1
|
Liang Y, Liu Z, Pang Y, Li M, Zheng S, Pan F, Guo C, Wu Q, Chen T, Li Q, Liu Z. Effects of storage durations on flavour and bacterial communities in Liupao tea. Food Chem 2025; 470:142697. [PMID: 39756084 DOI: 10.1016/j.foodchem.2024.142697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Long-term storage of Liupao tea is conducive to improving its flavour and commercial value. Although bacterial communities influence Liupao tea flavour, their impact during storage remains unclear. The aroma compounds and bacterial communities were determined by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and Illumina Nova6000 analysis. A total of 18 differential flavour compounds were significantly altered with Liupao tea storage duration, particularly after 9 years of storage. Flavour compounds with sweet notes increased, while those associated with pungent note decreased. The composition and diversity of bacteria remarkable changed after 9 years of tea storage. Six core functional bacteria were identified as contributing to the flavour characteristics of Liupao tea during long-term storage. Our findings provide novel insights that bacteria drive the formation of flavour characteristics during Liupao tea storage duration, and Liupao tea stored for more than 9 years have the best flavour.
Collapse
Affiliation(s)
- Yueming Liang
- Key Laboratory of Karst Dynamics, Ministry of Natural and Resources & Guangxi Zhuangzu Autonomy Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541000, China; Guilin Karst Geology Observation and Research Station of Guangxi/Guangxi Pingguo Karst Ecosystem National Field Scientific Observation and Research Station, Guilin 541004, China; International Research Centre on Karst under the Auspices of UNESCO, National Center for International Research on Karst Dynamic System and Global Change, Guilin 541000, China; Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo 531406, China
| | - Zhusheng Liu
- Guangxi Research Institute of Tea Science, Guilin 541000, China; Guangxi Field Scientific Observation and Research Station for tea resources, Guilin 541000, China
| | - Yuelan Pang
- Guangxi Research Institute of Tea Science, Guilin 541000, China; Guangxi Field Scientific Observation and Research Station for tea resources, Guilin 541000, China.
| | - Min Li
- Guangxi Research Institute of Tea Science, Guilin 541000, China; Guangxi Field Scientific Observation and Research Station for tea resources, Guilin 541000, China
| | - Shengmeng Zheng
- Department of Ecological and Resources Engineering, Fujian Key Laboratory of Eco-industrial Green Technology, Wuyi University, Wuyishan 354300, China
| | - Fujing Pan
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541000, China
| | - Chunyu Guo
- Guangxi Research Institute of Tea Science, Guilin 541000, China; Guangxi Field Scientific Observation and Research Station for tea resources, Guilin 541000, China
| | - Qianhua Wu
- Guangxi Research Institute of Tea Science, Guilin 541000, China; Guangxi Field Scientific Observation and Research Station for tea resources, Guilin 541000, China
| | - Ting Chen
- Guangxi Research Institute of Tea Science, Guilin 541000, China; Guangxi Field Scientific Observation and Research Station for tea resources, Guilin 541000, China
| | - Qiang Li
- Key Laboratory of Karst Dynamics, Ministry of Natural and Resources & Guangxi Zhuangzu Autonomy Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541000, China; Guilin Karst Geology Observation and Research Station of Guangxi/Guangxi Pingguo Karst Ecosystem National Field Scientific Observation and Research Station, Guilin 541004, China; International Research Centre on Karst under the Auspices of UNESCO, National Center for International Research on Karst Dynamic System and Global Change, Guilin 541000, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
2
|
Kawahara Y, Tanaka J, Takayama K, Wako T, Ogino A, Yamashita S, Taniguchi F. Chromosome-Scale Genome Assembly and Characterization of Top-Quality Japanese Green Tea Cultivar 'Seimei'. PLANT & CELL PHYSIOLOGY 2024; 65:1271-1284. [PMID: 38807462 PMCID: PMC11369818 DOI: 10.1093/pcp/pcae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Japanese green tea, an essential beverage in Japanese culture, is characterized by the initial steaming of freshly harvested leaves during production. This process efficiently inactivates endogenous enzymes such as polyphenol oxidases, resulting in the production of sencha, gyokuro and matcha that preserves the vibrant green color of young leaves. Although genome sequences of several tea cultivars and germplasms have been published, no reference genome sequences are available for Japanese green tea cultivars. Here, we constructed a reference genome sequence of the cultivar 'Seimei', which is used to produce high-quality Japanese green tea. Using the PacBio HiFi and Hi-C technologies for chromosome-scale genome assembly, we obtained 15 chromosome sequences with a total genome size of 3.1 Gb and an N50 of 214.9 Mb. By analyzing the genomic diversity of 23 Japanese tea cultivars and lines, including the leading green tea cultivars 'Yabukita' and 'Saemidori', it was revealed that several candidate genes could be related to the characteristics of Japanese green tea. The reference genome of 'Seimei' and information on genomic diversity of Japanese green tea cultivars should provide crucial information for effective breeding of such cultivars in the future.
Collapse
Affiliation(s)
| | - Junichi Tanaka
- Institute of Crop Science, NARO, Tsukuba, 305-8518 Japan
| | - Kazuhiro Takayama
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, 305-8605 Japan
| | - Toshiyuki Wako
- Institute of Crop Science, NARO, Tsukuba, 305-8518 Japan
| | - Akiko Ogino
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, 305-8605 Japan
| | - Shuya Yamashita
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, 305-8605 Japan
| | - Fumiya Taniguchi
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, 305-8605 Japan
| |
Collapse
|
3
|
Liu Y, Wang D, Li J, Zhang Z, Wang Y, Qiu C, Sun Y, Pan C. Research progress on the functions and biosynthesis of theaflavins. Food Chem 2024; 450:139285. [PMID: 38631203 DOI: 10.1016/j.foodchem.2024.139285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Theaflavins are beneficial to human health due to various bioactivities. Biosynthesis of theaflavins using polyphenol oxidase (PPO) is advantageous due to cost effectiveness and environmental friendliness. In this review, studies on the mechanism of theaflavins formation, the procedures to screen and prepare PPOs, optimization of reaction systems and immobilization of PPOs were described. The challenges associated with the mass biosynthesis of theaflavins, such as poor enzyme activity, undesirable subproducts and inclusion bodies of recombinant PPOs were presented. Further strategies to solve these challenges and improve theaflavins production, including enzyme engineering, immobilization enzyme technology, water-immiscible solvent-water biphasic systems and recombinant enzyme technology, were proposed.
Collapse
Affiliation(s)
- Yufeng Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Dongyang Wang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jing Li
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhen Zhang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yali Wang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Chenxi Qiu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yujiao Sun
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Feng J, Zhuang J, Chen Q, Lin H, Chu Q, Chen P, Wang F, Yu B, Hao Z. The effect of maturity of tea leaves and processing methods on the formation of milky flavor in white tea - A metabolomic study. Food Chem 2024; 447:139080. [PMID: 38520904 DOI: 10.1016/j.foodchem.2024.139080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Targeted metabolomics combined with chemometrics were applied to investigate the flavor profiles of 4 white tea samples, which were produced from different maturity fresh tea leaves with different withering methods. Mature leaves that underwent novel withering process at higher temperature (28-30℃) and humidity (75 ± 3 %) (MN) were characterized by intense milky flavor. The content of free amino acids, catechins, and soluble sugars in MN were significantly lower than that in the other 3 tea samples, resulting in a sweet and mellow taste with low bitterness. Meanwhile, MN possessed the highest intensity of milky aroma, which could be mainly attributed to the existence of dihydro-5-pentyl-2(3H)-furanone and 2-pentyl-furan as the key volatile substances with coconut and creamy fragrance. These findings provide insight into the substance foundations of milky flavor, and identified leaf maturity and processing method as the determining factors of the milk-flavored white tea (MFWT).
Collapse
Affiliation(s)
- Jiao Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jiayun Zhuang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qianlian Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Fang Wang
- Tea Sensory Evaluation Research Center, Ningde Normal University, Ningde 352000, Fujian, China
| | - Bugui Yu
- Zhenghe Ruiming Tea Co., LTD, Zhenghe 353600, Fujian, China
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, Fujian, China.
| |
Collapse
|
5
|
Shu Z, Ji Q, He T, Zhou D, Zheng S, Zhou H, He W. Combined metabolome and transcriptome analyses reveal that growing under Red shade affects secondary metabolite content in Huangjinya green tea. Front Genet 2024; 15:1365243. [PMID: 38660681 PMCID: PMC11039865 DOI: 10.3389/fgene.2024.1365243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Shading treatments impact the tea (Camellia sinensis L.) quality. The sunlight sensitive varieties can be grown under shading nets for better growth and secondary metabolite content. Here, we studied the responses of a sunlight sensitive green tea variety "Huangjinya" by growing under colored shading nets (red, yellow, blue, and black (75% and 95%) shading rates) to find out the most suitable color of the shading net. Red shading was the most promising treatment as it positively affected the weight and length of 100 one-bud-three leaves and reduced the degree and rate of new shoots burn compared to control (natural sunlight). We then explored the comparative metabolomic changes in response to red shading by using UPLC-ESI-MS/MS system. The amino acids and derivatives, flavonoids, and alkaloids were downaccumulated whereas lipids, organic acids, and lignans were upaccumulated in Red shade grown tea samples. The red shading nets caused a decreased catechin, epicatechin, dopamine, and L-tyramine contents but increased caffeine content. We then employed transcriptome sequencing to find key changes in expressions of related genes and pathways. Notably, key genes associated with the phenylpropanoid and flavonoid biosynthesis pathways exhibited complex regulation. These expression changes suggested a potential trend of polymerization or condensation of simple molecules like catechin or pelargonidin into larger molecules like glucoside or proanthocyanidins. Here, Red shading net triggered higher expression of genes enriched in lipid biosynthesis and jasmonic acid biosynthesis, suggesting an interplay of fatty acids and JA in improving tea performance. These findings contribute to the metabolic responses of Huangjinya tea to red shading nets which might have implications for flavor and health benefits. Our data provide a foundation for further exploration and optimization of cultivation practices for this unique tea variety.
Collapse
Affiliation(s)
| | | | | | | | | | - Huijuan Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, Zhejiang, China
| | - Weizhong He
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, Zhejiang, China
| |
Collapse
|
6
|
Li Y, Chen Y, Chen J, Shen C. Flavonoid metabolites in tea plant (Camellia sinensis) stress response: Insights from bibliometric analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107934. [PMID: 37572493 DOI: 10.1016/j.plaphy.2023.107934] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
In the context of global climate change, tea plants are at risk from elevating environmental stress factors. Coping with this problem relies upon the understanding of tea plant stress response and its underlying mechanisms. Over the past two decades, research in this field has prospered with the contributions of scientists worldwide. Aiming in providing a comprehensive perspective of the research field related to tea plant stress response, we present a bibliometric analysis of the this area. Our results demonstrate the most studied stresses, global contribution, authorship and collaboration, and trending research topics. We highlight the importance of flavonoid metabolites in tea plant stress response, particularly their role in maintaining redox homeostasis, yield, and adjusting tea quality under stress conditions. Further research on the flavonoid response under various stress conditions can promote the development of cultivation measures, thereby improving stress resistance and tea quality.
Collapse
Affiliation(s)
- YunFei Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - YiQin Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - JiaHao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - ChengWen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
7
|
Wu Z, Jiao Y, Jiang X, Li C, Sun W, Chen Y, Yu Z, Ni D. Effects of Sun Withering Degree on Black Tea Quality Revealed via Non-Targeted Metabolomics. Foods 2023; 12:2430. [PMID: 37372642 DOI: 10.3390/foods12122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, the effects of different sun withering degrees (75% (CK), 69% (S69), 66% (S66), 63% (S63), and 60% (S60) water content in the withered leaves) on black tea sensory quality were investigated by means of sensory evaluation plus metabolomics analysis. Sensory evaluation results showed higher sensory quality scores for the black tea in S69-S66, due to better freshness, sweeter taste, and a sweet and even floral and fruity aroma. Additionally, 65 non-volatile components were identified using Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF/MS). Among them, the content increase of amino acids and theaflavins was found to promote the freshness and sweetness of black tea. The aroma of tea was analyzed using combined Solvent Assisted Flavor Evaporation-Gas Chromatography-Mass Spectrometry (SAFE-GC-MS) and Headspace-Solid Phase Micro Extract-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS), and 180 volatiles were identified, including 38 variable importance in projection (VIP) > 1 (p < 0.05) and 25 Odor Activity Value (OAV) > 1 volatiles. Statistical analysis revealed 11 volatiles as potential major aroma differential metabolites in black tea with a different sun withering degree, such as volatile terpenoids (linalool, geraniol, (E)-citral, and β-myrcene), amino-acid-derived volatiles (benzeneethanol, benzeneacetaldehyde, and methyl salicylate), carotenoid-derived volatiles (jasmone and β-damascenone), and fatty-acid-derived volatiles ((Z)-3-hexen-1-ol and (E)-2-hexenal). Among them, volatile terpenoids and amino acid derived volatiles mainly contributed to the floral and fruity aroma quality of sun-withered black tea.
Collapse
Affiliation(s)
- Zhuanrong Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Yuanfang Jiao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Xinfeng Jiang
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Chen Li
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Zhi Yu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| |
Collapse
|
8
|
Cai H, Zhong Z, Chen Y, Zhang S, Ling H, Fu H, Zhang L. Genes cloning, sequencing and function identification of recombinant polyphenol oxidase isozymes for production of monomeric theaflavins from Camellia sinensis. Int J Biol Macromol 2023; 240:124353. [PMID: 37059281 DOI: 10.1016/j.ijbiomac.2023.124353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Theaflavins (TFs) are important quality compounds in black tea with a variety of biological activities. However, direct extraction of TFs from black tea is inefficient and costly. Therefore, we cloned two PPO isozymes from Huangjinya tea, termed HjyPPO1 and HjyPPO3. Both isozymes oxidized corresponding catechin substrates for the formation of four TFs (TF1, TF2A, TF2B, TF3), and the optimal catechol-type catechin to pyrogallol-type catechin oxidation rate of both isozymes was 1:2. In particular, the oxidation efficiency of HjyPPO3 was higher than that of HjyPPO1. The optimum pH and temperature of HjyPPO1 were 6.0 and 35 °C, respectively, while those of HjyPPO3 were 5.5 and 30 °C, respectively. Molecular docking simulation indicated that the unique residue of HjyPPO3 at Phe260 was more positive and formed a π-π stacked structure with His108 to stabilize the active region. In addition, the active catalytic cavity of HjyPPO3 was more conducive for substrate binding by extensive hydrogen bonding.
Collapse
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yiran Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuyao Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hao Ling
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
9
|
Tang MG, Zhang S, Xiong LG, Zhou JH, Huang JA, Zhao AQ, Liu ZH, Liu AL. A comprehensive review of polyphenol oxidase in tea (Camellia sinensis): Physiological characteristics, oxidation manufacturing, and biosynthesis of functional constituents. Compr Rev Food Sci Food Saf 2023; 22:2267-2291. [PMID: 37043598 DOI: 10.1111/1541-4337.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 04/14/2023]
Abstract
Polyphenol oxidase (PPO) is a metalloenzyme with a type III copper core that is abundant in nature. As one of the most essential enzymes in the tea plant (Camellia sinensis), the further regulation of PPO is critical for enhancing defensive responses, cultivating high-quality germplasm resources of tea plants, and producing tea products that are both functional and sensory qualities. Due to their physiological and pharmacological values, the constituents from the oxidative polymerization of PPO in tea manufacturing may serve as functional foods to prevent and treat chronic non-communicable diseases. However, current knowledge of the utilization of PPO in the tea industry is only available from scattered sources, and a more comprehensive study is required to reveal the relationship between PPO and tea obviously. A more comprehensive review of the role of PPO in tea was reported for the first time, as its classification, catalytic mechanism, and utilization in modulating tea flavors, compositions, and nutrition, along with the relationships between PPO-mediated enzymatic reactions and the formation of functional constituents in tea, and the techniques for the modification and application of PPO based on modern enzymology and synthetic biology are summarized and suggested in this article.
Collapse
Affiliation(s)
- Meng-Ge Tang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng Zhang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing-Hui Zhou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Qing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhong-Hua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Ling Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
10
|
Wang H, Teng J, Huang L, Wei B, Xia N. Determination of the variations in the metabolic profile and sensory quality of Liupao tea during fermentation through UHPLC–HR–MS metabolomics. Food Chem 2023; 404:134773. [DOI: 10.1016/j.foodchem.2022.134773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022]
|
11
|
Zou Y, Zhong Y, Yu H, Pokharel SS, Fang W, Chen F. Impacts of Ecological Shading by Roadside Trees on Tea Foliar Nutritional and Bioactive Components, Community Diversity of Insects and Soil Microbes in Tea Plantation. BIOLOGY 2022; 11:biology11121800. [PMID: 36552309 PMCID: PMC9775167 DOI: 10.3390/biology11121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Roadside trees not only add aesthetic appeal to tea plantations, but also serve important ecological purposes for the shaded tea plants. In this study, we selected tea orchards with two access roads, from east to west (EW-road) and from south to north (SN-road), and the roadside trees formed three types of ecological shading of the adjoining tea plants; i.e., south shading (SS) by the roadside trees on the EW-road, and east shading and west shading (ES and WS) by the roadside trees on the SN-road. We studied the impacts of ecological shading by roadside trees on the tea plants, insects, and soil microbes in the tea plantation, by measuring the contents of soluble nutrients, bioactive compounds in the tea, and tea quality indices; and by investigating the population occurrence of key species of insects and calculating insect community indexes, while simultaneously assaying the soil microbiome. The results vividly demonstrated that the shading formed by roadside tree lines on the surrounding tea plantation (SS, ES, and WS) had adverse effects on the concentration of tea soluble sugars but enhanced the foliar contents of bioactive components and improved the overall tea quality, in contrast to the no-shading control tea plants. In addition, the roadside tree lines seemed to be beneficial for the tea plantation, as they reduced pest occurrence, and ES shading enhanced the microbial soil diversity in the rhizosphere of the tea plants.
Collapse
Affiliation(s)
- Yan Zou
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanni Zhong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Yu
- Department of Forest Genetics and Breeding, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Sabin Saurav Pokharel
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanping Fang
- Department of Tea Science, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (W.F.); (F.C.); Tel.: +86-13512504245 (W.F.); +86-13675173286 (F.C.)
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (W.F.); (F.C.); Tel.: +86-13512504245 (W.F.); +86-13675173286 (F.C.)
| |
Collapse
|
12
|
Effect of Shading on the Morphological, Physiological, and Biochemical Characteristics as Well as the Transcriptome of Matcha Green Tea. Int J Mol Sci 2022; 23:ijms232214169. [PMID: 36430647 PMCID: PMC9696345 DOI: 10.3390/ijms232214169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
High-quality tea leaves are required for matcha production. Shading is one of the key agronomic practices that can increase the quality of green tea. The objectives among matcha tea producers include increasing the ammonia and chlorophyll contents of tea buds, decreasing tea polyphenol contents, and enhancing tea aroma formation. In this study, Fuding white tea plants were cultivated under open-air conditions (control) as well as under 85% (S85) and 95% (S95) shade. The chlorophyll contents were highest for the S85 treatment, followed by the S95 and control treatments. Moreover, shading increased the theanine and caffeine contents, while decreasing the polyphenol (epicatechin and epigallocatechin) contents, thereby optimizing matcha tea flavors. A total of 2788 differentially expressed genes (DEGs) were identified, of which 1151 and 1637 were respectively upregulated and downregulated in response to shading. The GO and KEGG enrichment analyses indicated that most of the DEGs were associated with metabolic processes (e.g., MAPK signaling, plant-pathogen interactions, and phenylpropanoid biosynthesis). Therefore, shading may modulate tea plant metabolism, signaling, biosynthetic activities, and environment-related changes to gene transcription. The expression of amino acid permeases (APP) encoding genes was downregulated in tea plants. Thus, shading influences theanine biosynthesis and the AAP-mediated distribution of theanine in tea plants.
Collapse
|
13
|
Shao C, Deng Z, Liu J, Li Y, Zhang C, Yao S, Zuo H, Shi Y, Yuan S, Qin L, Liu Z, Shen C. Effects of Preharvest Shading on Dynamic Changes in Metabolites, Gene Expression, and Enzyme Activity of Three Tea Types during Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14544-14558. [PMID: 36321848 DOI: 10.1021/acs.jafc.2c05456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Preharvest shading significantly influences tea flavor. However, little attention has been given to the mechanism of shading on metabolites, genes, and enzymes in the processing of different tea types. Our study identified 1028 nonvolatile metabolites covering 10 subclasses using a widely targeted metabolome. The results show that shading had a greater effect on the compositions of amino acids, flavonoids, and theaflavins in tea leaves. The combined transcriptomics and enzyme activity analysis results indicate that the upregulated expression of asparagine, aspartate, and tryptophan synthesis genes and proteolytic enzymes promoted the accumulation of amino acids. The downregulated enzyme genes resulted in the reduction of nongalloylated catechins and flavonoid glycosides. Simultaneously, the accumulation of TFs in shaded tea was due to the enhanced enzymatic activities of polyphenol oxidase and peroxidase during processing. Theaflavin-3-3'-di-O-gallate was also significantly positively correlated with the antioxidant and hypoglycemic activities of shaded tea. The results contribute to a better understanding of how preharvest treatments influence summer tea quality.
Collapse
Affiliation(s)
- Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Zhiying Deng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Jie Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Yunfei Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Chenyu Zhang
- Tea Research Institution, Chinese Academy of Agricultural Sciences, Hangzhou310008, China
| | - Suhang Yao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Haoming Zuo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Yue Shi
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Shijie Yuan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Lijuan Qin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan410128, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan410128, China
| |
Collapse
|
14
|
Li J, Xiao Y, Zhou X, Liao Y, Wu S, Chen J, Qian J, Yan Y, Tang J, Zeng L. Characterizing the cultivar-specific mechanisms underlying the accumulation of quality-related metabolites in specific Chinese tea (Camellia sinensis) germplasms to diversify tea products. Food Res Int 2022; 161:111824. [DOI: 10.1016/j.foodres.2022.111824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022]
|
15
|
Mechanistic studies on polyphenol rich fractions of Kangra tea by HPTLC and NMR for their antioxidant activities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2751-2763. [PMID: 35734103 DOI: 10.1007/s13197-021-05297-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/27/2020] [Accepted: 10/17/2021] [Indexed: 12/20/2022]
Abstract
Abstract The antioxidant activity in tea is largely driven by its polyphenolic content, however, the antioxidant reaction mechanism and the compounds involved are not well characterized. Therefore, in this study, we performed in-depth profiling of the antioxidant reaction mechanism of Green Tea (GT), Black Tea (BT), and their polyphenolic fractions with free radical using state-of-the-art analytical techniques. The polyphenol enriched fractions from GT and BT were isolated using column chromatography. Catechins were isolated and characterized by diverse spectroscopic techniques. Samples were screened for their antioxidant activity by HPTLC and further evaluated using a spectrophotometer. The free radical reactions with GT, BT, enriched fractions viz, GT Polyphenols (GTP), BT Polyphenols (BTP), and isolated catechins were studied using the 13C NMR technique. The highest polyphenol content was found in GTP (795.4 ± 0.012 mg/g) whereas GT (321.0 ± 0.028 mg/g) showed maximum flavonoids content. Individual catechins isolated from GTP were EGCG, ECG, EGC, EC and C. Antioxidant activity followed the order EGCG > ECG > EGC > EC > GTP > C > BTP > GT > BT. In GT, the antioxidant reaction mechanism showed single electron and H-transfer in all catechins, which involved the transformation of the hydroxyl group to the carbonyl group. Whereas in BT theaflavins, conversion of the benzotropolone ring to the six-membered ring was observed. Graphic abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05297-w.
Collapse
|
16
|
Cai H, Zhong Z, Li Z, Zhang X, Fu H, Yang B, Zhang L. Metabolomics in quality formation and characterisation of tea products: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhanming Li
- School of Grain Science and Technology Jiangsu University of Science and Technology Zhenjiang 212004 China
| | - Xiaojing Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hongwei Fu
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Bingxian Yang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Lin Zhang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| |
Collapse
|
17
|
Molecular and Metabolic Changes under Environmental Stresses: The Biosynthesis of Quality Components in Preharvest Tea Shoots. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Severe environments impose various abiotic stresses on tea plants. Although much is known about the physiological and biochemical responses of tea (Camellia sinensis L.) shoots under environmental stresses, little is known about how these stresses impact the biosynthesis of quality components. This review summarizes and analyzes the changes in molecular and quality components in tea shoots subjected to major environmental stresses during the past 20 years, including light (shade, blue light, green light, and UV-B), drought, high/low temperature, CO2, and salinity. These studies reveal that carbon and nitrogen metabolism is critical to the downstream biosynthesis of quality components. Based on the molecular responses of tea plants to stresses, a series of artificial methods have been suggested to treat the pre-harvest tea plants that are exposed to inhospitable environments to improve the quality components in shoots. Furthermore, many pleiotropic genes that are up- or down-regulated under both single and concurrent stresses were analyzed as the most effective genes for regulating multi-resistance and quality components. These findings deepen our understanding of how environmental stresses affect the quality components of tea, providing novel insights into strategies for balancing plant resistance, growth, and quality components in field-based cultivation and for breeding plants using pleiotropic genes.
Collapse
|
18
|
Hossain MA, Ahmed T, Hossain MS, Dey P, Ahmed S, Hossain MM. Optimization of the factors affecting BT-2 black tea fermentation by observing their combined effects on the quality parameters of made tea using Response Surface Methodology (RSM). Heliyon 2022; 8:e08948. [PMID: 35243070 PMCID: PMC8857412 DOI: 10.1016/j.heliyon.2022.e08948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/07/2021] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
This research work aimed to optimize the fermentation time, temperature, and relative humidity of the black tea produced from Bangladesh Tea 2 (BT-2) variety by observing their quality parameters. Total theaflavin (TF), thearubigin (TR), the ratio of TF: TR, total liquor color (TLC), high polymeric substances (HPS), and total phenolic content (TPC) were evaluated for quality measurements of BT-2 black tea. Response Surface Methodology (RSM) with Box-Behnken design (BBD) was applied to optimize fermentation time, temperature, and relative humidity as well as evaluate the effects of optimized conditions on the quality of made tea. The results obtained from the response surface optimization affirmed that under the optimum conditions of time (80.14 min), temperature (28.76 °C), and relative humidity (92.30%), the model showed the value of TF (0.69%), TR (5.57%), HPS (8.61%), TLC (3.05%), and TPC (7.95 GAE g/100g tea). Moreover, the optimized model found that the TF:TR value was 1:9.13, which is close to black tea's optimum quality. The values observed in experiments were highly congruent with the predicted value by the regression model. The Analysis of Variance (ANOVA) test revealed that the model was significant for TF, TR, HPS, TLC, TPC, and TF:TR values of prepared BT-2 black tea at different levels (p < 0.001 to p < 0.01). The composite desirability of the model was 0.93, which suggests that the developed model could be utilized effectively to maintain the quality parameters of BT-2 black tea during fermentation.
Collapse
Affiliation(s)
- Mohammad Afzal Hossain
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tanvir Ahmed
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md. Sakib Hossain
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Pappu Dey
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shafaet Ahmed
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md. Monir Hossain
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
19
|
Hou ZW, Chen CH, Ke JP, Zhang YY, Qi Y, Liu SY, Yang Z, Ning JM, Bao GH. α-Glucosidase Inhibitory Activities and the Interaction Mechanism of Novel Spiro-Flavoalkaloids from YingDe Green Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:136-148. [PMID: 34964344 DOI: 10.1021/acs.jafc.1c06106] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flavoalkaloids are a unique class of compounds in tea, most of which have an N-ethyl-2-pyrrolidinone moiety substituted at the A ring of a catechin skeleton. 1-Ethyl-5-hydroxy-pyrrolidone, a decomposed product of theanine, was supposed to be the key intermediate to form tea flavoalkaloids. However, we have also detected another possible theanine intermediate, 1-ethyl-5-oxopyrrolidine-2-carboxylic acid, and speculated if there are related conjugated catechins. Herein, four novel spiro-flavoalkaloids with a spiro-γ-lactone structural moiety were isolated from Yingde green tea (Camellia sinensis var. assamica) in our continuing exploration of new chemical constituents from tea. The structures of the new compounds, spiro-flavoalkaloids A-D (1-4), were further elucidated by extensive nuclear magnetic resonance (NMR) spectroscopy together with the calculated 13C NMR, IR, UV-vis, high-resolution mass, optical rotation, experimental, and calculated circular dichroism spectra. We also provided an alternative pathway to produce these novel spiro-flavoalkaloids. Additionally, their α-glucosidase inhibitory activities were determined with IC50 values of 3.34 (1), 5.47 (2), 22.50 (3), and 15.38 (4) μM. Docking results revealed that compounds 1 and 2 mainly interacted with residues ASP-215, ARG-442, ASP-352, GLU-411, HIS-280, ARG-315, and ASN-415 of α-glucosidase through hydrogen bonds. The fluorescence intensity of α-glucosidase could be quenched by compounds 1 and 2 in a static style.
Collapse
Affiliation(s)
- Zhi-Wei Hou
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Chen-Hui Chen
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jia-Ping Ke
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yuan-Yuan Zhang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yan Qi
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Shi-Yu Liu
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Zi Yang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jing-Ming Ning
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| |
Collapse
|
20
|
Du Y, Yang W, Yang C, Yang X. A comprehensive review on microbiome, aromas and flavors, chemical composition, nutrition and future prospects of Fuzhuan brick tea. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Teng J, Liu Y, Zeng W, Zhou M, Liu Y, Huang Y, Chen Q. In vitro
enzymatic synthesis of a monomeric theaflavin using a polyphenol oxidase isozyme from tea (
Camellia sinensis
) leaf. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jie Teng
- Department of Tea Science Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Yang Liu
- Department of Tea Science Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Wen Zeng
- Department of Tea Science South China Agricultural University Guangzhou Guangdong 510642 China
| | - Mengzhen Zhou
- Department of Tea Science South China Agricultural University Guangzhou Guangdong 510642 China
| | - Yafang Liu
- Department of Tea Science Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Yahui Huang
- Department of Tea Science South China Agricultural University Guangzhou Guangdong 510642 China
| | - Qincao Chen
- Department of Tea Science Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| |
Collapse
|
22
|
Xiang P, Zhu Q, Tukhvatshin M, Cheng B, Tan M, Liu J, Wang X, Huang J, Gao S, Lin D, Zhang Y, Wu L, Lin J. Light control of catechin accumulation is mediated by photosynthetic capacity in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2021; 21:478. [PMID: 34670494 PMCID: PMC8527772 DOI: 10.1186/s12870-021-03260-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/08/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Catechins are crucial in determining the flavour and health benefits of tea, but it remains unclear that how the light intensity regulates catechins biosynthesis. Therefore, we cultivated tea plants in a phytotron to elucidate the response mechanism of catechins biosynthesis to light intensity changes. RESULTS In the 250 μmol·m- 2·s- 1 treatment, the contents of epigallocatechin, epigallocatechin gallate and total catechins were increased by 98.94, 14.5 and 13.0% respectively, compared with those in the 550 μmol·m- 2·s- 1 treatment. Meanwhile, the photosynthetic capacity was enhanced in the 250 μmol·m- 2·s- 1 treatment, including the electron transport rate, net photosynthetic rate, transpiration rate and expression of related genes (such as CspsbA, CspsbB, CspsbC, CspsbD, CsPsbR and CsGLK1). In contrast, the extremely low or high light intensity decreased the catechins accumulation and photosynthetic capacity of the tea plants. The comprehensive analysis revealed that the response of catechins biosynthesis to the light intensity was mediated by the photosynthetic capacity of the tea plants. Appropriately high light upregulated the expression of genes related to photosynthetic capacity to improve the net photosynthetic rate (Pn), transpiration rate (Tr), and electron transfer rate (ETR), which enhanced the contents of substrates for non-esterified catechins biosynthesis (such as EGC). Meanwhile, these photosynthetic capacity-related genes and gallic acid (GA) biosynthesis-related genes (CsaroB, CsaroDE1, CsaroDE2 and CsaroDE3) co-regulated the response of GA accumulation to light intensity. Eventually, the epigallocatechin gallate content was enhanced by the increased contents of its precursors (EGC and GA) and the upregulation of the CsSCPL gene. CONCLUSIONS In this study, the catechin content and photosynthetic capacity of tea plants increased under appropriately high light intensities (250 μmol·m- 2·s- 1 and 350 μmol·m- 2·s- 1) but decreased under extremely low or high light intensities (150 μmol·m- 2·s- 1 or 550 μmol·m- 2·s- 1). We found that the control of catechin accumulation by light intensity in tea plants is mediated by the plant photosynthetic capacity. The research provided useful information for improving catechins content and its light-intensity regulation mechanism in tea plant.
Collapse
Affiliation(s)
- Ping Xiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Marat Tukhvatshin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bosi Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianghong Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingjian Wang
- Institute of Photobiological Industry, Fujian Sanan Sino-Science Photobiotech Co., Ltd, Xiamen, 361008, China
| | - Jiaxin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuilian Gao
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongyi Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue Zhang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
23
|
Lv Z, Zhang C, Shao C, Liu B, Liu E, Yuan D, Zhou Y, Shen C. Research progress on the response of tea catechins to drought stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5305-5313. [PMID: 34031895 DOI: 10.1002/jsfa.11330] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Drought stress (DS) is the most important abiotic stress affecting yield and quality of tea worldwide. DS causes oxidative stress to cells due to the accumulation of reactive oxygen species (ROS). As non-enzymatic antioxidants, tea catechins can scavenge excess ROS in response to DS. Further, catechin accumulation contributes to the formation of oxidative polymerization products (e.g. theaflavins and thearubigins) that improve the quality of black tea. However, there are no systematic reports on the response of tea catechins to DS. First, we reviewed the available literature on the response of tea plants to DS. Second, we summarized the current knowledge of ROS production in tea leaves under DS and typical antioxidant response mechanisms. Third, we conducted a detailed review of the changes in catechin levels in tea under different drought conditions. We found that the total amounts of catechin and o-quinone increased under DS conditions. We propose that the possible mechanisms underlying tea catechin accumulation under DS conditions include (i) autotrophic formation of o-quinone, (ii) polymerization of proanthocyanidins that directly scavenge excess ROS, and (iii) formation of metal ion complexes and by influencing the antioxidant systems that indirectly eliminate excess ROS. Finally, we discuss ways of potentially improving black tea quality using drought before picking in the summer/fall dry season. In summary, we mainly discuss the antioxidant mechanisms of tea catechins under DS and the possibility of using drought to improve black tea quality. Our review provides a theoretical basis for the production of high-quality black tea under DS conditions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhidong Lv
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Baogui Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Enshuo Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Danni Yuan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Yuebing Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| |
Collapse
|
24
|
Deka H, Sarmah PP, Devi A, Tamuly P, Karak T. Changes in major catechins, caffeine, and antioxidant activity during CTC processing of black tea from North East India. RSC Adv 2021; 11:11457-11467. [PMID: 35423631 PMCID: PMC8695946 DOI: 10.1039/d0ra09529j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
Tea (Camellia sinensis L.) leaves undergo complex chemical transformations during black tea processing. However, the dynamic chemical changes during tea processing have not been explored in popular cultivars of North East India. In this study, changes in catechins, caffeine, total polyphenol (TP) and formation of theaflavins were examined throughout the different stages of CTC (curl, tear and crush) black tea processing based on UPLC metabolomic analysis along with antioxidant activity for eight cultivars viz. S.3A/3, TV1, TV7, TV9, TV17, TV22, TV23 and TV25. The results demonstrated that the most prolific changes were observed after complete maceration of tea leaves. The total catechin, (-)-epigallocatechin gallate and (-)-epicatechin gallate levels decreased by 96, 97 and 89%, respectively as the processing progressed from fresh leaves to black tea. The TP level decreased by 26 to 37% throughout the processing path. The caffeine content increased by 18% during processing. The total theaflavin reached the highest level at 20 min of fermentation and then decreased by 13 to 36% at 40 min. Cultivar TV23 and S.3A/3 had a high content of total theaflavin with 17.9 and 16.9 mg g-1, respectively. The antioxidant activity was observed to be decreased by 31% for the black tea as compared to fresh leaves. It is also observed that the total phenolic content exerted a greater effect on antioxidant activity rather than catechins and theaflavins. This study provides an insightful observation of black tea processing which will immensely help in improving the quality of processed tea.
Collapse
Affiliation(s)
- Himangshu Deka
- Biochemistry Department, Tocklai Tea Research Institute Jorhat 785008 Assam India
| | - Podma Pollov Sarmah
- Biochemistry Department, Tocklai Tea Research Institute Jorhat 785008 Assam India
| | - Arundhuti Devi
- Resource Management and Environment Section, Institute of Advanced Study in Science and Technology Guwahati 781035 Assam India
| | - Pradip Tamuly
- Biochemistry Department, Tocklai Tea Research Institute Jorhat 785008 Assam India
| | - Tanmoy Karak
- Upper Assam Advisory Centre, Tea Research Association Dikom 786101 Assam India
| |
Collapse
|
25
|
Zhang J, Sun X. Recent advances in polyphenol oxidase-mediated plant stress responses. PHYTOCHEMISTRY 2021; 181:112588. [PMID: 33232863 DOI: 10.1016/j.phytochem.2020.112588] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 05/29/2023]
Abstract
Plant polyphenol oxidases (PPOs) are ubiquitous copper metalloenzymes with a biochemistry that has been known for more than a century. By the 1990s, biologists began to recognize the importance of PPOs in plant response to the infestation of herbivores and pathogens; ideas concerning a defensive role for PPOs arose to address observed evidence, and several testable hypotheses were suggested. Two pivotal discoveries in tomato (Lycopersicon esculentum Miller) plants, an inverse correlation between PPO levels and insect growth and PPO induction by defence signals, have driven many studies of PPO defence functions in the context of abiotic and biotic stresses. During the past three decades, extensive molecular research in transgenic and non-transgenic systems has partly revealed the sophisticated mechanisms underlying PPO defence against herbivores and pathogens. These understandings, rather than theoretical predictions, have driven the development of new hypotheses and advanced PPO-related studies. Here, we review progress in PPO family features, expression regulation and the defensive role of PPOs in plants. We propose assumptions of an extended range of co- and post-transcriptional processes to the regulation of unexplored PPO expression. In addition, the identification of endogenous PPO substrates and downstream targets of PPO action will be useful for elucidating PPO defensive roles. The potential effects of PPO-mediated oxidative defences on herbivore performance ultimately needs to be further investigated. Therefore, expanding multidisciplinary approaches to unexplored dimensions of PPO defence function should be a future priority.
Collapse
Affiliation(s)
- Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
26
|
Genome-wide analysis and metabolic profiling unveil the role of peroxidase CsGPX3 in theaflavin production in black tea processing. Food Res Int 2020; 137:109677. [PMID: 33233254 DOI: 10.1016/j.foodres.2020.109677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 01/20/2023]
Abstract
Plucked tea leaves can be processed into black tea (Camellia sinensis), which is rich in health-promoting molecules, including flavonoid antioxidants. During black tea processing, theaflavins (TFs) and thearubigins (TRs) are generated via the successive oxidation of catechins by endogenous polyphenol oxidase (PPO)- or peroxidase (POD)-mediated reactions. This process must be well controlled to achieve the proper TF/TR ratio, which is an important quality parameter of the tea beverage. However, little is known about the POD/PPO catalyzed TF formation process at the molecular genetic level. Here, we identified and characterized the POD genes responsible for TF production in tea. Genome-wide analysis of POD/PPO family genes, metabolite profiling, and expression analysis of PPO/POD genes in tea leaves enabled us to select several PPO/POD genes potentially involved in TF production. Differential gene expression in plant tissues and enzyme activity in several tea varieties traditionally used for processing of various beverage types indicate that black tea processing primarily depends on PPO/POD activity. Among these POD/PPO genes, the POD CsGPX3 is involved in the generation of TFs during black tea processing. The capacity of PPO/POD-catalysed TF production is potentially used for controlling catechin oxidation during black tea processing and could be used to create molecular markers for breeding of tea plant varieties suitable for the production of high-quality black tea beverages.
Collapse
|
27
|
Yu Z, Zhao C, Zhang G, Teixeira da Silva JA, Duan J. Genome-Wide Identification and Expression Profile of TPS Gene Family in Dendrobium officinale and the Role of DoTPS10 in Linalool Biosynthesis. Int J Mol Sci 2020; 21:ijms21155419. [PMID: 32751445 PMCID: PMC7432446 DOI: 10.3390/ijms21155419] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 01/12/2023] Open
Abstract
Terpene synthase (TPS) is a critical enzyme responsible for the biosynthesis of terpenes, which possess diverse roles in plant growth and development. Although many terpenes have been reported in orchids, limited information is available regarding the genome-wide identification and characterization of the TPS family in the orchid, Dendrobium officinale. By integrating the D. officinale genome and transcriptional data, 34 TPS genes were found in D. officinale. These were divided into four subfamilies (TPS-a, TPS-b, TPS-c, and TPS-e/f). Distinct tempospatial expression profiles of DoTPS genes were observed in 10 organs of D. officinale. Most DoTPS genes were predominantly expressed in flowers, followed by roots and stems. Expression of the majority of DoTPS genes was enhanced following exposure to cold and osmotic stresses. Recombinant DoTPS10 protein, located in chloroplasts, uniquely converted geranyl diphosphate to linalool in vitro. The DoTPS10 gene, which resulted in linalool formation, was highly expressed during all flower developmental stages. Methyl jasmonate significantly up-regulated DoTPS10 expression and linalool accumulation. These results simultaneously provide valuable insight into understanding the roles of the TPS family and lay a basis for further studies on the regulation of terpenoid biosynthesis by DoTPS in D. officinale.
Collapse
Affiliation(s)
- Zhenming Yu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Z.Y.); (C.Z.); (G.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Conghui Zhao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Z.Y.); (C.Z.); (G.Z.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guihua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Z.Y.); (C.Z.); (G.Z.)
| | | | - Jun Duan
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Z.Y.); (C.Z.); (G.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Correspondence: ; Tel.: +86-020-37252978
| |
Collapse
|
28
|
Souza NC, de Oliveira Nascimento EN, de Oliveira IB, Oliveira HML, Santos EGP, Moreira Cavalcanti Mata MER, Gelain DP, Moreira JCF, Dalmolin RJS, de Bittencourt Pasquali MA. Anti-inflammatory and antixidant properties of blend formulated with compounds of Malpighia emarginata D.C (acerola) and Camellia sinensis L. (green tea) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biomed Pharmacother 2020; 128:110277. [PMID: 32480222 DOI: 10.1016/j.biopha.2020.110277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
The antioxidant and anti-inflammatory properties of Malpighia emarginata D.C (acerola) and Camellia sinensis L. (green tea) have been studied, particularly as an alternative in medicinal approach for different physio pathological conditions. Here we develop an powder blend formulated with both Malpighia emarginata D.C and Camellia sinensis L. which have in the composition higher content of ascorbic acid and epigallatocathechin-3-gallate respectively. Using different conditions for microencapsulation of biocompounds, we performed the powder production through spray-drying process. After, we evaluate the antioxidant and anti-inflammatory properties of blends formulated with Malpighia emarginata D.C and Camellia sinensis L. in an in vitro model of inflammation, using LPS-stimulated RAW-264.7 macrophage cell line. We observed that co-treatment with blends was able to modulate the redox parameters in cells during the in vitro inflammatory response. Moreover, the co-treatment with blends were able to modulate inflammatory response by altering the secretion of cytokines IL-1β, IL-6, IL-10, and TNF-α. Taken together, our results demonstrate for the first time the synergistic effects antioxidant and anti-inflammatory of Malpighia emarginata D.C and Camellia sinensis L. These results warrant further use of the blend powder for use in the products to heath beneficial, principally in terms of prevention of chronic diseases.
Collapse
Affiliation(s)
- Natália Cabral Souza
- Programa de Pós-Graduação em Bioquímica - Departamento de Bioquimica - Universidade Federal do Rio Grande do Norte - UFRN, Av Senador Salgado Filho, 3000, 59078-900 Natal, Rio Grande do Norte, Brazil
| | - Eduardo Natan de Oliveira Nascimento
- Programa de Pós-Graduação em Engenharia de Alimentos -Unidade Academica de Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, 58429-200 Campina Grande, Paraíba, Brazil
| | - Iara Bezerra de Oliveira
- Programa de Pós-Graduação em Engenharia e Gestão de Recursos Naturais - Centro de Tecnologia e Recursos Naturais, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, 58429-200 Campina Grande, Paraíba, Brazil
| | - Hugo Miguel Lisboa Oliveira
- Programa de Pós-Graduação em Engenharia de Alimentos -Unidade Academica de Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, 58429-200 Campina Grande, Paraíba, Brazil
| | - Eudeson Gustavo Paiva Santos
- Programa de Pós-Graduação em Engenharia de Alimentos -Unidade Academica de Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, 58429-200 Campina Grande, Paraíba, Brazil
| | - Mário Eduardo Rangel Moreira Cavalcanti Mata
- Programa de Pós-Graduação em Engenharia de Alimentos -Unidade Academica de Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, 58429-200 Campina Grande, Paraíba, Brazil
| | - Daniel Pens Gelain
- Programa de Pós-Graduação em Bioquímica - Departamento de Bioquímica - Universidade Federal do Rio Grande do Sul, R. Ramiro Barcelos 2600, 90035-001 Porto Alegre, Rio Grande do Sul, Brazil
| | - José Cláudio Fonseca Moreira
- Programa de Pós-Graduação em Bioquímica - Departamento de Bioquímica - Universidade Federal do Rio Grande do Sul, R. Ramiro Barcelos 2600, 90035-001 Porto Alegre, Rio Grande do Sul, Brazil
| | - Rodrigo Juliani Siqueira Dalmolin
- Programa de Pós-Graduação em Bioquímica - Departamento de Bioquimica - Universidade Federal do Rio Grande do Norte - UFRN, Av Senador Salgado Filho, 3000, 59078-900 Natal, Rio Grande do Norte, Brazil
| | - Matheus Augusto de Bittencourt Pasquali
- Programa de Pós-Graduação em Bioquímica - Departamento de Bioquimica - Universidade Federal do Rio Grande do Norte - UFRN, Av Senador Salgado Filho, 3000, 59078-900 Natal, Rio Grande do Norte, Brazil; Programa de Pós-Graduação em Engenharia de Alimentos -Unidade Academica de Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, 58429-200 Campina Grande, Paraíba, Brazil; Programa de Pós-Graduação em Engenharia e Gestão de Recursos Naturais - Centro de Tecnologia e Recursos Naturais, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, 58429-200 Campina Grande, Paraíba, Brazil.
| |
Collapse
|