1
|
Han D, Yang Y, Guo Z, Dai S, Jiang M, Zhu Y, Wang Y, Yu Z, Wang K, Rong C, Yu Y. A Review on the Interaction of Acetic Acid Bacteria and Microbes in Food Fermentation: A Microbial Ecology Perspective. Foods 2024; 13:2534. [PMID: 39200461 PMCID: PMC11353490 DOI: 10.3390/foods13162534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
In fermented foods, acetic acid bacteria (AAB), kinds of bacteria with a long history of utilization, contribute to safety, nutritional, and sensory properties primarily through acetic acid fermentation. AAB are commonly found in various fermented foods such as vinegar, sour beer, fermented cocoa and coffee beans, kefir beverages, kombucha, and sourdough. They interact and cooperate with a variety of microorganisms, resulting in the formation of diverse metabolites and the production of fermented foods with distinct flavors. Understanding the interactions between AAB and other microbes is crucial for effectively controlling and utilizing AAB in fermentation processes. However, these microbial interactions are influenced by factors such as strain type, nutritional conditions, ecological niches, and fermentation duration. In this review, we examine the relationships and research methodologies of microbial interactions and interaction studies between AAB and yeasts, lactic acid bacteria (LAB), and bacilli in different food fermentation processes involving these microorganisms. The objective of this review is to identify key interaction models involving AAB and other microorganisms. The insights gained will provide scientific guidance for the effective utilization of AAB as functional microorganisms in food fermentation processes.
Collapse
Affiliation(s)
- Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yunsong Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Zhantong Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Shuwen Dai
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Mingchao Jiang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Chunchi Rong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| |
Collapse
|
2
|
Yan Y, Liang Z, Huo Y, Wu Q, Ni L, Lv X. A Comparative Study of Microbial Communities, Biogenic Amines, and Volatile Profiles in the Brewing Process of Rice Wines with Hongqu and Xiaoqu as Fermentation Starters. Foods 2024; 13:2452. [PMID: 39123642 PMCID: PMC11311568 DOI: 10.3390/foods13152452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 08/12/2024] Open
Abstract
Rice wine is primarily crafted from grains through saccharification and liquification with the help of Qu. Qu plays an important role in the formation of the flavor quality of rice wine. Hongqu and Xiaoqu represent two prevalent varieties of Qu that are typically utilized in the brewing process of rice wine and play a crucial role in its production. In this study, GC, GC-MS, HPLC, and metagenomic sequencing techniques were used to contrast the microbial flora, biogenic amines, and aroma characteristics developed during the fermentation of rice wines, with Hongqu and Xiaoqu being used as initiating agents for the brewing process. The results show that the content of higher alcohols (including n-propanol, isobutanol, 3-methyl-1-butanol, and phenethyl alcohol) in rice wine brewed with Xiaoqu (XQW) was significantly higher than that in rice wine brewed with Hongqu (HQW). Contrarily, the concentration of biogenic amines in HQW surpassed that of XQW by a notable margin, but tyramine was significantly enriched in XQW and not detected in HQW. In addition, a multivariate statistical analysis revealed distinct disparities in the constitution of volatile components between HQW and XQW. Hexanoic acid, ethyl acetate, isoamyl acetate, ethyl caproate, ethyl decanoate, 2-methoxy-4-vinylphenol, etc., were identified as the characteristic aroma-active compounds in HQW and XQW. A microbiome analysis based on metagenomic sequencing showed that HQW and XQW had different dominant microorganisms in the brewing process. Burkholderia, Klebsiella, Leuconostoc, Monascus, and Aspergillus were identified as the primary microbial genera in the HQW fermentation period, while Pediococcus, Enterobacter, Rhizopus, Ascoidea, and Wickerhamomyces were the main microbial genera in the XQW brewing process. A bioinformatics analysis revealed that the concentrations of microbial genes involved in biogenic amines and esters biosynthesis were significantly higher in HQW than those in XQW, while the content of genes relevant to glycolysis, higher alcohol biosynthesis, and fatty acid metabolism was significantly higher in XQW than in HQW, which are the possible reasons for the difference in flavor quality between the two kinds of rice wine from the perspective of microbial functional genes.
Collapse
Affiliation(s)
- Yingyin Yan
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zihua Liang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yujia Huo
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qi Wu
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xucong Lv
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
3
|
Chen X, Song C, Zhao J, Xiong Z, Peng L, Zou L, Liu B, Li Q. Effect of a New Fermentation Strain Combination on the Fermentation Process and Quality of Highland Barley Yellow Wine. Foods 2024; 13:2193. [PMID: 39063277 PMCID: PMC11276116 DOI: 10.3390/foods13142193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Yellow wine fermented from highland barley is an alcoholic beverage with high nutritional value. However, the industrialization of barley yellow wine has been constrained to a certain extent due to the lack of a systematic starter culture. Therefore, the present study aims to simulate barley yellow wine fermentation using a starter culture consisting of Rhizopus arrhizus, Saccharomyces cerevisiae, Pichia kudriavzevii, and Lacticaseibacillus rhamnosus. In this study, changes in enzyme activity, fermentation characteristics, volatile substance production, and amino acid content during the fermentation of highland barley yellow wine brewed with different starter cultures were evaluated. The results of this study show that regulating the proportion of mixed starter bacteria can effectively control the various stages of the fermentation process and improve the organoleptic characteristics and quality of yellow wine to varying degrees. Additionally, we found that the addition of probiotics could effectively improve the palatability of yellow wine. To the best of our knowledge, we have validated for the first time the use of the above multispecies starter culture, consisting of R. arrhizus, S. cerevisiae, P. kudriavzevii, and L. rhamnosus, in the production of highland barley yellow wine. The obtained findings provided reference data for optimizing highland barley yellow wine fermentation.
Collapse
Affiliation(s)
- Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Jian Zhao
- School of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| |
Collapse
|
4
|
Yin X, Zhang M, Wang S, Wang Z, Wen H, Sun Z, Zhang Y. Characterization and discrimination of the taste and aroma of Tibetan Qingke baijiu using electronic tongue, electronic nose and gas chromatography-mass spectrometry. Food Chem X 2024; 22:101443. [PMID: 38846797 PMCID: PMC11154201 DOI: 10.1016/j.fochx.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Consumers rely on flavor characteristics to distinguish different types of Qingke Baijiu (QKBJ). Clarifying QKBJ's traits enhances its recognition and long-term growth. Thus, this study analyzed eight QKBJ samples from different regions of Tibet (Lhasa, Sannan, Shigatse, and Qamdo) using GC-MS, electronic nose and electronic tongue. The radar charts of the electronic tongue and electronic nose revealed highly similar profiles for all eight samples. Fifteen common compounds were found in all samples, with the main alcohol compounds being 3-Methyl-1-butanol, 1-hexanol, isobutanol, 1-butanol, 1-nonanol, and phenylethyl alcohol, imparting fruity, floral, and herbal aromas. However, the Sannan samples had higher total alcohol content than total ester content, emphasizing bitterness. Lhasa1 exhibited the most prominent sweetness, Lhasa2 the most noticeable sourness, and Qamdo the most pronounced umami. Lhasa3 and Lhasa4 had total acid content second only to total ester content. Tyd had the highest alkanes, while Lhasa had most aldehydes among samples.
Collapse
Affiliation(s)
- Xiaoqing Yin
- Institute of Food Processing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet Lhasa 850000, China
| | - Man Zhang
- Sicuan Guojian Inspection Co., Ltd., Luzhou, Sichuan 646000, China
| | - Shanshan Wang
- Institute of Food Processing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet Lhasa 850000, China
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225001, China
| | - Huaying Wen
- Institute of Food Processing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet Lhasa 850000, China
| | - Zhiwei Sun
- China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Yuhong Zhang
- Institute of Food Processing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet Lhasa 850000, China
| |
Collapse
|
5
|
Ji L, Zhou C, Zhou Y, Nie Q, Luo Y, Yang R, Wang S, Ning J, Zhang J, Zhang Y. Study on simulation effect of physical and chemical characteristics of sausage by sausage model system. Front Nutr 2024; 11:1408618. [PMID: 38840702 PMCID: PMC11150632 DOI: 10.3389/fnut.2024.1408618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction The incorporation of Staphylococcus xylosus in sausage production is hypothesized to affect various physicochemical properties and flavor profiles of sausages. This study aimed to evaluate the simulation of these features in a sausage model and establish its applicability for in vitro studies. Methods Both a control and an experimental model, inclusive of Staphylococcus xylosus, were assessed for changes in physicochemical indexes (pH and water activity, Aw) and the concentration of flavoring components (esters and aldehydes). Thiobarbituric acid reactive substances (TBARS) values were also measured to evaluate lipid oxidation. Results The introduction of Staphylococcus xylosus resulted in no significant changes in pH and Aw between the sausage and the model. However, there was a considerable increase in the content of volatile flavor compounds, specifically esters and aldehydes, in the experimental groups compared to the control. Additionally, the TBARS values in experimental groups were significantly lower than those in the control group at the end of the testing period. Discussion The findings indicate that Staphylococcus xylosus plays a critical role in enhancing the flavor profile of sausages through the increased synthesis of volatile compounds and inhibiting fat oxidation. The sausage model effectively simulated the physicochemical and flavor index responses, demonstrating its potential utility for further in vitro research on sausage fermentation and preservation techniques.
Collapse
Affiliation(s)
- Lili Ji
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Chunyan Zhou
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Yanan Zhou
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Qing Nie
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Yi Luo
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Rui Yang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Shu Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Jiawen Ning
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Ying Zhang
- Chengdu Huixin Foods Co., Chengdu, China
| |
Collapse
|
6
|
Ma Y, Peng S, Mi L, Li M, Jiang Z, Wang J. Correlation between fungi and volatile compounds during different fermentation modes at the industrial scale of Merlot wines. Food Res Int 2023; 174:113638. [PMID: 37981360 DOI: 10.1016/j.foodres.2023.113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023]
Abstract
Elucidation of the relationship between fungal community development and dynamic changes in volatile components during fermentation is of great significance in controlling wine production. However, such studies on an industrial scale are rarely reported. In this study, fungal community succession during spontaneous fermentation (SPF) and inoculation fermentation (INF) of Merlot wine was monitored by a research strategy combining culture-dependent and culture-independent methods. The volatile compounds were monitored during SPF and INF by headspace solid-phase micro-extraction coupled with gas chromatography-mass spectrometry technology. The Spearman correlation coefficient was also used to investigate the interplay between fungal communities and volatile compounds. We found that fungal community diversity in SPF decreased as fermentation progressed but was significantly higher than that of INF. Starmerella and Kazachstania were the dominant non-Saccharomyces genera in Merlot wine during SPF. However, the presence of commercial yeasts and sulphur dioxide led to a sharp decrease or the disappearance of non-Saccharomyces genera during INF. Spearman correlation analysis revealed that all major volatiles were positively correlated with most functional microbiotas except P. fermentans, S. bacillaris, E. necator, and D. exigua in INF. In SPF, most non-Saccharomyces were negatively correlated with core volatiles, whereas K. humilis, M. laxa, P. kluyveri, and A. japonicus were positively correlated with the major volatiles, especially some higher alcohols (isopentol, heptanol) and terpenes (linalool, citronellol). S. cerevisiae was positively correlated with most of the main volatile substances except ethyl isovalerate and isoamyl acetate. These findings provide a reference for comprehending the diverse fermentation methods employed in the wine industry and improving the quality of Merlot wines.
Collapse
Affiliation(s)
- Yuwen Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Shuai Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Lan Mi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Min Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Zhanzhan Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China.
| |
Collapse
|
7
|
Xu JZ, Zhang YY, Zhang WG. Correlation between changes in flavor compounds and microbial community ecological succession in the liquid fermentation of rice wine. World J Microbiol Biotechnol 2023; 40:17. [PMID: 37981595 DOI: 10.1007/s11274-023-03844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Microorganisms play an important role in regulating flavor compounds in rice wine, whereas we often don't understand how did they affect flavor compounds. Here, the relations between flavor compounds and microbial community ecological succession were investigated by monitoring flavor compounds and microbial community throughout the fermentation stage of rice wine. The composition of microbial community showed a dynamic change, but 13 dominant bacterial genera and 4 dominant fungal genera were detected throughout the fermentation stages. Saccharomyces presented a strong negative correlation with fungi genera but had positive associations with bacteria genera. Similarly, flavor compounds in rice wine were also showed the dynamic change, and 112 volatile compounds and 17 free amino acids were identified in the whole stages. The alcohol-ester ratio was decreased in the LTF stage, indicating that low temperature boosts ester formation. The potential correlation between flavor compounds and microbial community indicated that Delftia, Chryseobacterium, Rhizopus and Wickerhamomyces were the core functional microorganisms in rice wine. These findings clarified the correlation between changes in flavor compounds and in microbial community in the liquid fermentation of rice wine, and these results have some reference value for the quality improvement and technological optimization in liquid fermentation of rice wine.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 # Lihu Road, WuXi, 214122, People's Republic of China.
| | - Yang-Yang Zhang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 # Lihu Road, WuXi, 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 # Lihu Road, WuXi, 214122, People's Republic of China
| |
Collapse
|
8
|
Pan F, Qiu S, Lv Y, Li D. Exploring the controllability of the Baijiu fermentation process with microbiota orientation. Food Res Int 2023; 173:113249. [PMID: 37803561 DOI: 10.1016/j.foodres.2023.113249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
Product quality and stability improvement is important for development of the Baijiu industry. Generally, Baijiu brewing is carried out in a spontaneous fermentation system mediated by microbiota. Thus, complexity and instability are major features. Due to the insufficient understanding of the mechanism for producing Baijiu, the precise control of the fermentation progress has still not been realized, ultimately affecting product quality and stability. The flavor of Baijiu is the most important factor in determining its quality and is formed by microbiota under the driving force of various physicochemical parameters, such as moisture, acidity, and temperature. Therefore, exploring the association among microbiota (core), physicochemical factors (reference) and flavor compounds (target) has become a key point to clarify the formation mechanism for the flavor quality of Baijiu. Daqu fermentation and liquor fermentation are the two major stages of Baijiu brewing. Daqu, distillers' grains, and pit mud, as the most important fermentation substrates of the microbiota respectively, provide a large number of functional microorganisms related to the flavor components. To this end, we reviewed the relevant research progress of microbiota diversity in different fermentation substrates and the interaction mechanisms among microbiota, physicochemical parameters, and flavor components in this paper. Moreover, a research hypothesis of precise control of the Baijiu fermentation process by building fermentation models based on this is proposed. The key point for this idea is the identification of core microbiota closely associated with the formation of key flavor components by multi-omics technology and the acquisition of culturable strains. With this foundation, fermentation models suitable for different brewing environments will be established by constructing synthetic microbiota, designing mathematical models, and determining key fermentation model parameters. The ultimate goal will be to effectively improve the quality and stability of Baijiu products through model regulation.
Collapse
Affiliation(s)
- Fengshuang Pan
- Province Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang 550025, China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuyi Qiu
- Province Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang 550025, China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yiyi Lv
- Province Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang 550025, China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Dounan Li
- Province Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang 550025, China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Liquor Making Biological Technology and Application of key laboratory of Sichuan Province, Yibin 644000, China.
| |
Collapse
|
9
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Zhao P, Liu C, Qiu S, Chen K, Wang Y, Hou C, Huang R, Li J. Flavor Profile Evaluation of Soaked Greengage Wine with Different Base Liquor Treatments Using Principal Component Analysis and Heatmap Analysis. Foods 2023; 12:foods12102016. [PMID: 37238834 DOI: 10.3390/foods12102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The selection of base liquor plays a crucial role in the flavor of soaked greengage wine. This study aimed to investigate the effects of different base liquor treatments on the physicochemical characteristics and aroma composition of greengage wine. We carried out a comprehensive analysis using HPLC for the determination of organic acids and GC-MS for the determination of volatile aroma compounds, combined with sensory evaluation. The results showed that the red and yellow colors were the darkest in the high-alcohol group, while the citric acid content was the highest in the sake group (21.95 ± 2.19 g/L). In addition, the greengage wine steeped in 50% edible alcohol had more terpenes, a significantly higher concentration of acid-lipid compounds, and a more intense aroma compared to that of the low-alcohol group, whose typical aroma compounds were greatly reduced. The sensory results showed that the greengage wine treated with baijiu had a distinct alcoholic flavor, while almond flavors were more intense in the greengage wine treated with 15% edible alcohol. In this study, base liquor was used as the main influencing factor to provide new research ideas for the flavor optimization of soaked greengage wine.
Collapse
Affiliation(s)
- Peipei Zhao
- CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, Chengdu 611430, China
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China
| | - Chang Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China
| | - Shuang Qiu
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China
| | - Kai Chen
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China
- College of Food Science & Technology, Henan Agricultural University, No. 63 Nongye Road, Zhengzhou 450002, China
| | - Yingxiang Wang
- Sichuan Mehe Wine Industry Co., Ltd., No. 551 Xiling Avenue, Jinyuan Town, Dayi County, Chengdu 611330, China
| | - Caiyun Hou
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China
| | - Rui Huang
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Jingming Li
- CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, Chengdu 611430, China
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China
| |
Collapse
|
11
|
Chen T, Wang H, Su W, Mu Y, Tian Y. Analysis of the formation mechanism of volatile and non-volatile flavor substances in corn wine fermentation based on high-throughput sequencing and metabolomics. Food Res Int 2023; 165:112350. [PMID: 36869445 DOI: 10.1016/j.foodres.2022.112350] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to reveal the relationship between core microorganisms and flavor substances in the fermentation process of corn wine. Microbial diversity, volatile and non-volatile flavor substances were detected by high-throughput sequencing (HTS), headspace solid phase micro-extraction gas chromatography-mass spectrometry (HS-SPME/GC-MS) and gas chromatography time of flight mass spectrometry (GC-TOF-MS). High performance liquid chromatography (HPLC) was used to detect organic acids in corn wine fermentation, and its physiochemical properties were tracked. The results showed that physiochemical factors changed obviously with fermentation time. Bacillus, Prevotella_9, Acinetobacter and Gluconobacter were the predominant bacterial. Rhizopus and Saccharomyces were the dominant fungi. Acetic acid and succinic acid were important organic acids in corn wine. According to variable importance of projection (VIP) > 1 and P < 0.05, 24 volatile flavor substances with significant difference were screened out from 52 volatile flavor substances. Similarly, 25 non-volatile flavor substances with significant differences were screened out from the 97 reliable metabolites identified by 223 chromatographic peaks. Eight key metabolic pathways were enriched from 25 non-volatile flavor substances according to path influence values > 0.1 and P < 0.05. Based on Two-way Orthogonal Partial Least Squares (O2PLS) model and Pearson correlation coefficient, Saccharomyces, Rhizopus, uncultured_bacterium, Aneurinibacillus, Wickerhamomyces and Gluconobacter may be the potential volatile flavor-contributing microorganism genus in corn wine. The Pearson correlation coefficient showed that Saccharomyces was significantly positively correlated with malic acid, oxalic acid, valine and isoleucine, and Rhizopus was positively correlated with glucose-1-phosphate and alanine. These findings enhanced our understanding of the formation mechanism of flavor substances in corn wine and provided the theoretical basis for stabilizing flavor quality of corn wine.
Collapse
Affiliation(s)
- Tianyan Chen
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Hanyu Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Wei Su
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China.
| | - Yingchun Mu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yexin Tian
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Han B, Xie Y, Zhang M, Lu J, Cai G. Impact of barley endophytic Pantoea agglomerans on the malt filterability. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
13
|
Flavor characteristics of hulless barley wine fermented with mixed starters by molds and yeasts isolated from Jiuqu. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Li X, Cheng X, Yang J, Wang X, Lü X. Unraveling the difference in physicochemical properties, sensory, and volatile profiles of dry chili sauce and traditional fresh dry chili sauce fermented by Lactobacillus plantarum PC8 using electronic nose and HS-SPME-GC-MS. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Chen L, Liu B, Feng S, Ma X, Wang S, Zhang Y. Correlation between microbe, physicochemical properties of Jiuqu in different plateau areas and volatile flavor compounds of highland barley alcoholic drink. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
16
|
Abstract
Epiphytic microbial communities significantly impact the health and quality of grape berries. This study utilized high-performance liquid chromatography and high-throughput sequencing to explore the epiphytic microbial diversity and physicochemical indicators in nine different wine grape varieties. In total, 1,056,651 high-quality bacterial 16S rDNA sequences and 1,101,314 fungal ITS reads were used for taxonomic categorization. Among the bacteria, Proteobacteria and Firmicutes were the dominant phyla, and Massilia, Pantoea, Pseudomonas, Halomonas, Corynebacterium, Bacillus, Anaerococcus, and Acinetobacter were the dominant genera. Among the fungi, Ascomycota and Basidiomycota were the dominant phyla, and Alternaria, Filobasidium, Erysiphe, Naganishia, and Aureobasidium were the dominant genera. Notably, Matheran (MSL) and Riesling (RS) exhibited the highest microbial diversity among the nine grape varieties. Moreover, pronounced differences in epiphytic microorganisms in red and white grapes suggested that the grape variety significantly influences the structure of surface microbial communities. Understanding the composition of epiphytic microorganisms on the grape skin can provide a direct guide to winemaking.
Collapse
|
17
|
Li CY, Zhou Z, Xu T, Wang NY, Tang C, Tan XY, Feng ZG, Zhang Y, Liu Y. Aconitum pendulum and Aconitum flavum: A narrative review on traditional uses, phytochemistry, bioactivities and processing methods. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115216. [PMID: 35331875 DOI: 10.1016/j.jep.2022.115216] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/05/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Composed of dried Aconitum pendulum and Aconitum flavum roots, Tiebangchui, is an important Tibetan medicine and has been traditionally and widely used as a remedy for cold and pain for thousands of years because of its extraordinary pharmacological activities. The toxicity and efficacy of Tiebangchui as a typical toxic traditional Tibetan medicine, are interdependent, and thus to make sure its safe use in clinics is also noteworthy. AIM OF THE STUDY This review aims to document and summarize critical and comprehensive information about traditional uses, phytochemistry, pharmacology, toxicology and processing methods of Tiebangchui. Perspectives for possible future investigations have been discussed. MATERIALS AND METHODS Relevant information about Tiebangchui (A. pendulum and A. flavum) was collected from internationally recognized electronic scientific databases, such as Web of Science, PubMed, Science Direct, Springer Link, ACS, and CNKI. Then, classic Tibetan medical books, such as Four Medical Tantra, and Jing Zhu Materia Medica, and official drug standards were reviewed. RESULTS A total of 95 chemical constituents have been isolated and identified from Tiebangchui, and most of them were diterpenoid alkaloids. These phytochemicals showed a wide range of pharmacological properties, such as anti-inflammation, anti-rheumatoid arthritis, analgesic, local anesthetic, anti-cancer and anti-bacterial activities. Hence, Tiebangchui is broadly used in hundreds of preparations to treat fever, arthritis, rheumatic arthralgia, traumatic injury, furuncle and swelling. Cardiotoxicity, neurotoxicity and gastrointestinal toxicity are the main toxic effects caused by the Aconitum alkaloids of Tiebangchui. Various processing methods, including steaming, decocting and sand-frying, and traditional Tibetan medicine processing methods, such as processing with Hezi decoction, Qingke wine and Zanba, are effective in attenuating toxicity while retaining efficacy. CONCLUSIONS The present review provides primary information of Tiebangchui, particularly for its traditional uses, botanical characteristics, phytochemicals, outstanding bioactivities and processing methods. However, studies that explored the in vivo pharmacokinetics and mechanism of Tiebangchui, as well as its quality markers, qualitative and quantitative analysis are still insufficient. Processing methods that attenuate toxicities, evaluations of efficacy, in vivo processes and biological effects, the mechanisms of processed products should be further explored.
Collapse
Affiliation(s)
- Cong-Ying Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhen Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tong Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nai-Yu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Yan Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zi-Ge Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yue Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
18
|
Wang M, Wang J, Chen J, Philipp C, Zhao X, Wang J, Liu Y, Suo R. Effect of Commercial Yeast Starter Cultures on Cabernet Sauvignon Wine Aroma Compounds and Microbiota. Foods 2022; 11:foods11121725. [PMID: 35741923 PMCID: PMC9222704 DOI: 10.3390/foods11121725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Commercial Saccharomyces cerevisiae plays an important role in the traditional winemaking industry. In this study, the correlation of microbial community and aroma compound in the process of alcohol fermentation of Cabernet Sauvignon by four different commercial starters was investigated. The results showed that there was no significant difference in the fermentation parameters of the four starters, but there were differences in microbial diversity among the different starters. The wine samples fermented by CEC01 had higher microbial abundance. GC-MS detected a total of 58 aromatic compounds from the fermentation process by the experimental yeasts. There were 25 compounds in the F6d variant, which was higher than in other samples. The PCA score plot showed that 796 and F15 yeast-fermented wines had similar aromatic characteristic compositions. According to partial least squares (PLS, VIP > 1.0) analysis and Spearman’s correlation analysis, 11, 8, 8 and 10 microbial genera were identified as core microorganisms in the fermentation of 796, CEC01, CECA and F15 starter, respectively. Among them, Leuconostoc, Lactobacillus, Sphingomonas and Pseudomonas played an important role in the formation of aroma compounds such as Ethyl caprylate, Ethyl caprate and Ethyl-9-decenoate. These results can help us to have a better understanding of the effects of microorganisms on wine aroma and provide a theoretical basis for improving the flavor quality of Cabernet Sauvignon wine.
Collapse
Affiliation(s)
- Meiqi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
| | - Jiarong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
| | - Jiawei Chen
- China Great Wall Wine Co., Ltd., Zhangjiakou 075400, China; (J.C.); (X.Z.)
| | - Christian Philipp
- Höhere Bundeslehranstalt und Bundesamt für Wein- und Obstbau, Wienerstraße 74, 3400 Klosterneuburg, Austria;
| | - Xiaoning Zhao
- China Great Wall Wine Co., Ltd., Zhangjiakou 075400, China; (J.C.); (X.Z.)
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
- Correspondence: ; Tel.: +86-13503129927
| | - Ran Suo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
| |
Collapse
|
19
|
Liu A, Yang X, Guo Q, Li B, Zheng Y, Shi Y, Zhu L. Microbial Communities and Flavor Compounds during the Fermentation of Traditional Hong Qu Glutinous Rice Wine. Foods 2022; 11:foods11081097. [PMID: 35454684 PMCID: PMC9032908 DOI: 10.3390/foods11081097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
As a traditional Chinese rice wine, Hong Qu glutinous rice wine (HQW) is popular among consumers due to its unique flavor. However, its quality changes during fermentation, and the potential relationships between flavor and microbes have not been systematically researched. In this work, physicochemical properties (pH, total sugar, alcohol, amino acid nitrogen), flavor compounds (organic acids, free amino acids, and volatile compounds), and microbial communities were investigated. The results revealed that Pantoea, Lactiplantibacillus, Lactobacillus, Leuconostoc, and Weissella predominated the bacterial genera, and Monascus was the predominant fungal genus. Organic acids, free amino acids, and key volatile compounds (esters and alcohols) significantly increased during fermentation. The correlations analysis showed that Lactiplantibacillus was closely associated with flavor compounds formation. This study deepens our understanding of the roles of microorganisms in flavor formation on traditional HQW fermentation.
Collapse
Affiliation(s)
- Anqi Liu
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (A.L.); (X.Y.); (Y.Z.); (Y.S.); (L.Z.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Xu Yang
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (A.L.); (X.Y.); (Y.Z.); (Y.S.); (L.Z.)
| | - Quanyou Guo
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (A.L.); (X.Y.); (Y.Z.); (Y.S.); (L.Z.)
- Correspondence: ; Tel.: +86-021-6567-8984
| | - Baoguo Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yao Zheng
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (A.L.); (X.Y.); (Y.Z.); (Y.S.); (L.Z.)
| | - Yuzhuo Shi
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (A.L.); (X.Y.); (Y.Z.); (Y.S.); (L.Z.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Lin Zhu
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (A.L.); (X.Y.); (Y.Z.); (Y.S.); (L.Z.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| |
Collapse
|
20
|
Sangaré M, Karoui R. Evaluation and monitoring of the quality of sausages by different analytical techniques over the last five years. Crit Rev Food Sci Nutr 2022; 63:8136-8160. [PMID: 35333686 DOI: 10.1080/10408398.2022.2053059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sausages are among the most vulnerable and perishable products, although those products are an important source of essential nutrients for human organisms. The evaluation of the quality of sausages becomes more and more required by consumers, producers, and authorities to thwarter falsification. Numerous analytical techniques including chemical, sensory, chromatography, and so on, are employed for the determination of the quality and authenticity of sausages. These methods are expensive and time consuming, and are often sensitive to significant sources of variation. Therefore, rapid analytical techniques such as fluorescence spectroscopy, near infrared (NIR), mid infrared (MIR), nuclear magnetic resonance (NMR), among others were considered helpful tools in this domain. This review will identify current gaps related to different analytical techniques in assessing and monitoring the quality of sausages and discuss the drawbacks of existing analytical methods regarding the quality and authenticity of sausages from 2015 up to now.
Collapse
Affiliation(s)
- Moriken Sangaré
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
- Institut Supérieur des Sciences et Médecine Vétérinaire de Dalaba, Département de Technologie et Contrôle des Produits Alimentaires, DTCPA, ISSMV/Dalaba, Guinée
- Univ. Gamal Abdel Nasser de Conakry, Guinée, Uganc, Guinée
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
| |
Collapse
|
21
|
Huang T, Lu ZM, Peng MY, Liu ZF, Chai LJ, Zhang XJ, Shi JS, Li Q, Xu ZH. Combined effects of fermentation starters and environmental factors on the microbial community assembly and flavor formation of Zhenjiang aromatic vinegar. Food Res Int 2022; 152:110900. [DOI: 10.1016/j.foodres.2021.110900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/06/2023]
|
22
|
Chen L, Wang S, Li D, Feng S. Correlations between microbes and metabolites of hulless barley wines fermented with varieties of hulless barley and different starters. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Chen L, Wang S, Ren L, Li D, Ma X, Rong Y. Flavour characteristics of rice wine fermented with mixed starter by moulds and yeast strains. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - SanXia Wang
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Lixia Ren
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Dongna Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Xia Ma
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
24
|
Ma Y, Li T, Xu X, Ji Y, Jiang X, Shi X, Wang B. Investigation of Volatile Compounds, Microbial Succession, and Their Relation During Spontaneous Fermentation of Petit Manseng. Front Microbiol 2021; 12:717387. [PMID: 34475866 PMCID: PMC8406806 DOI: 10.3389/fmicb.2021.717387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
Petit Manseng is widely used for fermenting sweet wine and is popular among younger consumers because of its sweet taste and attractive flavor. To understand the mechanisms underlying spontaneous fermentation of Petit Manseng sweet wine in Xinjiang, the dynamic changes in the microbial population and volatile compounds were investigated through high-throughput sequencing (HTS) and headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) technology, respectively. Moreover, the relationship between the microbial population and volatile compounds was deduced via multivariate data analysis. Candida and Mortierella were dominant genera in Petit Manseng wine during spontaneous fermentation. Many fermentative aroma compounds, including ethyl octanoate, isoamyl acetate, ethyl butyrate, ethyl decanoate, isoamyl alcohol, ethyl laurate, isopropyl acetate, hexanoic acid, and octanoic acid, were noted and found to be responsible for the strong fruity and fatty aroma of Petit Manseng sweet wine. Multivariate data analysis indicated that the predominant microorganisms contributed to the formation of these fermentative aroma compounds. Hannaella and Neomicrosphaeropsis displayed a significantly positive correlation with the 6-methylhept-5-en-2-one produced. The current results provide a reference for producing Petit Manseng sweet wine with desirable characteristics.
Collapse
Affiliation(s)
- Yanqin Ma
- Food College, Shihezi University, Shihezi, China
| | - Tian Li
- Food College, Shihezi University, Shihezi, China
| | - Xiaoyu Xu
- Food College, Shihezi University, Shihezi, China
| | - Yanyu Ji
- Food College, Shihezi University, Shihezi, China
| | - Xia Jiang
- Food College, Shihezi University, Shihezi, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi, China
| |
Collapse
|
25
|
Gao F, Zeng G, Wang B, Xiao J, Zhang L, Cheng W, Wang H, Li H, Shi X. Discrimination of the geographic origins and varieties of wine grapes using high-throughput sequencing assisted by a random forest model. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Effect of sodium alginate on the quality of highland barley fortified wheat noodles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
The potential correlations between the fungal communities and volatile compounds of traditional dry sausages from Northeast China. Food Microbiol 2021; 98:103787. [PMID: 33875215 DOI: 10.1016/j.fm.2021.103787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
The fungal communities and volatile compounds of traditional dry sausages collected from five different regions in Northeast China, including Harbin (HRB), Daqing (DQ), Suihua (SH), Hegang (HG) and Mudanjiang (MDJ) were investigated in this study. The results revealed clear differences among the fungal community structures of the sausages. Aspergillus pseudoglaucus, Debaryomyces hansenii, and Trichosporon asahii were found to be the predominant species in the sausages from HRB, HG, and MDJ, respectively. Candida zeylanoides was the predominant species in the sausage from DQ and SH. Additionally, 88 volatile compounds were identified in all sausages, of which 31 volatile compounds were the most important flavor contributors (odor activity value > 1). Potential correlation analysis revealed that 8 fungi (D. hansenii, C. zeylanoides, T. asahii, A. pseudoglaucus, Aspergillus sydowii, Penicillium expansum, A. alternata, and Alternaria tenuissima) showed significant positive correlations with ≥3 key volatile compounds. Among these fungi, D. hansenii was regarded as a core functional fungus responsible for the formation of the volatile compounds, given its strong connection with the highest number of key volatile compounds. These results provide detailed insight into the fungal communities of traditional dry sausages and a deeper understanding of the contribution of these fungi to sausage flavor.
Collapse
|
28
|
Wen R, Li XA, Han G, Chen Q, Kong B. Fungal community succession and volatile compound dynamics in Harbin dry sausage during fermentation. Food Microbiol 2021; 99:103764. [PMID: 34119122 DOI: 10.1016/j.fm.2021.103764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/27/2022]
Abstract
This study investigated the fungal community succession and volatile compound dynamics of Harbin dry sausage during a twelve-day fermentation using high-throughput internal transcribed spacer amplicon sequencing and headspace solid-phase microextraction gas chromatography-mass spectrometry. Aspergillus pseudoglaucus was found to be the primary species in the sausages during fermentation, whereas Lasiodiplodia theobromae, Alternaria alternata, Aspergillus caesiellus, and Trichosporon asahii were also prevalent. Additionally, a total of 72 volatile compounds were identified in the dry sausages, of which 24 key compounds (odor activity value > 1) dominated flavor development, including 3 aldehydes, 1 ketone, 4 alcohols, 9 esters, 4 alkenes, and 3 other compounds. Furthermore, correlation analysis suggested that most of the core fungi were positively correlated with the key volatile compounds, particularly A. pseudoglaucus, Aspergillus gracilis, Trichosporon caseorum, Debaryomyces hansenii, and T. asahii. Our findings provide novel insights into the fungal ecology and flavor development of Harbin dry sausages.
Collapse
Affiliation(s)
- Rongxin Wen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiang-Ao Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ge Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
29
|
Comparative study of microbial communities and volatile profiles during the inoculated and spontaneous fermentation of persimmon wine. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Carpena M, Fraga-Corral M, Otero P, Nogueira RA, Garcia-Oliveira P, Prieto MA, Simal-Gandara J. Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods 2020; 10:foods10010051. [PMID: 33375439 PMCID: PMC7824511 DOI: 10.3390/foods10010051] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Aroma profile is one of the main features for the acceptance of wine. Yeasts and bacteria are the responsible organisms to carry out both, alcoholic and malolactic fermentation. Alcoholic fermentation is in turn, responsible for transforming grape juice into wine and providing secondary aromas. Secondary aroma can be influenced by different factors; however, the influence of the microorganisms is one of the main agents affecting final wine aroma profile. Saccharomyces cerevisiae has historically been the most used yeast for winemaking process for its specific characteristics: high fermentative metabolism and kinetics, low acetic acid production, resistance to high levels of sugar, ethanol, sulfur dioxide and also, the production of pleasant aromatic compounds. Nevertheless, in the last years, the use of non-saccharomyces yeasts has been progressively growing according to their capacity to enhance aroma complexity and interact with S. cerevisiae, especially in mixed cultures. Hence, this review article is aimed at associating the main secondary aroma compounds present in wine with the microorganisms involved in the spontaneous and guided fermentations, as well as an approach to the strain variability of species, the genetic modifications that can occur and their relevance to wine aroma construction.
Collapse
Affiliation(s)
- Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain
| | - Raquel A. Nogueira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Correspondence: (M.A.P.); (J.S.-G.)
| |
Collapse
|
31
|
Zhao C, Su W, Mu Y, Jiang L, Mu Y. Correlations between microbiota with physicochemical properties and volatile flavor components in black glutinous rice wine fermentation. Food Res Int 2020; 138:109800. [PMID: 33288182 DOI: 10.1016/j.foodres.2020.109800] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Black glutinous rice wine (BGRW) is a popular traditional Chinese rice wine; however, the flavors profiles associated with microbiota changes during its fermentation have not yet been evaluated. In this study, we explored the correlations between microbial communities with physicochemical properties and flavor components during BGRW fermentation. High-throughput sequencing was used to identify the microbial community composition of BGRW at different fermentation stages, and physicochemical properties and volatile flavor compounds (VFCs) were identified via fermentation features testing and headspace solid phase microextraction gas chromatography mass spectrometry. First, we revealed Pantoea and Kosakonia predominated bacterial genera the early stage of BGRW fermentation, Leuconostoc, Pediococcus, Bacillus, and Lactobacillus predominated bacterial genera the later stage, while Rhizopus and Saccharomyces were the predominant fungal genera throughout fermentation. Second, total sugars, titratable acids, pH, ethanol, amino acid nitrogen, and 43 VFCs were detected during fermentation. Twenty-three VFCs were differentially produced according to the linear discriminant analysis effect size method. With the increase of the fermentation time, the kinds and contents of esters and alcohols were also increased, while acids decreased. Moreover, 12 microbial genera, Lactococcus, Pediococcus, Leuconostoc, Lactobacillus, Cronobacter, Pantoea, Weissella, Enterococcus, Rhizopus, Myceliophthora, Cystofilobasidium, and Aspergillus were found to be highly correlated (|ρ| > 0.7 and P < 0.05) with physicochemical properties and VFCs, by redundancy analysis (RDA) and two-way orthogonal partial least squares (O2PLS) analysis. Ultimately, based on the results, a metabolic map of dominant genera in BGRW was established. Our findings provided detailed information on the dynamic changes of physicochemical properties and VFCs and selection of beneficial strains to improve the quality of BGRW.
Collapse
Affiliation(s)
- Chi Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang 550025, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang 550025, China.
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Li Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yu Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang 550025, China
| |
Collapse
|