agriculture, Gansu Academy of Agricultural Science, Lanzhou 730070, China; College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - CailianWang
- Institute of Animal & Pasture Science and Green Agriculture, Gansu Academy of Agricultural Science, Lanzhou 730070, China
| | - Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruirui Luo
- Institute of Animal & Pasture Science and Green Agriculture, Gansu Academy of Agricultural Science, Lanzhou 730070, China
| | - Chen Zheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanshu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xia Lang
- Institute of Animal & Pasture Science and Green Agriculture, Gansu Academy of Agricultural Science, Lanzhou 730070, China.
| |
Collapse
|
2
|
Ma Y, Han L, Hou S, Gui L, Yuan Z, Sun S, Yang C, Wang Z, Yang B. Potential mechanism of dietary palm kernel meal effect on muscle tenderness in Tibetan sheep revealed by proteomics and phosphorylated proteomics. Food Chem 2025; 478:143668. [PMID: 40068263 DOI: 10.1016/j.foodchem.2025.143668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/01/2025] [Accepted: 02/27/2025] [Indexed: 04/06/2025]
Abstract
The labe free proteomics technology and 4D labe free phosphorylation proteomics technology was used to systematically analyse the protein expression regulatory mechanisms of muscle tenderness. 59 differentially expressed proteins were screened by proteomic data analysis. Phosphorylated proteomic analysis showed 681 modified peptide levels were changed, of which 235 modified peptide levels corresponded to 132 proteins up-regulated and 446 modified peptide levels corresponded to 253 proteins down-regulated. Then, the two-omics analysis further predicted that the regulatory mechanism of tenderness was mainly based on glycolysis, regulating mitochondrial autophagy, apoptosis, AMPK and HIF-1 signaling pathway to regulate muscle tenderness, which was specifically manifested in the modulation of Ca2+ release to promote the degradation of myofibrillar fibrillar proteins by the relevant proteins, shortening of post-slaughter muscle glycolysis and reducing the degree of muscle glycolysis. Which was verified by WB, P53, ENO5, ALDOA, ENDOG and PINK1 were identified as potential factors for tenderness regulation.
Collapse
Affiliation(s)
- Ying Ma
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China.
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Shengnan Sun
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Chao Yang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Baochun Yang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| |
Collapse
|
3
|
Gagaoua M, Prieto N, Hopkins DL, Baldassini W, Zhang Y, López-Campos O, Albenzio M, Della Malva A. Electrical stimulation to improve meat quality: Factors at interplay, underlying biochemical mechanisms and a second look into the molecular pathways using proteomics. Meat Sci 2025; 219:109663. [PMID: 39303345 DOI: 10.1016/j.meatsci.2024.109663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ensuring consistent beef eating quality is paramount for meeting consumer demands and sustaining the meat industry. Electrical stimulation (ES) is a post-slaughter intervention used to accelerate post-mortem glycolysis, to avoid cold shortening, to control the tenderization rate of meat through sophisticated physical, chemical and biochemical mechanisms including proteolysis, to improve beef tenderness and to achieve normal pHu that might lead to positive impact on color. This review comprehensively examines the multifaceted effects of ES on beef quality, encompassing factors and settings influencing its efficacy and the underlying biochemical mechanisms revealed using traditional biochemistry methods. It then delves into the molecular pathways modulated by ES, as unveiled by muscle proteomics, aiming to provide a second look and an unprecedented understanding of the underlying biochemical mechanisms through an integrative proteomics analysis of low-voltage ES (LVES) proteomics studies. The proteins changing as a result of ES were gathered in a compendium of 67 proteins, from which 14 were commonly identified across studies. In-depth bioinformatics of this compendium allowed a comprehensive overview of the molecular signatures and interacting biochemical pathways behind electrically stimulated beef muscles. The proteins belong to interconnected molecular pathways including the ATP metabolic process and glycolysis, muscle structure and contraction, heat shock proteins, oxidative stress, proteolysis and apoptosis. Understanding the intricate interplay of molecular pathways behind ES could improve the efficiency of beef production, ensuring consistent meat quality and meeting consumer expectations. The integrative analysis approach performed in this study holds promise for the meat industry's sustainability and competitiveness.
Collapse
Affiliation(s)
| | - Nuria Prieto
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada
| | | | - Welder Baldassini
- School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, Brazil
| | - Yimin Zhang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Oscar López-Campos
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy
| | - Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy
| |
Collapse
|
4
|
Del Campo M, Montossi F, Soares de Lima JM, Brito G. Future cattle production: Animal welfare as a critical component of sustainability and beef quality, a South American perspective. Meat Sci 2025; 219:109672. [PMID: 39467361 DOI: 10.1016/j.meatsci.2024.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
The demand for animal protein is rising, increasing pressure on animal production systems and ecological resources. Ethical and environmental concerns are also growing worldwide, pushing for more sustainable food production systems. The international scientific community has raised concerns about misinformation regarding meat production processes and their harmful impact on the environment, animal welfare and human health consumption. It is crucial to provide accurate information based on science, implement an active communication strategy, and foster collaboration across the meat supply chain to demonstrate that livestock farming is part of the solution to climate change and sustainability issues. As a fundamental pillar of sustainability, animal welfare plays a crucial role in this scrutiny. The "social license to farm" hinges on animal welfare issues and those related to climate change, the environment and biodiversity. Animal welfare is gaining relevance in the market of farm animals and their products, shaping a nation's standing in the international community. Considering the potential advantages of the Southern cone of South America production systems regarding sustainability and animal welfare, several countries prioritise them in their science, technology transfer, innovation, and public policy agendas. Scientific research indicates that implementing effective animal handling and welfare practices has a demonstrably positive impact on individual animal temperament, the quality of the human-animal relationship, overall productivity, and meat quality while reducing the risks of accidents. Caring for the welfare of animals is not only a moral imperative but can also be a business decision that benefits all stakeholders.
Collapse
Affiliation(s)
- Marcia Del Campo
- National Institute of Agricultural Research, INIA Tacuarembó, Ruta 5, km 386, CP 45000, Uruguay.
| | - Fabio Montossi
- National Institute of Agricultural Research, INIA Tacuarembó, Ruta 5, km 386, CP 45000, Uruguay.
| | | | - Gustavo Brito
- National Institute of Agricultural Research, INIA Tacuarembó, Ruta 5, km 386, CP 45000, Uruguay.
| |
Collapse
|
5
|
Govindaiah PM, Maheswarappa NB, Banerjee R, Muthukumar M, Manohar BB, Mishra BP, Sen AR, Biswas AK. Decoding halal and jhatka slaughter: novel insights into welfare and protein biomarkers in slow-growing broiler chicken. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9160-9168. [PMID: 38988214 DOI: 10.1002/jsfa.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The first evidence of blood biochemical and proteomic changes in slow-growing broiler chicken subjected to ritual slaughter like halal (HS) and jhatka (JS) without stunning and commercial slaughter with electrical stunning (ES) was decoded. RESULTS Significant stress indicators like cortisol and triiodothyronine were markedly elevated in JS birds, whereas increased (P < 0.05) levels of lactate dehydrogenase and creatine kinase were observed in JS and ES birds. Two-dimensional gel electrophoresis coupled to MALDI-TOF MS elucidated the overabundance of glyceraldehyde-3-phosphate dehydrogenase and l-lactate dehydrogenase that are positively correlated with stress in JS broilers. Bioinformatic analysis explored the multifaceted landscape of molecular functions. CONCLUSION The study has uncovered that ritual slaughter performed without stunning against commercial slaughter with ES practices elicit varying levels of stress as evident from blood biochemistry and novel protein markers. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Prasad M Govindaiah
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Rituparna Banerjee
- Meat Proteomics Lab, ICAR-National Meat Research Institute, Hyderabad, India
| | | | - Balaji B Manohar
- Meat Proteomics Lab, ICAR-National Meat Research Institute, Hyderabad, India
| | - Bidyut Prava Mishra
- Department of Livestock Products Technology, College of Veterinary Science & Animal Husbandry, OUAT, Bhubaneswar, India
| | - Arup R Sen
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashim K Biswas
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
6
|
Patinho I, Antonelo DS, Delgado EF, Alessandroni L, Balieiro JCC, Contreras Castillo CJ, Gagaoua M. In-depth exploration of the high and normal pH beef proteome: First insights emphasizing the dynamic protein changes in Longissimus thoracis muscle from pasture-finished Nellore bulls over different postmortem times. Meat Sci 2024; 216:109557. [PMID: 38852285 DOI: 10.1016/j.meatsci.2024.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
This study aimed to evaluate for the first time the temporal dynamic changes in early postmortem proteome of normal and high ultimate pH (pHu) beef samples from the same cattle using a shotgun proteomics approach. Ten selected carcasses classified as normal (pHu < 5.8; n = 5) or high (pHu ≥ 6.2; n = 5) pHu beef from pasture-finished Nellore (Bos taurus indicus) bulls were sampled from Longissimus thoracis muscle at 30 min, 9 h and 44 h postmortem for proteome comparison. The temporal proteomics profiling quantified 863 proteins, from which 251 were differentially abundant (DAPs) between high and normal pHu at 30 min (n = 33), 9 h (n = 181) and 44 h (n = 37). Among the myriad interconnected pathways regulating pH decline during postmortem metabolism, this study revealed the pivotal role of energy metabolism, cellular response to stress, oxidoreductase activity and muscle system process pathways throughout the early postmortem. Twenty-three proteins overlap among postmortem times and may be suggested as candidate biomarkers to the dark-cutting condition development. The study further evidenced for the first time the central role of ribosomal proteins and histones in the first minutes after animal bleeding. Moreover, this study revealed the disparity in the mechanisms underpinning the development of dark-cutting beef condition among postmortem times, emphasizing multiple dynamic changes in the muscle proteome. Therefore, this study revealed important insights regarding the temporal dynamic changes that occur in early postmortem of high and normal muscle pHu beef, proposing specific pathways to determine the biological mechanisms behind dark-cutting determination.
Collapse
Affiliation(s)
- Iliani Patinho
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Daniel S Antonelo
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - Eduardo F Delgado
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Laura Alessandroni
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - Júlio C C Balieiro
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - Carmen J Contreras Castillo
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | | |
Collapse
|
7
|
Yang X, Bu X, Li Y, Shen R, Duan Y, Liu M, Ma X, Guo Z, Chen C, He L, Shi H, Kong X, Zhang L. Effects of oxidative stress and protein S-nitrosylation interactions on mitochondrial pathway apoptosis and tenderness of yak meat during postmortem aging. Food Res Int 2024; 191:114717. [PMID: 39059914 DOI: 10.1016/j.foodres.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
To reveal the interaction of oxidative stress and protein S-nitrosylation on mitochondrial pathway apoptosis and tenderness development in postmortem yak meat. Herein, we selected yak longissimus dorsi muscle as the research object and treated hydrogen peroxide (H2O2) with S-nitrosoglutathione agent (GSNO) as well as Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) in mixed injections with 0.9 % saline as a control group, followed by incubation at 4 °C for 12, 24, 72, 120 and 168 h. Results showed that this interaction significantly increased mitochondrial ROS and NO content (P < 0.05) while weakening the antioxidant capacity of GSH and TRX redox response systems or accelerating the Ca2+ release process, leading to mitochondrial functional impairment and increased apoptosis rate. Notably, the H2O2 + L-NAME group showed more pronounced apoptosis. Hence, we suggest that the interaction between oxidative stress and protein S-nitrosylation could positively regulate yak meat tenderization.
Collapse
Affiliation(s)
- Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xinrong Bu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruheng Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yufeng Duan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Mengying Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Gannan 747000, China
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei 812200, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
8
|
Tian R, Mahmoodi M, Tian J, Esmailizadeh Koshkoiyeh S, Zhao M, Saminzadeh M, Li H, Wang X, Li Y, Esmailizadeh A. Leveraging Functional Genomics for Understanding Beef Quality Complexities and Breeding Beef Cattle for Improved Meat Quality. Genes (Basel) 2024; 15:1104. [PMID: 39202463 PMCID: PMC11353656 DOI: 10.3390/genes15081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Consumer perception of beef is heavily influenced by overall meat quality, a critical factor in the cattle industry. Genomics has the potential to improve important beef quality traits and identify genetic markers and causal variants associated with these traits through genomic selection (GS) and genome-wide association studies (GWAS) approaches. Transcriptomics, proteomics, and metabolomics provide insights into underlying genetic mechanisms by identifying differentially expressed genes, proteins, and metabolic pathways linked to quality traits, complementing GWAS data. Leveraging these functional genomics techniques can optimize beef cattle breeding for enhanced quality traits to meet high-quality beef demand. This paper provides a comprehensive overview of the current state of applications of omics technologies in uncovering functional variants underlying beef quality complexities. By highlighting the latest findings from GWAS, GS, transcriptomics, proteomics, and metabolomics studies, this work seeks to serve as a valuable resource for fostering a deeper understanding of the complex relationships between genetics, gene expression, protein dynamics, and metabolic pathways in shaping beef quality.
Collapse
Affiliation(s)
- Rugang Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Maryam Mahmoodi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-133, Iran; (M.M.); (S.E.K.); (M.S.); (A.E.)
| | - Jing Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Sina Esmailizadeh Koshkoiyeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-133, Iran; (M.M.); (S.E.K.); (M.S.); (A.E.)
| | - Meng Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Mahla Saminzadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-133, Iran; (M.M.); (S.E.K.); (M.S.); (A.E.)
| | - Hui Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Xiao Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Yuan Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-133, Iran; (M.M.); (S.E.K.); (M.S.); (A.E.)
| |
Collapse
|
9
|
Alessandroni L, Sagratini G, Gagaoua M. Proteomics and bioinformatics analyses based on two-dimensional electrophoresis and LC-MS/MS for the primary characterization of protein changes in chicken breast meat from divergent farming systems: Organic versus antibiotic-free. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100194. [PMID: 38298469 PMCID: PMC10828576 DOI: 10.1016/j.fochms.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Proteomics is a key analytical method in meat research thanks to its potential in investigating the proteins at interplay in post-mortem muscles. This study aimed to characterize for the first time the differences in early post-mortem muscle proteomes of chickens raised under two farming systems: organic versus antibiotic-free. Forty post-mortem Pectoralis major muscle samples from two chicken strains (Ross 308 versus Ranger Classic) reared under organic versus antibiotic-free farming systems were characterized and compared using two-dimensional electrophoresis and LC-MS/MS mass spectrometry. Within antibiotic-free and organic farming systems, 14 and 16 proteins were differentially abundant between Ross 308 and Ranger Classic, respectively. Within Ross 308 and Ranger Classic chicken strains, 12 and 18 proteins were differentially abundant between organic and antibiotic-free, respectively. Bioinformatics was applied to investigate the molecular pathways at interplay, which highlighted the key role of muscle structure and energy metabolism. Antibiotic-free and organic farming systems were found to significantly impact the muscle proteome of chicken breast meat. This paper further proposes a primary list of putative protein biomarkers that can be used for chicken meat or farming system authenticity.
Collapse
Affiliation(s)
- Laura Alessandroni
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | | |
Collapse
|
10
|
Alessandroni L, Sagratini G, Bravo SB, Gagaoua M. Data-independent acquisition-based SWATH-MS proteomics profiling to decipher the impact of farming system and chicken strain and discovery of biomarkers of authenticity in organic versus antibiotic-free chicken meat. Curr Res Food Sci 2024; 8:100757. [PMID: 38736908 PMCID: PMC11087922 DOI: 10.1016/j.crfs.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
In the literature, there is a paucity of methods and tools that allow the identification of biomarkers of authenticity to discriminate organic and non-organic chicken meat products. Shotgun proteomics is a powerful tool that allows the investigation of the entire proteome of a muscle and/or meat sample. In this study, a shotgun proteomics approach using Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) has been applied for the first time to characterize and identify candidate protein biomarkers of authenticity in post-mortem chicken Pectoralis major muscles produced under organic and non-organic farming systems (antibiotic-free). The proteomics characterization was further performed within two chicken strains, these being Ross 308 and Ranger Classic, which differ in their growth rate. From the candidate protein biomarkers, the bioinformatics enrichment analyses revealed significant differences in the muscle proteome between the two chicken strains, which may be related to their genetic background and rearing conditions. The results further provided novel insights on the potential interconnected pathways at interplay that are associated with the differences as a consequence of farming system of chicken strain, such as muscle contraction and energy metabolism. This study could pave the way to more in-depth investigations in proteomics applications to assess chicken meat authenticity and better understand the impact of farming systems on the chicken muscle and meat quality.
Collapse
Affiliation(s)
- Laura Alessandroni
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032, Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032, Camerino, Italy
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | | |
Collapse
|
11
|
Schulte MD, Hochmuth KG, Steadham EM, Lonergan SM, Hansen SL, Huff-Lonergan E. Early postmortem beef muscle proteome and metabolome variations due to supranutritional zinc and ractopamine hydrochloride supplementation. J Anim Sci 2024; 102:skae272. [PMID: 39279203 PMCID: PMC11491740 DOI: 10.1093/jas/skae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024] Open
Abstract
It was hypothesized that the longissimus thoracis (LT) muscle proteome, phosphoproteome, and metabolome could explain postmortem metabolism and tenderness differences in muscle from cattle supplemented zinc (Zn) and/or ractopamine hydrochloride (RH). High percentage Angus steers (N = 20) were fed in a 2 × 2 factorial assigned to Zn and RH treatments: control (CON; n = 10; analyzed 36 mg Zn/kg dry matter [DM]) or supranutritional Zn supplementation (SUPZN; n = 10; control diet + 60 mg Zn/kg DM [from ZnSO4] + 60 mg Zn/kg DM [from Zn-amino acid complex]) for the entire 89-d trial. During the 28 d before harvest, steers were blocked by body weight within Zn treatments to RH treatments of 0 (NO; n = 10) or 300 mg (RAC; n = 10) per steer per day. Steers were harvested at the Iowa State Meat Laboratory, where pH decline (1, 3, 6, and 24 h postmortem) was measured. At 24 h postmortem, LT muscle sections were removed from carcasses, and steaks were analyzed for Warner-Bratzler shear force (WBSF) values at 1, 3, 7, and 14 d postmortem. Muscle samples were taken at 1 h, 1, 3, 7, and 14 d postmortem for the following analysis: troponin-T degradation (1, 3, 7, and 14 d postmortem), myosin heavy chain analysis (1 h postmortem), sarcoplasmic proteome analysis through tandem mass tagging analysis (1 h and 1 d postmortem), metabolome analysis (1 h and 1 d postmortem), and phosphoproteome analysis (1 h postmortem). SUPZN-NO tended to have a lower (P = 0.06) pH at 6 h postmortem and a lower WBSF value (P = 0.06) at 1 d postmortem. CON-RAC had a higher (P = 0.04) pH at 6 h postmortem and WBSF value (P < 0.01) at 1 d postmortem. A lower pH at 6 h postmortem and lower WBSF value at 1 d postmortem in the SUPZN-NO treatment was accompanied by more sorbitol and fructose at 1 d postmortem, and less myosin regulatory light chain 2 at 1 h postmortem, and less adenosine monophosphate deaminase 1 (AMPD1) at 1 d postmortem than all other treatments. A higher pH at 6 h postmortem and higher WBSF value at 1 d postmortem in CON-RAC and SUPZN-RAC was accompanied by more soluble structural proteins (troponin-T and myosin-7) at 1 h postmortem than CON-NO. At 1 h postmortem, CON-RAC had more glyceraldehyde-3-phosphate dehydrogenase than CON-NO or SUPZN-RAC. Differences in energy metabolism enzymes, metabolites, and structural proteins may affect ATP production, rigor development, and lactate buildup which may explain the differences in postmortem metabolism and tenderness development at 1 d postmortem.
Collapse
Affiliation(s)
- Matthew D Schulte
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | | | - Edward M Steadham
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Stephanie L Hansen
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
12
|
Gagaoua M, Suman SP, Purslow PP, Lebret B. The color of fresh pork: Consumers expectations, underlying farm-to-fork factors, myoglobin chemistry and contribution of proteomics to decipher the biochemical mechanisms. Meat Sci 2023; 206:109340. [PMID: 37708621 DOI: 10.1016/j.meatsci.2023.109340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The color of fresh pork is a crucial quality attribute that significantly influences consumer perception and purchase decisions. This review first explores consumer expectations and discrimination regarding pork color, as well as an overview of the underlying factors that, from farm-to-fork, contribute to its variation. Understanding the husbandry factors, peri- and post-mortem factors and consumer preferences is essential for the pork industry to meet market demands effectively. This review then delves into current knowledge of pork myoglobin chemistry, its modifications and pork discoloration. Pork myoglobin, which has certain peculiarities comparted to other meat species, plays a weak role in determining pork color, and a thorough understanding of the biochemical changes it undergoes is crucial to understand and improve color stability. Furthermore, the growing role of proteomics as a high-throughput approach and its application as a powerful research tool in meat research, mainly to decipher the biochemical mechanisms involved in pork color determination and identify protein biomarkers, are highlighted. Based on an integrative muscle biology approach, the available proteomics studies on pork color have enabled us to provide the first repertoire of pork color biomarkers, to shortlist and propose a list of proteins for evaluation, and to provide valuable insights into the interconnected biochemical processes implicated in pork color determination. By highlighting the contributions of proteomics in elucidating the biochemical mechanisms underlying pork color determination, the knowledge gained hold significant potential for the pork industry to effectively meet market demands, enhance product quality, and ensure consistent and appealing pork color.
Collapse
Affiliation(s)
| | - Surendranath P Suman
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States
| | | | | |
Collapse
|
13
|
Álvarez S, Mullen AM, Álvarez C, Hamill RM, O'Neill E, Gagaoua M. Impact of sampling location and aging on the Longissimus thoracis et lumborum muscle proteome of dry-aged beef. Meat Sci 2023; 205:109315. [PMID: 37625354 DOI: 10.1016/j.meatsci.2023.109315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
This study aimed to explore the differences in the proteome and molecular pathways between two sampling locations (external, internal) of bovine Longissimus thoracis et lumborum (LTL) muscles at 0, 21, and 28 days of dry-aging (i.e. 3, 24, and 31 days post-mortem). It further assessed the impact of post-mortem aging on the meat proteome changes and the biological processes at interplay. Proteins related to defence response to bacterium and regulation of viral entry into host cell were identified to be more abundant on the external location before dry-aging, which may be associated to the oxidative conditions and microbial activity to which post-mortem muscle is exposed during dressing, chilling, and/or quartering of the carcasses. This highlights the relevance of sampling from interior tissues when searching for meat quality biomarkers. As dry-aging progressed, the meat proteome and related biological processes changed differently between sampling locations; proteins related to cell-cell adhesion and ATP metabolic processes pathways were revealed in the external location at 21 and 28 days, respectively. On the other hand, the impact of aging on the proteome of the interior meat samples, evidenced that muscle contraction and structure together with energy metabolism were the major pathways driving dry-aging. Additionally, aging impacted other pathways in the interior tissues, such as regulation of calcium import, neutrophil activation, and regeneration. Overall, the differences in the proteome allowed discriminating the three dry-aging times, regardless of the sampling location. Several proteins were proposed for validation as robust biomarkers to monitor the aging process (tenderization) of dry-aged beef: TTN, GRM4, EEF1A1, LDB3, CILP2, TNNT3, GAPDH, SERPINI1, and OMD.
Collapse
Affiliation(s)
- Sara Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland; School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | - Anne Maria Mullen
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Carlos Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Ruth M Hamill
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Eileen O'Neill
- School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | | |
Collapse
|
14
|
Della Malva A, Gagaoua M, Santillo A, di Corcia M, Natalello A, Sevi A, Albenzio M. In-depth characterization of the sarcoplasmic muscle proteome changes in lambs fed with hazelnut skin by-products: Relationships with meat color. J Proteomics 2023; 287:104997. [PMID: 37657717 DOI: 10.1016/j.jprot.2023.104997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
This study investigated the effect of agro-industrial hazelnut skin by-products supplementation on lamb meat color variation and the changes in the sarcoplasmic muscle proteome during post-mortem storage (0, 4 and 7 days). Gel-based proteomics and bioinformatics approaches were applied to better understand the potential role of feeding strategies in modulating the mechanisms underpinning meat discoloration and post-mortem changes during storage. Therefore, twenty-two Valle del Belice male lambs were randomly assigned to two dietary treatments: control (C), lambs fed with maize-barley diet, and hazelnut skin (H), lambs fed hazelnut skin by-product as maize partial replacer in the concentrate diet. Hazelnut dietary treatment led to better lamb meat color stability as evidenced by the lowest decrease in redness and saturation index values. Proteomics and bioinformatics results revealed changes in the abundance of 41 proteoforms, which were mainly involved in glycolytic processes, responses to oxidative stress, and immune and endocrine system. The proteins allowed revealing interconnected pathways to be behind meat color variation as a consequence of using hazelnut skin by-products to sustainable feed lamb. The proteins can be used as potential predictors of lamb meat color variation. Accordingly, the regression equations developed in this paper revealed triosephosphate isomerase (TPI1) as a reliable candidate biomarker of color stability in lamb meat. SIGNIFICANCE: The use of agro-industrial by-products in animal feeding can be a potential sustainable strategy to reduce the environmental impacts of the food production chain and consequently improve animal welfare and product quality. The inclusion of hazelnut skin by-products in the animal's diet, due to the high concentration of polyphenols, represents an effective strategy to improve the oxidative stability of meat, with significant implications on color. The use of proteomics combined with bioinformatics on the sarcoplasmic proteome is a powerful approach to decipher the underlying mechanism. Accordingly, this approach allowed in this trial a deeper understanding of the molecular mechanisms involved in the post-mortem processes through the discovery of several biological pathways linked with lamb meat color variation. Glycolysis, followed by responses to oxidative stress, and other proteins involved in the immune and endocrine system were found as the major interconnected pathways that could act as potential predictors of lamb meat color stability. Candidate proteins biomarkers were further revealed in this study to be related with multiple meat color traits.
Collapse
Affiliation(s)
- Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy.
| | | | - Antonella Santillo
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Martina di Corcia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Antonio Natalello
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| |
Collapse
|
15
|
Zhu Y, Hamill RM, Mullen AM, Kelly AL, Gagaoua M. Molecular mechanisms contributing to the development of beef sensory texture and flavour traits and related biomarkers: Insights from early post-mortem muscle using label-free proteomics. J Proteomics 2023; 286:104953. [PMID: 37390894 DOI: 10.1016/j.jprot.2023.104953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
Beef sensory quality comprises a suite of traits, each of which manifests its ultimate phenotype through interaction of muscle physiology with environment, both in vivo and post-mortem. Understanding variability in meat quality remains a persistent challenge, but omics studies to uncover biological connections between natural variability in proteome and phenotype could provide validation for exploratory studies and offer new insights. Multivariate analysis of proteome and meat quality data from Longissimus thoracis et lumborum muscle samples taken early post-mortem from 34 Limousin-sired bulls was conducted. Using for the first-time label-free shotgun proteomics combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), 85 proteins were found to be related with tenderness, chewiness, stringiness and flavour sensory traits. The putative biomarkers were classified in five interconnected biological pathways; i) muscle contraction, ii) energy metabolism, iii) heat shock proteins, iv) oxidative stress, v) regulation of cellular processes and binding. Among the proteins, PHKA1 and STBD1 correlated with all four traits, as did the GO biological process 'generation of precursor metabolites and energy'. Optimal regression models explained a high level (58-71%) of phenotypic variability with proteomic data for each quality trait. The results of this study propose several regression equations and biomarkers to explain the variability of multiple beef eating quality traits. Thanks to annotation and network analyses, they further suggest protein interactions and mechanisms underpinning the physiological processes regulating these key quality traits. SIGNIFICANCE: The proteomic profiles of animals with divergent quality profiles have been compared in numerous studies; however, a wide range of phenotypic variation is required to better understand the mechanisms underpinning the complex biological pathways correlated with beef quality and protein interactions. We used multivariate regression analyses and bioinformatics to analyse shotgun proteomics data to decipher the molecular signatures involved in beef texture and flavour variations with a focus on multiple quality traits. We developed multiple regression equations to explain beef texture and flavour. Additionally, potential candidate biomarkers correlated with multiple beef quality traits are suggested, which could have utility as indicators of beef overall sensory quality. This study explained the biological process responsible for determining key quality traits such as tenderness, chewiness, stringiness, and flavour in beef, which will provide support for future beef proteomics studies.
Collapse
Affiliation(s)
- Yao Zhu
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork T12 K8AF, Ireland
| | - Ruth M Hamill
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland.
| | - Anne Maria Mullen
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork T12 K8AF, Ireland
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15KN3K Dublin 15, Ireland; PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France.
| |
Collapse
|
16
|
Jia W, Wu X. Potential biomarkers analysis and protein internal mechanisms by cold plasma treatment: Is proteomics effective to elucidate protein-protein interaction network and biochemical pathway? Food Chem 2023; 426:136664. [PMID: 37352708 DOI: 10.1016/j.foodchem.2023.136664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
New market trends of meat flavor, tenderness, and color quality indicators have prompted the research on meat preservation as a crucial topic to received attention. Present research about the effects of irradiation, cold plasma technology on meat is incomplete. There are strongly recommended that proteomics techniques be jointly to enhance the coverage of internal meat molecules for meat research. By identifying meat proteins, detecting biological functions, and quantifying the protein segments of specific meat biomarkers, which can be provided for the information of diagnostic components in preservative technologies. The current review provides scientific findings on various control strategies: (i) combine the data-independent acquisition to provide a reference for the meat molecular mechanism and rapid identification; (ii) design molecular networks biological functions assessment model; (iii) molecular investigations of cold plasma techniques and underlying mechanisms; (iv) explore the X-rays and γ-rays treatment in meat preservation and myoglobin change mechanism more comprehensively.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xinyu Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
17
|
Yang T, Yang Y, Zhang P, Li W, Ge Q, Yu H, Wu M, Xing L, Qian Z, Gao F, Liu R. Quantitative proteomics analysis on the meat quality of processed pale, soft, and exudative (PSE)-like broiler pectoralis major by different heating methods. Food Chem 2023; 426:136602. [PMID: 37348393 DOI: 10.1016/j.foodchem.2023.136602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
This study aims to assess and compare the influences of different heating methods on the quality characteristics of pale, soft, and exudative (PSE)-like and normal (NOR) pectoralis major through quantitative proteomic analysis. A total of 632 proteins were identified, and there were 84, 89, 50, and 43 differentially abundant proteins (DAPs) between processed PSE and NOR samples after four thermal treatments, including boiling (BO), steaming (ST), roasting (RO), and microwaving (MV), respectively, where moist heating conditions led to more different protein abundance. Processed PSE muscles resulted in significant changes in structural proteins related to myofibrillar and connective tissue, which could be associated with their structural instability and degraded quality. Collagen, tropomyosin, myoglobin, and hemoglobin could be potential indicators of PSE muscles color stability and variation during thermal processing. The quantitative proteomic analysis will help correlate molecular changes with processed meat quality towards future optimization of PSE poultry meat processing.
Collapse
Affiliation(s)
- Tianyi Yang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Yamin Yang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Peng Zhang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Weitao Li
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, Yangzhou 225127, PR China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, Yangzhou 225127, PR China
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, Yangzhou 225127, PR China
| | - Lidong Xing
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.
| | - Fan Gao
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, Yangzhou 225127, PR China.
| |
Collapse
|
18
|
Lamri M, Della Malva A, Djenane D, López-Pedrouso M, Franco D, Albenzio M, Lorenzo JM, Gagaoua M. Towards the discovery of goat meat quality biomarkers using label-free proteomics. J Proteomics 2023; 278:104868. [PMID: 36871648 DOI: 10.1016/j.jprot.2023.104868] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
This study aimed to identify for the first time protein biomarkers of meat quality traits from Longissimus thoracis (LT) muscle of goats (Capra hircus). Male goats of similar age and weight reared under extensive rearing conditions were used to relate the LT muscle proteome with multiple meat quality traits. The early post-mortem muscle proteome analyzed using label-free proteomics was compared among three texture clusters built using hierarchical clustering analysis. Twenty-five proteins were differentially abundant and their mining using bioinformatics revealed three major biological pathways to be involved: 10 muscle structure proteins (MYL1, MYL4, MYLPF, MYL6B, MYH1, MYH2, ACTA1, ACTBL2, FHL1 and MYOZ1); 6 energy metabolism proteins (ALDOA, PGAM2, ATP5F1A, GAPDH, PGM1 and ATP5IF1), and two heat shock proteins: HSPB1 (small) and HSPA8 (large). Seven other miscellaneous proteins belonging to pathways such as regulation, proteolysis, apoptosis, transport and binding, tRNA processing or calmodulin-binding were further identified to play a role in the variability of goat meat quality. The differentially abundant proteins were correlated with the goat meat quality traits in addition to multivariate regression models built to propose the first regression equations of each quality trait. This study is the first to highlight in a multi-trait quality comparison the early post-mortem changes in the goat LT muscle proteome. It also evidenced the mechanisms underpinning the development of several quality traits of interest in goat meat production along the major biochemical pathways at interplay. SIGNIFICANCE: The discovery of protein biomarkers in the field of meat research is an emerging topic. In the case of goat meat quality, very few studies using proteomics have been conducted with the aim of proposing biomarkers. Therefore, this study is the first to quest for biomarkers of goat meat quality using label-free shotgun proteomics with a focus on multiple quality traits. We identified the molecular signatures underlying goat meat texture variation, which were found to belong to muscle structure and related proteins, energy metabolism and heat shock proteins along with other proteins involved in regulation, proteolysis, apoptosis, transport and binding, tRNA processing or calmodulin-binding. We further evaluated the potential of the candidate biomarkers to explain meat quality using the differentially abundant proteins by means of correlation and regression analyses. The results allowed the explanation of the variation in multiple traits such as pH, color, water-holding capacity, drip and cook losses traits and texture.
Collapse
Affiliation(s)
- Melisa Lamri
- Department of Food Science, Laboratory of Food Quality and Food Safety, Mouloud Mammeri University, P.O. Box. 17, Tizi-Ouzou 15000, Algeria
| | - Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 71121 Foggia, Italy
| | - Djamel Djenane
- Department of Food Science, Laboratory of Food Quality and Food Safety, Mouloud Mammeri University, P.O. Box. 17, Tizi-Ouzou 15000, Algeria
| | - María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Daniel Franco
- Department of Chemical Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 71121 Foggia, Italy
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; Facultade de Ciencias, Área de Tecnoloxía dos Alimentos, Universidade de Vigo, 32004 Ourense, Spain
| | | |
Collapse
|
19
|
Santiago B, Baldassini W, Neto OM, Chardulo LA, Torres R, Pereira G, Curi R, Chiaratti MR, Padilha P, Alessandroni L, Gagaoua M. Post-mortem muscle proteome of crossbred bulls and steers: Relationships with carcass and meat quality. J Proteomics 2023; 278:104871. [PMID: 36898612 DOI: 10.1016/j.jprot.2023.104871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
This study investigated the skeletal muscle proteome of crossbred bulls and steers with the aim of explaining the differences in carcass and meat quality traits. Therefore, 640 post-weaning Angus-Nellore calves were fed a high-energy diet for a period of 180 days. In the feedlot trial, comparisons of steers (n = 320) and bulls (n = 320) showed lower (P < 0.01) average daily gain (1.38 vs. 1.60 ± 0.05 kg/d), final body weight (547.4 vs. 585.1 ± 9.3 kg), which resulted in lower hot carcass weight (298.4 vs. 333.7 ± 7.7 kg) and ribeye area (68.6 vs. 81.0 ± 2.56 cm2). Steers had higher (P < 0.01) carcass fatness, meat color parameters (L*, a*, b*, chroma (C*), hue (h°)) and lower ultimate pH. Moreover, lower (P < 0.01) Warner-Bratzler shear force (WBSF) were observed in steers compared to bulls (WBSF = 3.68 vs. 4.97 ± 0.08 kg; and 3.19 vs. 4.08 ± 0.08 kg). The proteomic approach using two-dimensional electrophoresis, mass spectrometry and bioinformatics procedures revealed several differentially expressed proteins between steers and bulls (P < 0.05). Interconnected pathways and substantial changes were revealed in biological processes, molecular functions, and cellular components between the post-mortem muscle proteomes of the compared animals. Steers had increased (P < 0.05) abundance of proteins related to energy metabolism (CKM, ALDOA, and GAPDH), and bulls had greater abundance of proteins associated with catabolic (glycolysis) processes (PGM1); oxidative stress (HSP60, HSPA8 and GSTP1); and muscle structure and contraction (TNNI2 and TNNT3). The better carcass (fatness and marbling degree) and meat quality traits (tenderness and color parameters) of steers were associated with higher abundance of key proteins of energy metabolism and lower abundance of enzymes related to catabolic processes, oxidative stress, and proteins of muscle contraction SIGNIFICANCE: Sexual condition of cattle is known to be an important factor affecting animal performances and growth as well as the carcass and meat quality traits. The investigation of skeletal muscle proteome help a better understanding of the origin of the differences in quality traits between bulls and steers. The inferior meat quality of bulls was found to be due to the greater expression of proteins associated with primary and catabolic processes, oxidative stress, and muscle contraction. Steers had greater expression of proteins, from which several are known biomarkers of beef quality (mainly tenderness).
Collapse
Affiliation(s)
- Bismarck Santiago
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), 14884-900 Jaboticabal, São Paulo, Brazil
| | - Welder Baldassini
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), 14884-900 Jaboticabal, São Paulo, Brazil; School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-681 Botucatu, São Paulo, Brazil.
| | - Otávio Machado Neto
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), 14884-900 Jaboticabal, São Paulo, Brazil; School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-681 Botucatu, São Paulo, Brazil.
| | - Luis Artur Chardulo
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), 14884-900 Jaboticabal, São Paulo, Brazil; School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-681 Botucatu, São Paulo, Brazil
| | - Rodrigo Torres
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), 14884-900 Jaboticabal, São Paulo, Brazil
| | - Guilherme Pereira
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), 14884-900 Jaboticabal, São Paulo, Brazil; School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-681 Botucatu, São Paulo, Brazil
| | - Rogério Curi
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), 14884-900 Jaboticabal, São Paulo, Brazil; School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), 18618-681 Botucatu, São Paulo, Brazil
| | - Marcos Roberto Chiaratti
- Universidade Federal de São Carlos (UFSCar), Departamento de Genética e Evolução, 13565-905 São Carlos, São Paulo, Brazil
| | - Pedro Padilha
- Institute of Bioscience (IB), São Paulo State University (UNESP), Departamento de Química e Bioquímica, 18618-689 Botucatu, São Paulo, Brazil
| | - Laura Alessandroni
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | | |
Collapse
|
20
|
Lamri M, Della Malva A, Djenane D, Albenzio M, Gagaoua M. First insights into the dynamic protein changes in goat Semitendinosus muscle during the post-mortem period using high-throughput proteomics. Meat Sci 2023; 202:109207. [PMID: 37150067 DOI: 10.1016/j.meatsci.2023.109207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/02/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Proteomics plays a key and insightful role in meat research in the post-genomic era. This study aimed to unveil using a shotgun proteomics approach the temporal dynamic changes in early post-mortem proteome of goat Semitendinosus muscle. Therefore, the evolution and comparison of the muscle proteome over three post-mortem times (1, 8, and 24 h) was assessed. The temporal proteomics profiling quantified 748 proteins, from which 174 were differentially abundant (DAPs): n = 55 between 1 h versus 8 h, n = 52 between 8 h versus 24 h, and n = 154 between 1 h versus 24 h. The DAPs belong to myriad interconnected pathways. Binding, transport and calcium homeostasis, as well as muscle contraction and structure, exhibited an equivalent contribution during post-mortem, demonstrating their central role. Catalytic, metabolism and ATP metabolic process, and proteolysis were active pathways from the first hours of animal bleeding. Conversely, oxidative stress, response to hypoxia and cell redox homeostasis along chaperones and heat shock proteins accounted for the large proportion of the biochemical processes, more importantly after 8 h post-mortem. Overall, the conversion of muscle into meat is largely orchestrated by energy production as well as mitochondrial metabolism and homeostasis through calcium and permeability transition regulation. The study further evidenced the role of ribosomal proteins in goat post-mortem muscle, signifying that several proteins experiencing changes during storage, also undergo splicing modifications, which is for instance a mechanism known for mitochondrial proteins. Overall, temporal proteomics profiling of early post-mortem muscle proteome offers an unparalleled view of the sophisticated post-mortem biochemical and proteolytic events associated with goat meat quality determination.
Collapse
Affiliation(s)
- Melisa Lamri
- Laboratoire de Qualité et Sécurité des Aliments, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria
| | - Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy
| | - Djamel Djenane
- Laboratoire de Qualité et Sécurité des Aliments, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy
| | | |
Collapse
|
21
|
Marino R, Della Malva A, Caroprese M, De Pilli T, Alessandrino O, Picariello G, Sevi A, Albenzio M. Proteomics in bovine semitendinosus muscle to assess emerging strategies based on papain injection and ultrasounds on meat tenderization process. Meat Sci 2023; 200:109147. [PMID: 36848733 DOI: 10.1016/j.meatsci.2023.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
The impact of papain and/or ultrasound treatments on tenderization of semitendinosus muscle through a proteomic approach was studied. Sixteen bovine muscles were submitted to the following treatments: aging at 3 °C (Control), papain injection (PI), ultrasound (US), PI followed by US (PIUS) and US followed by PI (USPI). pH, myofibrillar fragmentation indices (MFI), soluble collagen, texture profile and changes of myofibrillar proteins were investigated after 2, 24, 48 and 96 h of storage. The highest MFI and soluble collagen content were found in PI, PIUS and USPI samples while control samples showed the lowest values. PI samples showed the lowest WBSF and hardness values until 48 h of storage while at 96 h meat from USPI treatment showed WBSF value comparable to PI treatment. The lowest values of cohesiveness, gumminess and chewiness were found in PI samples during all storage times. Proteomic analysis revealed a different quantity and expression of proteins among tenderization treatments. US treatment did not exhibit a significant ability to degrade muscle proteins, while, all treatments containing papain, showed a greater ability to hydrolyse and degrade myofibrillar proteins. PI promoted intense proteolysis leading to an early tenderization process; on the contrary, in PIUS and USPI treatments the sequence of treatments was relevant on meat tenderization. Particularly, USPI treatment, after 96 h, reached the same improvement in tenderness of enzymatic treatment but with slower hydrolysing rate; this could be determinant to preserve textural structure.
Collapse
Affiliation(s)
- Rosaria Marino
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy.
| | - Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy
| | - Mariangela Caroprese
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy
| | - Teresa De Pilli
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy
| | - Ofelia Alessandrino
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy
| | - Gianluca Picariello
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy
| |
Collapse
|
22
|
Listyarini K, Sumantri C, Rahayu S, Islam MA, Akter SH, Uddin MJ, Gunawan A. Hepatic Transcriptome Analysis Reveals Genes, Polymorphisms, and Molecules Related to Lamb Tenderness. Animals (Basel) 2023; 13:ani13040674. [PMID: 36830461 PMCID: PMC9951696 DOI: 10.3390/ani13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Tenderness is a key meat quality trait that determines the public acceptance of lamb consumption, so genetic improvement toward lamb with higher tenderness is pivotal for a sustainable sheep industry. However, unravelling the genomics controlling the tenderness is the first step. Therefore, this study aimed to identify the transcriptome signatures and polymorphisms related to divergent lamb tenderness using RNA deep sequencing. Since the molecules and enzymes that control muscle growth and tenderness are metabolized and synthesized in the liver, hepatic tissues of ten sheep with divergent phenotypes: five high- and five low-lamb tenderness samples were applied for deep sequencing. Sequence analysis identified the number of reads ranged from 21.37 to 25.37 million bases with a mean value of 22.90 million bases. In total, 328 genes are detected as differentially expressed (DEGs) including 110 and 218 genes that were up- and down-regulated, respectively. Pathway analysis showed steroid hormone biosynthesis as the dominant pathway behind the lamb tenderness. Gene expression analysis identified the top high (such as TP53INP1, CYP2E1, HSD17B13, ADH1C, and LPIN1) and low (such as ANGPTL2, IGFBP7, FABP5, OLFML3, and THOC5) expressed candidate genes. Polymorphism and association analysis revealed that mutation in OLFML3, ANGPTL2, and THOC5 genes could be potential candidate markers for tenderness in sheep. The genes and pathways identified in this study cause variation in tenderness, thus could be potential genetic markers to improve meat quality in sheep. However, further validation is needed to confirm the effect of these markers in different sheep populations so that these could be used in a selection program for lamb with high tenderness.
Collapse
Affiliation(s)
- Kasita Listyarini
- Graduate School of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Cece Sumantri
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Sri Rahayu
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Md. Aminul Islam
- Immunogenomics and Alternative Medicine (IAM) Laboratory, Department of Medicine, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Syeda Hasina Akter
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Jasim Uddin
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
- Center for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (M.J.U.); (A.G.)
| | - Asep Gunawan
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Correspondence: (M.J.U.); (A.G.)
| |
Collapse
|
23
|
Yu Q, Li S, Cheng B, Brad Kim YH, Sun C. Investigation of changes in proteomes of beef exudate and meat quality attributes during wet-aging. Food Chem X 2023; 17:100608. [PMID: 36974193 PMCID: PMC10039265 DOI: 10.1016/j.fochx.2023.100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
This study was performed to evaluate the effects of wet-aging (3, 7, 14, 21, and 28 d at 2 °C) on beef (longissimus lumborum muscles) exudate proteome and meat quality changes. The pH, purge loss, and tenderness of beef increased with aging (P < 0.05), while color and lipid oxidative stabilities decreased, especially when long-term (14 and 21 d) aged meat were repackaged and displayed under retail condition (P < 0.05). Nineteen proteins changed significantly with aging (FDR < 0.05), in which most of them progressively accumulated in exudates over aging periods. Combined with partial least squares discriminant analysis, 16 proteins (including 9 structural proteins, 3 metabolic enzymes, 1 heat shock protein, 2 binding proteins, and KBTBD10 protein) were screened as characteristic proteins that could be used for potential meat quality indication. These findings offered novel insight into the utilization of exudates for meat quality assessment.
Collapse
Affiliation(s)
- Qianqian Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Shimeng Li
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Bei Cheng
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Yuan H. Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Science, Purdue University, West Lafayette, IN 47906, United States
| | - Chengfeng Sun
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
- Corresponding author.
| |
Collapse
|
24
|
Early postmortem muscle proteome and metabolome of beef longissimus thoracis muscle classified by pH at 6 hours postmortem. J Proteomics 2023; 271:104756. [PMID: 36273510 DOI: 10.1016/j.jprot.2022.104756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
The objective was to identify metabolome and proteome differences at 1 h and 1 d postmortem between longissimus thoracis (LT) muscle classified based on 6 h pH values. Twenty beef LT rib sections were sorted based on 6 h postmortem pH values into low (LpH; pH < 5.55; n = 9) and high (HpH; pH > 5.84; n = 8) pH classifications. Warner-Bratzler shear force (WBSF), desmin degradation, and calpain-1 autolysis were measured. Two-dimensional difference in gel electrophoresis (3-10, 4-7, and 6-9 pH range) and Tandem mass tagging (TMT) protein analyses were employed to determine how the sarcoplasmic protein profile varied across pH classification. Non-targeted metabolomic analyses were conducted on extracts prepared at 1 h and 1 d postmortem. The LpH classification had a lower WBSF value at 1 d postmortem, which was explained by greater calpain-1 autolysis and desmin degradation at 1 d postmortem. Proteome and metabolome analysis revealed a phenotype that promotes more rapid energy metabolism in the LpH group. Proteome and metabolome analyses identified energy production, apoptotic, calcium homeostasis, and proteasome systems influencing pH classifications that could explain the observed pH, proteolysis, and beef tenderness differences. SIGNIFICANCE: This study is the first to identify proteomic and metabolomic variations early (1 h and 1 day) postmortem that are linked to differences in early (6 h) postmortem pH values and to tenderness differences at 1 day postmortem. This study integrates postmortem biochemical features (protein degradation, proteome, and metabolome variations) to postmortem pH decline and eating quality of beef steaks. Potential biomarkers of more rapid postmortem metabolism linked to earlier tenderization in beef are suggested. Identification of these biochemical features will assist in predicting the eating quality of beef products.
Collapse
|
25
|
Wang X, Huang L, Zhang Y, Zhu L, Yang X, Zuo H, Luo X, Mao Y, Hopkins DL. Exploratory study on the potential regulating role of Peroxiredoxin 6 on proteolysis and relationships with desmin early postmortem. Meat Sci 2023; 195:109021. [DOI: 10.1016/j.meatsci.2022.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
26
|
Zequan X, Yonggang S, Heng X, Yaodong W, Xin M, Dan L, Li Z, Tingting D, Zirong W. Transcriptome-based analysis of early post-mortem formation of pale, soft, and exudative (PSE) pork. Meat Sci 2022; 194:108962. [PMID: 36126390 DOI: 10.1016/j.meatsci.2022.108962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 07/02/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Pale, soft, and exudative (PSE) meat can cause consumer dissatisfaction and economic losses. This study determined meat quality, glycolytic enzyme activity, and differential gene expression in the longissimus lumborum (LL) and semimembranosus (SM) of normal and PSE pork carcasses. The SM did not result in PSE meat. Hexokinase, lactate dehydrogenase, and pyruvate kinase activities were lower in the SM of PSE carcasses than in the normal carcasses. Functional enrichment analysis revealed that immune, inflammatory, and muscle fibre genes were significantly enriched in PSE pork. More specifically, PPP1R3G and MSS51 may be key genes regulating pork quality in the SM. Meanwhile, the differential expression of PLVAB, ADIPOQ, LEP, MYH4, MYH7, MYL3, MYL6B, FOS, ATF3, and HSPA6 may induce PSE formation in the LL. These results may provide insights into PSE pork formation mechanisms and reveal candidate genes for improving meat quality after validation.
Collapse
Affiliation(s)
- Xu Zequan
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China; Tecon Biology Ltd., Urumqi, Xinjiang, China
| | - Shao Yonggang
- College of Animal Science, Xinjiang Agricultural University, Xinjiang, China
| | - Xu Heng
- Tecon Biology Ltd., Urumqi, Xinjiang, China
| | | | - Ma Xin
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Liu Dan
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhang Li
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Du Tingting
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Wang Zirong
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
27
|
Song S, Park J, Im C, Cheng H, Jung EY, Park TS, Kim GD. Muscle fiber type-specific proteome distribution and protease activity in relation to proteolysis trends in beef striploin (M. longissimus lumborum) and tenderloin (M. psoas major). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
della Malva A, Gagaoua M, Santillo A, De Palo P, Sevi A, Albenzio M. First insights about the underlying mechanisms of Martina Franca donkey meat tenderization during aging: A proteomic approach. Meat Sci 2022; 193:108925. [DOI: 10.1016/j.meatsci.2022.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 10/31/2022]
|
29
|
Meat Quality and Muscle Tissue Proteome of Crossbred Bulls Finished under Feedlot Using Wet Distiller Grains By-Product. Foods 2022. [PMCID: PMC9602256 DOI: 10.3390/foods11203233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Wet distiller grains (WDG) are a corn by-product rich in protein and fiber that can be used in feedlot diets. This study evaluated F1 Angus-Nellore bulls fed on a control diet vs. WDG (n = 25/treatment). After a period of 129 days on these feeds, the animals were slaughtered and Longissimus thoracis samples were collected for both a meat quality evaluation and gel-based proteomic analyses. A greater ribeye area (99.47 cm²) and higher carcass weight (333.6 kg) (p < 0.05) were observed in the WDG-finished cattle compared to the control (80.7 cm²; 306.3 kg). Furthermore, there were differences (p < 0.05) in the intramuscular fat between the WDG and control animals (IMF = 2.77 vs. 4.19%), which led to a significant decrease (p < 0.05) in saturated fatty acids (FA). However, no differences (p > 0.10) were observed in terms of tenderness, evaluated using Warner–Bratzler shear force (WBSF). The proteomic and bioinformatic analyses revealed substantial changes in the biological processes, molecular functions, and cellular components of the WDG-finished cattle compared to the control. Proteins related to a myriad of interconnected pathways, such as contractile and structural pathways, energy metabolism, oxidative stress and cell redox homeostasis, and transport and signaling. In this experiment, the use of WDG supplementation influenced the protein expression of several proteins, some of which are known biomarkers of beef quality (tenderness and color), as well as the protein–protein interactions that can act as the origins of increases in muscle growth and reductions in IMF deposition. However, despite the effects on the proteome, the tenderness, evaluated by WBSF, and fatty acid profile were not compromised by WDG supplementation.
Collapse
|
30
|
Severino M, Gagaoua M, Baldassini W, Ribeiro R, Torrecilhas J, Pereira G, Curi R, Chardulo LA, Padilha P, Neto OM. Proteomics Unveils Post-Mortem Changes in Beef Muscle Proteins and Provides Insight into Variations in Meat Quality Traits of Crossbred Young Steers and Heifers Raised in Feedlot. Int J Mol Sci 2022; 23:ijms232012259. [PMID: 36293120 PMCID: PMC9603352 DOI: 10.3390/ijms232012259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Proteomics has been widely used to study muscle biology and meat quality traits from different species including beef. Beef proteomics studies allow a better understanding of the biological processes related to meat quality trait determination. This study aimed to decipher by means of two-dimensional electrophoresis (2D-PAGE), mass spectrometry and bioinformatics the changes in post-mortem muscle with a focus on proteins differentially expressed in the Longissimus thoracis (LT) muscle of immunocastrated young heifers and steers. Carcass traits, chemical composition, pH, instrumental color (L*, a*, b*), cooking loss and Warner-Bratzler shear force (WBSF) of meat from F1 Montana-Nellore cattle were also evaluated. Backfat thickness (BFT) and intramuscular fat content (IMF) were 46.8% and 63.6% higher in heifers (p < 0.05), respectively, while evaporation losses (EL) were 10.22% lower compared to steers. No differences (p > 0.05) were observed for tenderness evaluated by WBSF (3, 10, and 17 days post-mortem), pH, and color traits (L*, a* and b*) between the experimental groups. The study revealed several proteins to be differentially expressed proteins in heifers compared steers (p < 0.05). In heifers, proteins involved in nutrient transport (TF, ALB, and MB), energy metabolism (ALDOA, GAPDH, and PKM), and oxidative stress and response to stress (HSPA8 and CA3) were associated with a greater BFT and IMF deposition. The higher expression of these proteins indicated greater oxidative capacity and lower glycolytic activity in the LT muscle of heifers. In steers, there was greater abundance of protein expression related to muscle contraction and proteins of structure (ACTA1, TPM2 and TNNT3), energy metabolism (ENO1, ENO3, PYGM, PGM1 and TPI1) and ATP metabolism (ATP5F1B, PEBP1 and AK1), indicating greater glycogenolysis in LT muscle, suggesting a shift in the glycolytic/oxidative fibers of steers.
Collapse
Affiliation(s)
- Mariane Severino
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
- Physiologie, Environnement et Génétique Pour l’Animal et les Systèmes d’Élevage (PEGASE), INRAE, Institut Agro, 35590 Saint-Gilles, France
- Correspondence: or (M.G.); (O.M.N.)
| | - Welder Baldassini
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Richard Ribeiro
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Juliana Torrecilhas
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Guilherme Pereira
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Rogério Curi
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- Physiologie, Environnement et Génétique Pour l’Animal et les Systèmes d’Élevage (PEGASE), INRAE, Institut Agro, 35590 Saint-Gilles, France
| | - Luis Artur Chardulo
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Pedro Padilha
- Institute of Bioscience (IB), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Otávio Machado Neto
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
- Correspondence: or (M.G.); (O.M.N.)
| |
Collapse
|
31
|
Cold-induced denaturation of muscle proteins in hairtail ( Trichiurus lepturus) during storage: Physicochemical and label-free based proteomics analyses. Food Chem X 2022; 16:100479. [PMID: 36277867 PMCID: PMC9583035 DOI: 10.1016/j.fochx.2022.100479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Physicochemical, proteomics, and bioinformatics analyses were conducted to investigate protein profiles in Trichiurus haumela under frozen (120 d) and chilled (6 d) storage. Springiness, chewiness, myofibrillar active sulfhydryl content, and Ca2+-ATPase activity significantly decreased, suggesting that cold stress altered muscle proteins. Compared with fresh hairtail (FH), 66 common differentially abundant proteins (DAPs) had lower abundances in chilled (3 d; CSH) and frozen (120 d; FSH) hairtail, including myosin binding proteins, filamins, actinin, troponin, and muscle-restricted coiled-coil protein. Gene Ontology (GO) annotation showed DAPs were mainly involved in cellular process, cellular anatomical entity, intracellular, and binding items. Eukaryotic orthologous group (KOG) analysis revealed that changes in cytoskeleton and energy production and conversion functions dominated during cold storage, degrading the myofibril and connective tissue structures and the physicochemical performance of muscle tissues. This study presents deep insights into the protein alternation mechanisms in hairtail muscle under cold stress.
Collapse
|
32
|
Wei D, Zhang J, Raza SHA, Song Y, Jiang C, Song X, Wu H, Alotaibi MA, Albiheyri R, Al-Zahrani M, Makhlof RTM, Alsaad MA, Abdelnour SA, Quan G. Interaction of MyoD and MyoG with Myoz2 gene in bovine myoblast differentiation. Res Vet Sci 2022; 152:569-578. [PMID: 36191510 DOI: 10.1016/j.rvsc.2022.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
This study aims to explore the functional role of Myoz2 in myoblast differentiation, and elucidate the potential factors interact with Myoz2 in promoter transcriptional regulation. The temporal-spatial expression results showed that the bovine Myoz2 gene was highest expressed in longissimus dorsi, and in individual growth stages and myoblast differentiation stages. Knockdown of Myoz2 inhibited the differentiation of myoblast, and negative effect of MyoD, MyoG, MyH and MEF2A expression on mRNA levels. Subsequently, the promoter region of bovine Myoz2 gene with 1.7 Kb sequence was extracted, and then it was set as eight series of deleted fragments, which were ligated into pGL3-basic to detect core promoter regions of Myoz2 gene in myoblasts and myotubes. Transcription factors MyoD and MyoG were identified as important cis-acting elements in the core promoter region (-159/+1). Also, it was highly conserved in different species based on dual-luciferase analysis and multiple sequence alignment analysis, respectively. Furthermore, a chromatin immunoprecipitation (ChIP) analysis combined with site-directed mutation and siRNA interference and overexpression confirmed that the combination of MyoD and MyoG occurred in region -159/+1, and played an important role in the regulation of bovine Myoz2 gene. These findings explored the regulatory network mechanism of Myoz2 gene during the development of bovine skeletal muscle.
Collapse
Affiliation(s)
- Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China,.
| | - Jiupan Zhang
- Institute of Animal Sciences, Ningxia Academy of agricultural and Forestry Sciences, Yinchuan 750021, China
| | | | - Yaping Song
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Chao Jiang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xiaoyu Song
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Hao Wu
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | | | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majid Al-Zahrani
- Biological Science Department, College of Science and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Raafat T M Makhlof
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; Department of Parasitology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Mohammad A Alsaad
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan Province, China
| |
Collapse
|
33
|
Ge K, Geng Z. Proteomic analysis of the liver regulating lipid metabolism in Chaohu ducks using two-dimensional electrophoresis. Open Life Sci 2022; 17:960-972. [PMID: 36060646 PMCID: PMC9386610 DOI: 10.1515/biol-2022-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022] Open
Abstract
In this study, we aimed to characterize the liver protein profile of Chaohu ducks using two-dimensional electrophoresis and proteomics. The livers were quickly collected from 120 healthy, 84-day-old Chaohu ducks. The intramuscular fat (IMF) content of the left pectoralis muscle was determined using the Soxhlet extraction method. The total protein of liver tissues from the high and low IMF groups was extracted for proteomics. Functional enrichment analysis of the differentially expressed proteins (DEPs) was conducted using gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG). In total, 43 DEPs were identified. Functional enrichment analysis indicated that these DEPs were significantly related to four lipid metabolic processes: carboxylic acid metabolic process, ATP metabolic process, oxoacid metabolic process, and organic acid metabolic process. Three pathways correlated with lipid metabolism were identified using KEGG analysis: glycolysis/gluconeogenesis, pentose phosphate pathway, fructose, and mannose metabolism. Eight key proteins associated with lipid metabolism were identified: ALDOB, GAPDH, ENO1, RGN, TPI1, HSPA9, PRDX1, and GPX1. Protein–protein interaction analysis revealed that the glycolysis/gluconeogenesis pathway mediated the interaction relationship. Key proteins and metabolic pathways were closely related to lipid metabolism and showed a strong interaction in Chaohu ducks.
Collapse
Affiliation(s)
- Kai Ge
- Department of Biological and Pharmaceutical Engineering, West Anhui University, West of Yunlu Bridge, Yu'an District, Liuan, Anhui Province, 237012, China
| | - Zhaoyu Geng
- Department of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| |
Collapse
|
34
|
Bischof G, Witte F, Terjung N, Heinz V, Juadjur A, Gibis M. Metabolic, proteomic and microbial changes postmortem and during beef aging. Crit Rev Food Sci Nutr 2022; 64:1076-1109. [PMID: 36004604 DOI: 10.1080/10408398.2022.2113362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of this review is to provide an overview of the current knowledge about proteomic and metabolic changes in beef, the microbiological alteration postmortem and during aging, and observe the influence on beef quality parameters, such as tenderness, taste and flavor. This review will also focus on the different aging types (wet- and dry-aging), the aging or postmortem time of beef and their effect on the proteome and metabolome of beef. The Ca2+ homeostasis and adenosine 5'-triphosphate breakdown are the main reactions in the pre-rigor phase. After rigor mortis, the enzymatic degradation of connective tissues and breakdown of energy metabolism dominate molecular changes in beef. Important metabolic processes leading to the formation of saccharides, nucleotides, organic acids (e.g. lactic acid), creatine and fatty acids are considered in this context as possible flavor precursors or formers of beef flavor and taste. Flavor precursors are substrates for lipid oxidation, Strecker degradation and Maillard reaction during cooking or roasting. The findings presented should serve as a basis for a better understanding of beef aging and its molecular effects and are intended to contribute to meeting the challenges of improving beef quality.
Collapse
Affiliation(s)
- Greta Bischof
- Chemical Analytics, German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Franziska Witte
- Product Innovation, German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nino Terjung
- Product Innovation, DIL Technology GmbH, Quakenbrück, Germany
| | - Volker Heinz
- Research Directorate, German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Andreas Juadjur
- Chemical Analytics, German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
35
|
Gagaoua M. Recent Advances in OMICs Technologies and Application for Ensuring Meat Quality, Safety and Authenticity. Foods 2022; 11:foods11162532. [PMID: 36010532 PMCID: PMC9407444 DOI: 10.3390/foods11162532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
| |
Collapse
|
36
|
Liu C, Wei Q, Li X, Han D, Liu J, Huang F, Zhang C. Proteomic analyses of mitochondrial damage in postmortem beef muscles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4182-4191. [PMID: 35000191 DOI: 10.1002/jsfa.11767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The objective of the study was to examine the expression profiles of mitochondrial proteins in at-death and 24 h postmortem (PM) using tandem mass tag (TMT) approach to characterize the mitochondria possible mechanisms that are affiliated with tenderization. RESULTS Results showed that the tender meat at 24 h PM emerged with more serious mitochondrial damage. Altogether 456 mitochondrial proteins were identified, including 442 down-regulated and 14 up-regulated proteins. These differentially-expressed proteins were primarily involved in the progress of PM energy metabolism, apoptosis, and the morphological alterations of mitochondrial. Among them, 47 subunits (such as NDUFA2, COX4I1, and ATP5PB) were annotated into the oxidative phosphorylation pathway. VDAC1, VDAC2, and VDAC3 involving in the damage of MPTP, and IMMT, CHCHD3, APOL and APOO modulating the morphology of mitochondria, and DIABLO and AIFM1 released from mitochondria affect caspase's activation. HSPD1 and HSPE1 involved in apoptosis, mitochondrial physiological and morphological alterations. CONCLUSION The earlier-mentioned proteins were validated as potential indicators of tenderness regulated by mitochondrial damage. These results highlighted that mitochondrial damage possibly participate in PM tenderization of beef muscles by energy metabolism and cell apoptosis status. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunmei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Qichao Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Dong Han
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Jiqian Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
37
|
Proteomic and parallel reaction monitoring approaches to evaluate biomarkers of mutton tenderness. Food Chem 2022; 397:133746. [PMID: 35882166 DOI: 10.1016/j.foodchem.2022.133746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 11/20/2022]
Abstract
Intensive fattening usually results in the changes of meat quality. Tenderness is a central attribute for mutton sensory qualities and consumers' choice. Here, we reported that intensive fattening mutton was more tender than that of traditionally raised sheep. By proteomic approach, we found 49 differentially expressed proteins in longissimus dorsi muscle. After bioinformatics analysis, 5 cytoskeletal proteins, 3 protein binding proteins and 7 metabolic enzymes were identified as potential biomarkers for mutton tenderness. Finally, we verified the expression of these abundant proteins by parallel reaction monitoring (PRM). Collectively, our results reveal that the mutton of sheep raised by intensive fattening is more tender than that of traditionally raised sheep. Myosin-2, myosin-13, vimentin, carbonic anhydrase, carbonic anhydrase-2, Glutathione S-transferase and Microtubule-associated protein 4 isoform X1 can be candidate biomarkers for mutton tenderness. Our data also indicate a central role of cytoskeletal proteins and metabolic enzymes in determining mutton tenderness.
Collapse
|
38
|
Yuan P, Chen X, Benjakul S, Sun J, Zhang B. Label-free based proteomics revealed the specific changes of muscle proteins in pike eel ( Muraenesox cinereus) under cold stress. Food Chem X 2022; 14:100275. [PMID: 35284818 PMCID: PMC8904379 DOI: 10.1016/j.fochx.2022.100275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/12/2023] Open
Abstract
Changes in protein profiles were investigated in pike eel during cold storage. Cold storage decreased the springiness and MP content in muscle tissues. 137 and 148 DAPs were identified in the CPE and FPE compared with the PE samples. Membrane and cytoskeletal proteins were vulnerable to damage during storage. Proteomics revealed significant protein alterations in fresh and stored fish comparisons.
Chemical- and liquid chromatography coupled with mass spectrometry (LC–MS) based proteomics strategies were executed to investigate the alterations of protein profiles in pike eel (Muraenesox cinereus) muscle during chilling (CPE) and frozen (FPE) storage. Chemical results indicated that springiness and myofibrillar protein (MP) content of muscle tissues decreased significantly during 6 days of chilled and 120 days of frozen storage. LC–MS-based proteomics analysis suggested that great alterations occurred in muscle proteins mainly induced by cold stress. The differentially abundant proteins (DAPs) with low abundances in CPE and FPE samples included the annexins, fibronectin, ribosomal proteins, T-complex proteins, tubulin beta chain, and histones, which were mostly associated with the membrane structural constituents, cytoskeleton, and binding functional proteins. Results of eukaryotic cluster of orthologous group (KOG) verified that these identified DAPs were mainly converged in the cytoskeleton function resulting from cold conditions, which in turn affected the physical structure and chemical performances of muscle tissues.
Collapse
Affiliation(s)
- Pengxiang Yuan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Xiaonan Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Jipeng Sun
- Zhejiang Marine Development Research Institute, China
- Corresponding authors at: No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang Province 316022, China.
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
- Pisa Marine Graduate School, Zhejiang Ocean University, China
- Corresponding authors at: No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang Province 316022, China.
| |
Collapse
|
39
|
The Investigation of Protein Profile and Meat Quality in Bovine Longissimus thoracic Frozen under Different Temperatures by Data-Independent Acquisition (DIA) Strategy. Foods 2022; 11:foods11121791. [PMID: 35741989 PMCID: PMC9222788 DOI: 10.3390/foods11121791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
The influence of freezing on the protein profile and quality traits in bovine Longissimus thoracic (LT) muscle was investigated by the data-independent acquisition (DIA) technique. Compared to fresh meat, a total of 262 proteins were identified as differential abundance proteins (DAPs) in four frozen groups (−12 °C, −18 °C, −38 °C, and −80 °C). According to the bioinformatics analysis, most of the DAPs in the significant Go terms and the KEGG pathway were structure proteins and enzymes. Proteome changes in the frozen bovine muscle at −12 °C and −18 °C were more significant than those at −38 °C and −80 °C. The result was consistent with the deterioration trend of the meat quality. The correlation analysis revealed that 17 proteins were correlated closely with the color, shear force, thawing loss, and cooking loss of the frozen meat, which could be used as putative biomarkers for frozen meat quality. MYO18A and ME3 are newly discovered proteins that are associated with frozen beef quality. In addition, CTTN and SERPINB6 were identified in frozen groups, which exhibited a significant inverse correlation with thawing loss (p < 0.01). These findings reveal the quality changes induced by freezing at the protein molecular level and provide new insights into the control of quality deterioration.
Collapse
|
40
|
Ye Y, Maes E, Deb-Choudhury S, Hefer CA, Schreurs NM, Realini CE. Proteomic Profile of M. Longissimus Thoracis from Commercial Lambs Reared in Different Forage Systems. Foods 2022; 11:foods11101419. [PMID: 35626989 PMCID: PMC9141604 DOI: 10.3390/foods11101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
This study compared the protein composition of M. longissimus thoracis of lambs from six commercial forage production systems in New Zealand. A total of 286 proteins were identified based on liquid chromatography-tandem mass spectrometry. First, a binomial model showed that different production groups could be distinguished based on abundances of 16 proteins. Second, pair-wise comparisons were performed to search for protein abundance differences in meat due to animal sex (ewe vs. wether), diet (perennial ryegrass vs. chicory), and age (4 vs. 6–8 months old). Greater abundance of some myofibrillar and sarcoplasmic proteins were observed in lamb loins from ewes compared to wethers. Chicory diet and older age at slaughter were associated with meat with lower abundance of some myofibrillar proteins, possibly due to a greater proportion of muscle glycolytic fibres. The proteins that showed significant differences in their abundances due to production factors could be further investigated to understand their influence on meat quality.
Collapse
Affiliation(s)
- Yangfan Ye
- AgResearch Limited, Te Ohu Rangahau Kai, Massey University Campus, Grasslands, Tennent Drive, Palmerston North 4474, New Zealand; (Y.Y.); (C.E.R.)
- Animal Science, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Evelyne Maes
- AgResearch Limited, Lincoln Research Centre, 1365 Springs Road, Lincoln 7674, New Zealand; (E.M.); (C.A.H.)
- Riddet Institute, Based at Massey University, Palmerston North 4474, New Zealand
| | - Santanu Deb-Choudhury
- AgResearch Limited, Lincoln Research Centre, 1365 Springs Road, Lincoln 7674, New Zealand; (E.M.); (C.A.H.)
- Correspondence:
| | - Charles A. Hefer
- AgResearch Limited, Lincoln Research Centre, 1365 Springs Road, Lincoln 7674, New Zealand; (E.M.); (C.A.H.)
| | - Nicola M. Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Carolina E. Realini
- AgResearch Limited, Te Ohu Rangahau Kai, Massey University Campus, Grasslands, Tennent Drive, Palmerston North 4474, New Zealand; (Y.Y.); (C.E.R.)
| |
Collapse
|
41
|
An N, Hou R, Liu Y, Han P, Zhao W, Wu W, Lu S, Ji H, Dong J. Application of iTRAQ Technology to Identify Differentially Expressed Proteins of Sauce Lamb Tripe with Different Secondary Pasteurization Treatments. Foods 2022; 11:foods11081166. [PMID: 35454754 PMCID: PMC9032106 DOI: 10.3390/foods11081166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Vacuum-packed sauce lamb tripe was subjected to secondary pasteurization by high-pressure processing (HPP) and heat treatment (HT), and iTRAQ technology was applied to investigate the differentially expressed proteins (DEPs). The analysis revealed 484 and 398 DEPs in the HPP and HT samples, respectively, compared with no treatment. These DEPs were sorted by texture results, and it was revealed that these DEPs acted in different biological processes with many structural proteins and protein subunits related to lamb tripe texture. The results verified by Western blot were consistent with the protein expression changes observed by proteomics. The bioinformatics analysis showed that the hardness and gumminess of the sauce lamb tripe after HT might be related to changes in the expression of CNN1 and FN1. The changes in the expression of TMP, FN1, YWHAG, TTN, collagen isoforms, and ARPC3 might be related to the improved springiness and chewiness of lamb tripe after HPP.
Collapse
Affiliation(s)
- Ning An
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
| | - Ran Hou
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
| | - Yangming Liu
- Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
| | - Ping Han
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
| | - Wei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Wenxia Wu
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
| | - Shiling Lu
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
| | - Hua Ji
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
| | - Juan Dong
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
- Correspondence: ; Tel.: +86-099-3205-8735; Fax: +86-099-3205-7399
| |
Collapse
|
42
|
Impact of Maternal Feed Restriction at Different Stages of Gestation on the Proteomic Profile of the Newborn Skeletal Muscle. Animals (Basel) 2022; 12:ani12081011. [PMID: 35454257 PMCID: PMC9031497 DOI: 10.3390/ani12081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
We aimed to investigate the effects of the maternal plane of nutrition during gestation on the proteome profile of the skeletal muscle of the newborn. Pregnant goats were assigned to the following experimental treatments: restriction maintenance (RM) where pregnant dams were fed at 50% of their maintenance requirements from 8−84 days of gestation, and then feed of 100% of the maintenance requirements was supplied from 85—parturition (n = 6); maintenance restriction (MR) where pregnant dams were fed at 100% of their maintenance requirements from 8−84 days of gestation, and then experienced feed restriction of 50% of the maintenance requirements from 85—parturition (n = 8). At birth, newborns were euthanized and samples of the Longissimus dorsi muscle were collected and used to perform HPLC-MS/MS analysis. The network analyses were performed to identify the biological processes and KEGG pathways of the proteins identified as differentially abundant protein and were deemed significant when the adjusted p-value (FDR) < 0.05. Our results suggest that treatment RM affects the energy metabolism of newborns’ skeletal muscle by changing the energy-investment phase of glycolysis, in addition to utilizing glycogen as a carbon source. Moreover, the RM plane of nutrition may contribute to fatty acid oxidation and increases in the cytosolic α-KG and mitochondrial NADH levels in the skeletal muscle of the newborn. On the other hand, treatment MR likely affects the energy-generation phase of glycolysis, contributing to the accumulation of mitochondrial α-KG and the biosynthesis of glutamine.
Collapse
|
43
|
Nelis JLD, Bose U, Broadbent JA, Hughes J, Sikes A, Anderson A, Caron K, Schmoelzl S, Colgrave ML. Biomarkers and biosensors for the diagnosis of noncompliant pH, dark cutting beef predisposition, and welfare in cattle. Compr Rev Food Sci Food Saf 2022; 21:2391-2432. [DOI: 10.1111/1541-4337.12935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Utpal Bose
- CSIRO Agriculture and Food St Lucia Australia
| | | | | | - Anita Sikes
- CSIRO Agriculture and Food Coopers Plains Australia
| | | | | | | | | |
Collapse
|
44
|
Antonelo DS, Gómez JF, Silva SL, Beline M, Zhang X, Wang Y, Pavan B, Koulicoff LA, Rosa AF, Goulart RS, Li S, Gerrard DE, Suman SP, Wes Schilling M, Balieiro JC. Proteome basis for the biological variations in color and tenderness of longissimus thoracis muscle from beef cattle differing in growth rate and feeding regime. Food Res Int 2022; 153:110947. [DOI: 10.1016/j.foodres.2022.110947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
|
45
|
Ge L, Huang Y, Ma Q, Wang Y, Yang R, Yang X, Chen Y, Miao Y, Zuo Y. Inhibition of endogenous protease activity and protection of histomorphical integrity during refrigerated storage of grass carp fillets by treatment with natural edible di‐ and tri‐carboxylic acids. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lihong Ge
- College of Life Science Sichuan Normal University Chengdu China
| | - Yuli Huang
- College of Life Science Sichuan Normal University Chengdu China
| | - Qian Ma
- College of Life Science Sichuan Normal University Chengdu China
| | - Yu Wang
- College of Life Science Sichuan Normal University Chengdu China
| | - Rui Yang
- College of Life Science Sichuan Normal University Chengdu China
| | - Xinyu Yang
- College of Life Science Sichuan Normal University Chengdu China
| | - Yan Chen
- College of Life Science Sichuan Normal University Chengdu China
| | - Yuzhi Miao
- College of Life Science Sichuan Normal University Chengdu China
| | - Yong Zuo
- College of Life Science Sichuan Normal University Chengdu China
| |
Collapse
|
46
|
Merayo M, Pighin D, Cunzolo S, Grigioni G. Is beef quality affected by the inclusion of distiller grains in cattle diets? Anim Sci J 2022; 93:e13761. [PMID: 35959958 DOI: 10.1111/asj.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
This study aimed to analyze the effect of including increasing levels of distiller grains (DG) in beef cattle feeding diets on meat quality from an integral approach. To this end, we analyzed the meat from 36 yearling steers fed with four dietary treatments: 0DG (control corn-based diet), 15DG, 30DG, and 45DG (containing 15%, 30%, or 45% of DG on DM basis). Crude protein, ash, and fat contents of diets increased with DG level. The fatty acid profile of DG diets was reflected in the fatty acid profile of plasma samples. Feeding diets with DG had no effect on the biochemical parameters analyzed in plasma. In addition, it did not influence the water holding capacity, the muscle or fat color at 72 h post mortem or at retail display, or the contents of SFAs, MUFAs, and PUFAs in beef. The DG diets led to lower values of cooking loss. Meat from 15DG and 30DG showed greater percentage of troponin C and fragments of 30 to 27 kDa than meat from 45DG. Also, meat from 30DG showed the lowest values of Warner-Bratzler shear force. Hence, including up to 30% corn DG in beef cattle feeding diets had positive effects on meat quality.
Collapse
Affiliation(s)
- Manuela Merayo
- Instituto Tecnología de Alimentos - Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD INTA CONICET, Castelar, Argentina.,Pontificia Universidad Católica Argentina, CABA, Argentina
| | - Darío Pighin
- Instituto Tecnología de Alimentos - Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD INTA CONICET, Castelar, Argentina.,Universidad de Morón, Morón, Argentina
| | - Sebastián Cunzolo
- Instituto Tecnología de Alimentos - Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD INTA CONICET, Castelar, Argentina.,Universidad de Morón, Morón, Argentina
| | - Gabriela Grigioni
- Instituto Tecnología de Alimentos - Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD INTA CONICET, Castelar, Argentina.,Universidad de Morón, Morón, Argentina
| |
Collapse
|
47
|
Sierra V, González-Blanco L, Diñeiro Y, Díaz F, García-Espina MJ, Coto-Montes A, Gagaoua M, Oliván M. New Insights on the Impact of Cattle Handling on Post-Mortem Myofibrillar Muscle Proteome and Meat Tenderization. Foods 2021; 10:3115. [PMID: 34945666 PMCID: PMC8700955 DOI: 10.3390/foods10123115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effect of different cattle management strategies at farm (Intensive vs. Extensive) and during transport and lairage (mixing vs. non-mixing with unfamiliar animals) on the myofibrillar subproteome of Longissimus thoracis et lumborum (LTL) muscle of "Asturiana de los Valles" yearling bulls. It further aimed to study the relationships with beef quality traits including pH, color, and tenderness evaluated by Warner-Bratzler shear force (WBSF). Thus, comparative proteomics of the myofibrillar fraction along meat maturation (from 2 h to 14 days post-mortem) and different quality traits were analyzed. A total of 23 protein fragments corresponding to 21 unique proteins showed significant differences among the treatments (p < 0.05) due to any of the factors considered (Farm, Transport and Lairage, and post-mortem time ageing). The proteins belong to several biological pathways including three structural proteins (MYBPC2, TNNT3, and MYL1) and one metabolic enzyme (ALDOA) that were affected by both Farm and Transport/Lairage factors. ACTA1, LDB3, and FHL2 were affected by Farm factors, while TNNI2 and MYLPF (structural proteins), PKM (metabolic enzyme), and HSPB1 (small Heat shock protein) were affected by Transport/Lairage factors. Several correlations were found between the changing proteins (PKM, ALDOA, TNNI2, TNNT3, ACTA1, MYL1, and CRYAB) and color and tenderness beef quality traits, indicating their importance in the determination of meat quality and their possible use as putative biomarkers.
Collapse
Affiliation(s)
- Verónica Sierra
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Laura González-Blanco
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Yolanda Diñeiro
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Fernando Díaz
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
| | - María Josefa García-Espina
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
| | - Ana Coto-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Dublin 15, D15 KN3K Ashtown, Ireland
| | - Mamen Oliván
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| |
Collapse
|
48
|
Brandi J, Robotti E, Manfredi M, Barberis E, Marengo E, Novelli E, Cecconi D. Kohonen Artificial Neural Network and Multivariate Analysis in the Identification of Proteome Changes during Early and Long Aging of Bovine Longissimus dorsi Muscle Using SWATH Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11512-11522. [PMID: 34523341 PMCID: PMC8485349 DOI: 10.1021/acs.jafc.1c03578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 06/13/2023]
Abstract
To study proteomic changes involved in tenderization of Longissimus dorsi, Charolais heifers and bulls muscles were sampled after early and long aging (12 or 26 days). Sensory evaluation and instrumental tenderness measurement were performed. Proteins were analyzed by gel-free proteomics. By pattern recognition (principal component analysis and Kohonen's self-organizing maps) and classification (partial least squares-discriminant analysis) tools, 58 and 86 dysregulated proteins were detected after 12 and 26 days of aging, respectively. Tenderness was positively correlated mainly with metabolic enzymes (PYGM, PGAM2, TPI1, PGK1, and PFKM) and negatively with keratins. Downregulation in hemoglobin subunits and carbonic anhydrase 3 levels was relevant after 12 days of aging, while mimecan and collagen chains levels were reduced after 26 days of aging. Bioinformatics indicated that aging involves a prevalence of metabolic pathways after late and long periods. These findings provide a deeper understanding of changes involved in aging of beef and indicate a powerful method for future proteomics studies.
Collapse
Affiliation(s)
- Jessica Brandi
- Department
of Biotechnology, University of Verona, Strada le Grazie 15, Verona 37134, Italy
| | - Elisa Robotti
- Department
of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria 15121, Italy
| | - Marcello Manfredi
- Department
of Translational Medicine and Center for Translational Research on
Autoimmune Diseases, University of Piemonte
Orientale, Novara 28100, Italy
- Department
of Translational Medicine, University of
Piemonte Orientale, Novara 28100, Italy
| | - Elettra Barberis
- Department
of Translational Medicine and Center for Translational Research on
Autoimmune Diseases, University of Piemonte
Orientale, Novara 28100, Italy
- Department
of Translational Medicine, University of
Piemonte Orientale, Novara 28100, Italy
| | - Emilio Marengo
- Department
of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria 15121, Italy
| | - Enrico Novelli
- Department
of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua 35122, Italy
| | - Daniela Cecconi
- Department
of Biotechnology, University of Verona, Strada le Grazie 15, Verona 37134, Italy
| |
Collapse
|
49
|
Ferrinho AM, de Moura GV, Martins TDS, Muñoz J, Mueller LF, Garbossa PLM, de Amorim TR, Gemelli JL, Fuzikawa IHDS, Prado C, da Silveira JC, Poleti MD, Baldi F, Pereira AS. Rubia Gallega x Nelore crossbred cattle improve beef tenderness through changes in protein abundance and gene expression. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Warner RD, Wheeler TL, Ha M, Li X, Bekhit AED, Morton J, Vaskoska R, Dunshea FR, Liu R, Purslow P, Zhang W. Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies. Meat Sci 2021; 185:108657. [PMID: 34998162 DOI: 10.1016/j.meatsci.2021.108657] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Meat tenderness is an important quality trait critical to consumer acceptance, and determines satisfaction, repeat purchase and willingness-to-pay premium prices. Recent advances in tenderness research from a variety of perspectives are presented. Our understanding of molecular factors influencing tenderization are discussed in relation to glycolysis, calcium release, protease activation, apoptosis and heat shock proteins, the use of proteomic analysis for monitoring changes, proteomic biomarkers and oxidative/nitrosative stress. Each of these structural, metabolic and molecular determinants of meat tenderness are then discussed in greater detail in relation to animal variation, postmortem influences, and changes during cooking, with a focus on recent advances. Innovations in postmortem technologies and enzymes for meat tenderization are discussed including their potential commercial application. Continued success of the meat industry relies on ongoing advances in our understanding, and in industry innovation. The recent advances in fundamental and applied research on meat tenderness in relation to the various sectors of the supply chain will enable such innovation.
Collapse
Affiliation(s)
- Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia.
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA
| | - Minh Ha
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - James Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Rozita Vaskoska
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rui Liu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Peter Purslow
- Tandil Centre for Veterinary Investigation (CIVETAN), National University of Central Buenos Aires Province, Tandil B7001BBO, Argentina
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|