1
|
Zhu M, Wang M, Gu J, Deng Z, Zhang W, Pan Z, Luo G, Wu R, Qin J, Gomi K. Machine learning-assisted aroma profile prediction in Jiang-flavor baijiu. Food Chem 2025; 478:143661. [PMID: 40058262 DOI: 10.1016/j.foodchem.2025.143661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 04/06/2025]
Abstract
The complex flavor of Jiang-flavor Baijiu (JFB) arises from the interaction of hundreds of compounds at both physicochemical and sensory levels, making accurate perception challenging. Modern machine learning techniques offer precise and scientific approaches for predicting sensory attributes. This study applied flavoromics and sensory profiling to 27 representative JFB samples from main regions in China, integrating five machine learning algorithms to establish a novel strategy for predicting global aroma characteristics. The results indicate that the neural network (NN) model outperformed others, effectively capturing the intricate interactions among flavor compounds. Model dissection identified 18 chemical parameters potentially influencing the overall aroma profile. The importance of these factors was further validated through spiking and omission tests, which notably enhanced the sensory experience of commercial liquor. This study demonstrates the potential of machine learning in JFB flavor research and offers valuable insights into the mechanisms underlying its flavor formation.
Collapse
Affiliation(s)
- Min Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mingyao Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Junfeng Gu
- School of Liquor-Brewing Engineering, Sichuan University of Jinjiang College, Meishan 620860, China
| | - Zhao Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; School of Liquor-Brewing Engineering, Sichuan University of Jinjiang College, Meishan 620860, China.
| | - Zhengfu Pan
- Danquan Guangxi Co., Ltd., Hechi 547000, China
| | - Guorong Luo
- Danquan Guangxi Co., Ltd., Hechi 547000, China
| | - Renfu Wu
- Danquan Guangxi Co., Ltd., Hechi 547000, China
| | | | - Katsuya Gomi
- Laboratory of Fermentation Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
2
|
Song L, Ma F, Chen H, Fei Q, Tao G, Wu S, Shi D, Deng J, Zhao D, Dong X, Zhao Y, Xu S. Dynamic changes in flavor characteristics of black tea during solid-state fermentation with Eurotium cristatum. Food Chem 2025; 465:142028. [PMID: 39549516 DOI: 10.1016/j.foodchem.2024.142028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
This study employed GC-MS, GC-IMS, and sensory evaluation to investigate dynamic changes in flavor during the solid-state fermentation of black tea by Eurotium cristatum. The results revealed a notable decrease in the bitter and astringent tastes of the black tea infusion following fermentation, while the mellow taste increased significantly. A total of 152 and 129 VOCs were detected by GC-MS and GC-IMS, respectively. And 4 key aroma-active compounds were identified by ROAV. These specific VOCs contributed floral, honey, and sweet scents, which were responsible for the fungal floral aroma in the processed black tea. Furthermore, OPLS-DA identified 31 key VOCs that played a crucial role in differentiating various fermentation stages, with day 4 recognized as a pivotal point for aroma development. The solid-state fermentation with Eurotium cristatum resulted in fermented black tea characterized by a mellow taste and a rich fungal floral aroma, enhancing the flavor quality of the tea.
Collapse
Affiliation(s)
- Linyao Song
- School of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Fengwei Ma
- School of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Haijiang Chen
- School of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Qiang Fei
- School of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Guangcan Tao
- School of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Siyao Wu
- School of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Dajuan Shi
- School of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Junyi Deng
- School of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang 550005, China
| | - Degang Zhao
- Guizhou Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Sciences, College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Xuan Dong
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Sciences, College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yichen Zhao
- Guizhou Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Sciences, College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Su Xu
- School of Food Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang 550005, China; Guizhou Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China.
| |
Collapse
|
3
|
Yuan W, Yu G, Zhu G, Yi F. Characterization of perceptual interactions among aroma compounds found in Rose damascena and Angelica dahurica root essential oil with threshold, S-curve, σ-τ plot and molecular docking. Food Res Int 2025; 200:115447. [PMID: 39779078 DOI: 10.1016/j.foodres.2024.115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The study investigated the perceptual interaction between two types of Rose damascena essential oil and two types of Angelica dahurica root essential oil. Using gas chromatography-olfactometer (GC-O) and gas chromatography-mass spectrometer (GC-MS), 24 and 25 aromatic compounds in Rose damascena essential oil and Angelica dahurica root essential oil were identified and quantified, respectively. Based on flavor dilution (FD) values and odor activity values (OAVs), 10 important aroma compounds in Rose damascena essential oil and 6 in Angelica dahurica root essential oil were identified. The perceptual interactions between these aroma compounds were explored by using the threshold method, S-curve, and σ-τ plot. Additionally, molecular docking analysis revealed changes in binding energy and binding sites. Notably, when aroma compounds shared similar structures and fragrances, they exhibited additive or synergistic effects. Conversely, dissimilar compounds showed different interactions. The molecular docking results aligned with our experimental findings. Overall, our study demonstrates that the threshold method, S-curve, σ-τ plot, and molecular docking enhance our understanding of aroma compound perceptual interactions between Rose damascena essential oil and Angelica dahurica root essential oil. These insights provide a theoretical foundation and practical guidance for improving the aroma of Angelica dahurica root essential oil and studying perceptual interactions among essential oils.
Collapse
Affiliation(s)
- Weijian Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Genfa Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Guangyong Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Fengping Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
4
|
Xu Y, Yang L, Yang Y, Yang F. Unraveling Shengmuxiang in Jiang-flavor base baijiu using a combination of metabolomics and sensomics strategy. Food Chem X 2024; 24:101851. [PMID: 39398868 PMCID: PMC11470176 DOI: 10.1016/j.fochx.2024.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Shengmuxiang (SMX), an important aroma in Jiang-flavor base baijiu, significantly influences the quality of the product. This study employed untargeted metabolomics combined with sensomics to explore the key compounds responsible for SMX. Results indicated that SMX samples had higher intensities of green and woody-like odors compare to control samples. A total of 87 aroma compounds were identified by headspace solid phase microextraction combined with gas chromatography-mass spectrometry technology. Based on the variable projection importance, PCA and OPLS-DA were employed to identify 22 potential marker compounds. Quantitative results combined with hierarchical cluster and OAV analysis revealed that 9 aroma compounds (OAV > 1) had high concentrations in SMX samples. Aroma recombination and omission experiments further indicated that acetaldehyde and acetal were the key compounds responsible for the characteristic aroma of SMX in Jiang-flavor base baijiu. These findings provide valuable insights into the distinct aroma profile of SMX and offer a basis for quality control of Jiang-flavor base baijiu.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| | - Lizhang Yang
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| | - Yubo Yang
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| | - Fan Yang
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| |
Collapse
|
5
|
Liu X, Tian W, Liu H, Ma Y, Huo D, Hou C. A quenched fluorescence sensor array based on bis-lanthanide metal-organic framework for acetaldehyde detection and Baijiu discrimination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124797. [PMID: 38991618 DOI: 10.1016/j.saa.2024.124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Discrimination of segmented Baijiu contributes to stabilizing the quality of products, improving revenue-generating effects. A fluorescence sensor array is constructed based on four fluorescence characteristic peaks of terbium@lanthanum metal-organic framework (Tb@La-MOF). Its fluorescence signal is specifically quenched, when Tb@La-MOF encounters acetaldehyde. Acetaldehyde may inhibit the absorption of energy by the organic ligands in MOF, or/and hydrogen bonding with -COOH on the organic ligand, resulting in energy transfer to Tb(Ⅲ). According to this, the quantitative detection of acetaldehyde is completed with a range of 10-300 μM and the detection limit of 5.5 μM. At the same time, it has been successfully applied to the discrimination of segmented Baijiu. Fifteen segmented from three wine cellars are 100 % discriminated with the combined processing of sensor arrays and analytical methods. Accuracy, simplicity, and low-cost are highlights of this fluorescence sensor array, which has considerable potential for application in detection, production, and food field.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Wenxia Tian
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| |
Collapse
|
6
|
Yan Y, Zou M, Tang C, Ao H, He L, Qiu S, Li C. The insights into sour flavor and organic acids in alcoholic beverages. Food Chem 2024; 460:140676. [PMID: 39126943 DOI: 10.1016/j.foodchem.2024.140676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Alcoholic beverages have developed unique flavors over millennia, with sourness playing a vital role in their sensory perception and quality. Organic acids, as crucial flavor compounds, significantly impact flavor. This paper reviews the sensory attribute of sour flavor and key organic acids in alcoholic beverages. Regarding sour flavor, research methods include both static and dynamic sensory approaches and summarize the interaction of sour flavor with aroma, taste, and mouthfeel. In addition, this review focuses on identifying key organic acids, including sample extraction, chromatography, olfactometry/taste, and mass spectrometry. The key organic acids in alcoholic beverages, such as wine, Baijiu, beer, and Huangjiu, and their primary regulatory methods are discussed. Finally, future avenues for the exploration of sour flavor and organic acids by coupling machine learning, database, sensory interactions and electroencephalography are suggested. This systematic review aims to enhance understanding and serve as a reference for further in-depth studies on alcoholic beverages.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mingxin Zou
- Guizhou Tangzhuag Chinese Liquor Limited Company, Zunyi 564500, Guizhou Province, China
| | - Cui Tang
- Liupanshui Agricultural and Rural Bureau, Liupanshui 553002, Guizhou Province, China
| | - Hongyan Ao
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Laping He
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Shuyi Qiu
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
7
|
Ye S, Shang X, Ao L, Sun B, Chen X, Shen CH, Liu M, Lin F, Dong W, Sun X, Xiong Y, Deng B. Decoding Long-Chain Fatty Acid Ethyl Esters during the Distillation of Strong Aroma-Type Baijiu and Exploring the Adsorption Mechanism with Magnetic Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21752-21762. [PMID: 39265547 DOI: 10.1021/acs.jafc.4c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Simultaneous detection of the dynamic distribution of long-chain fatty acid ethyl esters (LCFAEEs) during Baijiu distillation is crucial for optimizing its flavor and health attributes. In this study, we synthesized a simple, cost-effective Fe3O4@NH2 adsorbent to simultaneously extract eight LCFAEEs from Baijiu. Through density functional theory and adsorption experiments, we elucidated 1,6-hexanediamine as a surface modifier, with the -NH2 groups providing adsorption sites for the LCFAEEs via hydrogen-bonding interactions and van der Waals forces. Additionally, we established the magnetic solid-phase extraction-GC-MS extraction technique combined with stable isotope dilution analysis to analyze LCFAEEs. This method revealed the dynamic distribution patterns of LCFAEEs during strong aroma-type Baijiu (SAB) distillation. We observed that the concentrations of the eight LCFAEEs gradually decreased with prolonged distillation and were significantly correlated with ethanol concentration. To ensure optimal flavor and clarity in SAB, it is recommended to select the heart-stage base Baijiu with an alcohol content of 58%-63%.
Collapse
Affiliation(s)
- Siting Ye
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaolong Shang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Ling Ao
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaoman Chen
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | | | - Miao Liu
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Feng Lin
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Wei Dong
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaotao Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | | | - Bo Deng
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| |
Collapse
|
8
|
Qin D, Duan J, Shen Y, Yan Y, Shen Y, Jiang Y, Li H, Sun J, Dong W, Cheng H, Ye X, Sun B. Flavor Perception and Formation Mechanism of Empty Cup Aroma in Soy Sauce Aroma Type Baijiu. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39013108 DOI: 10.1021/acs.jafc.4c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The research focused on the distinctive empty cup aroma, with the aim of identifying the key aroma compounds and the formation mechanism of empty cup aroma in soy sauce aroma type baijiu (SSB). The lasting times of SSB is significantly longer than that of other types of baijiu, with an average duration of 28 days. Key compounds such as 2,3-dimethyl-5-ethylpyrazine, phenylethyl alcohol, p-cresol, sotolon, benzeneacetic acid were identified in empty cup aroma due to their highest flavor dilution factor. Molecular dynamics (MD) simulation was performed to study the mechanism of empty cup aroma on the liquid-gas interface and solid-gas interface. The results revealed the existence of hydrogen bonding and van der Waals forces between sotolon and lactic acid, a representative nonvolatile compound, which are speculated to be an important reason for the empty cup aroma.
Collapse
Affiliation(s)
- Dan Qin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiawen Duan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Shen
- Sichuan Langjiu Co., Ltd, Gulin, Luzhou 646523, Sichuan, China
| | - Yahan Yan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yunran Shen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yingli Jiang
- Sichuan Langjiu Co., Ltd, Gulin, Luzhou 646523, Sichuan, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Dong
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
9
|
Duan J, Cheng W, Lv S, Deng W, Hu X, Li H, Sun J, Zheng F, Sun B. Characterization of key aroma compounds in soy sauce flavor baijiu by molecular sensory science combined with aroma active compounds reverse verification method. Food Chem 2024; 443:138487. [PMID: 38271898 DOI: 10.1016/j.foodchem.2024.138487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/25/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
The distinctive flavor profile of soy sauce flavor baijiu (SAB) is shaped by its unique aroma compounds. The characteristic aroma compounds in Langjiu soy sauce flavor baijiu (LSAB) were explored based on molecular sensory science. A total of 66 aroma active compounds were identified by gas chromatography-olfactometry (GC-O) combined with aroma extract dilution analysis (AEDA), and 6 important unknown sulfur compounds were identified using the aroma active compounds reverse verification method (ACRVW). A total of 39 key aroma compounds were determined to have odor activity values (OAVs) ≥ 1. The aroma contribution of aroma components was verified by aroma recombination and aroma omission experiments. 15 characteristic aroma compounds were identified in LSAB. Meanwhile, a simple and easy-to-understand sensory expression language was described to fully understand the style characteristics of LSAB. Overall, the present paper offers insights into research uncovering the key "sauce flavor" of soy sauce flavor baijiu.
Collapse
Affiliation(s)
- Jiawen Duan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Cheng
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Silei Lv
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Wanyu Deng
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Xiangjun Hu
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
10
|
Li X, Zhang B, Li W, Zhao Y, Lyu X, You X, Lin L, Zhang C. Unraveling the chemosensory characteristics dependence of sauce-flavor baijiu on regionality using descriptive sensory analysis and quantitative targeted flavoromics. Food Chem 2024; 441:138274. [PMID: 38181665 DOI: 10.1016/j.foodchem.2023.138274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Descriptive sensory analysis, headspace solid-phase microextraction-gas chromatography-mass spectrometry, gas chromatography-flame ionization detector and multivariate statistical analysis were used to elucidate the regional dependence of sauce-flavor baijiu (SFB). Although SFB samples from different regions couldn't be clearly classified by sensory profiles, they could be clearly divided into 5 groups in principal component analysis plot based on quantitative targeted flavoromics analysis. And then, the relationship between sensory attributes and volatile compounds were investigated by network analysis. Twenty regional aroma markers were identified by multivariate statistical analysis to distinguish SFB samples from different regions. Furthermore, the influence of manufacturing operation on SFB in Guizhou region was further analyzed. Thirty-eight potential compounds were significant different in Guizhou SFB samples with different manufacturing operations. This study not only provides a better understanding of regional dependence on SFB flavor, but also further clarifies the inheritance importance of manufacturing operation in traditional SFB production.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Busheng Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Wenxuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yawen Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xiaotong Lyu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xiaolong You
- Guizhou Xijiu Co., LTD., Xishui 564622, Guizhou, People's Republic of China.
| | - Liangcai Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| |
Collapse
|
11
|
Zhu Y, Xiang F, Su Y, Jiang X, Cang Y, Long W, Lan W, Deng G, Chen H, She Y, Fu H. Authenticity identification of high - Temperature Daqu Baijiu through multi-channel visual array sensor of organic dyes combined with smart phone App. Food Chem 2024; 438:137980. [PMID: 37979267 DOI: 10.1016/j.foodchem.2023.137980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
High - temperature Daqu Baijiu faces a challenge from illegal adulteration of high-grade Baijiu bottles with low-grade Baijiu, affecting its quality and value. This study developed a rapid identification method for high temperature Daqu Baijiu with the same aroma type using a four-channel visual array sensor and detection of color changes caused by competition coordination with Zn2+ and color-changing organic dyes. The array sensor demonstrated high stability and repeatability in targeting flavor components and achieved 97.78 % or more accuracy combined with DD-SIMCA model in detecting adulteration across the Baijiu with same aroma type. The results of GC-MS and Quantum Chemical Calculation showed that esters, acids, and pyrazines played a crucial role. The smart phone App could quickly identify the authenticity of Baijiu with accuracy achieved 93 %. This research provides a foundation for rapid and reliable assessment of Baijiu quality and authenticity, enabling the industry to combat fraudulent practices effectively.
Collapse
Affiliation(s)
- Yanmei Zhu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Fushuang Xiang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Yuanyuan Su
- Suqian Product Quality Supervision and Testing Institute of Jiangsu Province, Suqian 223800, China
| | - Xue Jiang
- Suqian Product Quality Supervision and Testing Institute of Jiangsu Province, Suqian 223800, China
| | - Yipeng Cang
- Suqian Product Quality Supervision and Testing Institute of Jiangsu Province, Suqian 223800, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Gaoqiong Deng
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
12
|
Liu QR, Lin XL, Lu ZM, Chai LJ, Wang ST, Shi JS, Zhang SY, Shen CH, Zhang XJ, Xu ZH. Influence on the volatilization of ethyl esters: Nonnegligible role of long-chain fatty acids on Baijiu flavor via intermolecular interaction. Food Chem 2024; 436:137731. [PMID: 37862997 DOI: 10.1016/j.foodchem.2023.137731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Long-chain fatty acids (LCFAs) are commonly presented in Baijiu, but their influence on flavor is ambiguous. The interaction between LCFAs and volatiles was systematically investigated in terms of chemometrics, sensory, and chemical-physical perceptions. The static-headspace-gas-chromatography-mass-spectrometry results demonstrated LCFAs suppressed the volatilizations of most volatiles. According to Phase-ratio-variation analysis, partition coefficients of ethyl acetate (EA) and ethyl hexanoate (EH) decreased 4%-31% and 27%-74%, while those of ethyl butyrate (EB) increased. Calculated by molecular dynamic simulation, the attractive intermolecular forces related to EA/EH increased with oleic acid (OA) addition, while those related to EB decreased. Sensory evaluation confirmed the olfactory threshold of EA and EH increased by 2.4 and 2.7 times respectively, but the threshold of EB decreased from 0.36 to 0.05 mg/L in the presence of OA. Overall, LCFAs altered the intermolecular interaction forces related to esters and ethanol, subsequently affecting the volatile profile and modifying Baijiu flavor's sensory perception.
Collapse
Affiliation(s)
- Qing-Ru Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Xian-Li Lin
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Li-Juan Chai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, P.R. China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Jin-Song Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, P.R. China
| | - Su-Yi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Xiao-Juan Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
13
|
Qin D, Lv S, Shen Y, Shi J, Jiang Y, Cheng W, Wang D, Li H, Zhang Y, Cheng H, Ye X, Sun B. Decoding the key compounds responsible for the empty cup aroma of soy sauce aroma type baijiu. Food Chem 2024; 434:137466. [PMID: 37741247 DOI: 10.1016/j.foodchem.2023.137466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
The empty cup aroma in soy sauce aroma type baijiu (SSB) is distinct, but the specific compounds responsible for its unique aroma remain unknown. The aroma characteristics of SSB and the empty cup were investigated using molecular sensory science. Fifty-three and 27 aroma active compounds were identified in SSB and empty cup aroma, respectively. AEDA of the empty cup showed ethyl 3-phenylpropanoate, phenylethyl alcohol, sotolon, p-cresol, and 2,3-dimethyl-5-ethyl pyrazine could be the most important aroma contributors to the empty cup aroma due to their high FD values. Sotolon, characterized by its seasoning-like and herbal aroma, was identified as a crucial aroma compound for the empty cup aroma for the first time. Lactic acid was found to decrease the olfactory threshold of sotolon markedly in both 53% ethanol water solution and empty cup, promoting the contribution of sotolon to the empty cup aroma.
Collapse
Affiliation(s)
- Dan Qin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Silei Lv
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Shen
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Jie Shi
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yingli Jiang
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Wei Cheng
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Dongmei Wang
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Yanyan Zhang
- Institute of Food Science and Biotechnology, Department of Flavor Chemistry, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
14
|
Niu Y, Yang Y, Mao C, Xiao Z. Effects of gallic acid on the release of aroma compounds in Moutai Baijiu. Food Res Int 2024; 176:113655. [PMID: 38163678 DOI: 10.1016/j.foodres.2023.113655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024]
Abstract
Due to the trace concentrations of gallic acid (GA), the interaction mechanism between GA and flavor compounds is limited, and the effects on the aroma compounds of Moutai Baijiu are even more unclear. In this study, the aroma compounds and phenolic compounds in Moutai Baijiu were investigated by stir bar sorptive extraction (SBSE), gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). A total of 63 volatiles and 10 phenolic compounds were identified, and 16 esters and 4 alcohols were identified as the important aroma substances (odor activity values ≥1). The effect of GA on the release of aroma compounds was investigated by sensory analysis and partition coefficient. The results showed that GA mainly inhibited the volatilization of alcohols, low concentrations of GA promoted the release of esters, and high concentrations slowed down or even inhibited the release effect affected by the hydrophobicity of aroma compounds. UV spectroscopy and thermodynamic analysis further revealed that the interaction of GA with 1-propanol was attributed mainly to hydrogen bonding and van der Waals forces, and the interaction with other compounds was mainly influenced by hydrophobic effects. These results show that gallic acid can effectively control the release of the aromas of Moutai Baijiu, highlight the important role of GA on the volatiles of baijiu, and provide theoretical support for further healthy improvement of the sensory quality of baijiu.
Collapse
Affiliation(s)
- Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yuling Yang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chengting Mao
- China Tobacco Jiangsu Industrial Co., Jiangsu 210019, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Qiao L, Wang J, Wang R, Zhang N, Zheng F. A review on flavor of Baijiu and other world-renowned distilled liquors. Food Chem X 2023; 20:100870. [PMID: 38144822 PMCID: PMC10739939 DOI: 10.1016/j.fochx.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 12/26/2023] Open
Abstract
The flavor characteristics of distilled liquors significantly affect consumer acceptance and adoption. Therefore, odorants that contribute to sensory properties have received more attention. The odorants depend on the operating parameters, such as raw materials and ingredients, manufacturing process and maturing circumstances. This review summarized the odorants in the Baijiu and other world-renowned distilled liquors. Especially, the contribution of the odorants to the dominant aroma attributes is given more attention. The variations in the constituents and contents of odorants among the liquors are discussed comprehensively. In general, further research is still needed on the interaction mechanism between the odorants and sensory properties of distilled liquors.
Collapse
Affiliation(s)
- Lina Qiao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, China
- KeyLaboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, China
- KeyLaboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Ruifang Wang
- BeijingKey Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Ning Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, China
- KeyLaboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- BeijingKey Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Fuping Zheng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, China
- KeyLaboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
16
|
Li J, Zhang Q, Sun B. Chinese Baijiu and Whisky: Research Reservoirs for Flavor and Functional Food. Foods 2023; 12:2841. [PMID: 37569110 PMCID: PMC10417287 DOI: 10.3390/foods12152841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Baijiu is a traditional spirit with high reputation in the Chinese community, and whisky, on the other hand, is a renowned spirit in Western culture, with both contributing a major proportion to the consumption and revenue in the global spirit market. Interestingly, starting with similar raw materials, such as grains, diverse production methods lead to different organoleptic profiles. In addition, such enormous attention they attract renders them as a crucial part in food and the related industry. Therefore, great efforts are made in improving product quality and optimizing production processes, such as flavor enhancement, facility development, and deep utilization of byproducts. Given the huge impacts and great involvements of these spirits in the general food industry, research focusing on either spirit is of referential significance for other relevant fields. With the aim of facilitating such collaboration, this review discusses the current research status, in a comparative manner, of both spirits in respect to key production processes-oriented sensory and flavor analysis, deep utilization of byproducts, and spirit-derived functional food investigations. Finally, the internal correlations based on the abovementioned criteria are identified, with research prospects proposed.
Collapse
Affiliation(s)
- Jinchen Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Qiuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
17
|
Xiang D, Li P, Gong R, Sun Y, Chen X, Wei H, Xu Y. Quantification and Distribution of Thiols in Fermented Grains of Sauce-Aroma Baijiu Production Process. Foods 2023; 12:2658. [PMID: 37509751 PMCID: PMC10378441 DOI: 10.3390/foods12142658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/30/2023] Open
Abstract
Five volatile thiol compounds (methanethiol, ethanethiol, 2-mercapto-1-ethanol, 2-furfurylthiol, and 2-methyl-3-furanethiol) in fermented grains of sauce-aroma baijiu were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The samples were pre-treated using a modified QuEChERS method. 4,4'-Dithiodipyridine (DTDP) derivatization reaction improved the detectability and stability of volatile thiol compounds. From the end of the first round to the end of the seventh round of fermentation and different fermentation states from the fifth round of fermented grains of the sauce-aroma baijiu production process were analyzed. The results showed that the concentrations of methanethiol (67.64-205.37 μg/kg), ethanethiol (1.22-1.76 μg/kg), 2-furfurylthiol (0.51-3.03 μg/kg), and 2-methyl-3-furanthiol (1.70-12.74 μg/kg) were increased with the number of fermentation rounds. Methanethiol, 2-furfurylthiol, and 2-methyl-3-furanthiol increased during fermentation and distillation in the fifth round. Fermentation and distillation were important stages for their widespread production. After distillation, there were still a large number of volatile thiol compounds in the fermented grains. The thermal reaction was of great significance in the formation of these thiols.
Collapse
Affiliation(s)
- Danhua Xiang
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214100, China
| | - Peiqi Li
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214100, China
| | - Rong Gong
- Guizhou Jinsha Liquor Wine Cellar Co., Ltd., Bijie 551800, China
| | - Yanbin Sun
- Guizhou Jinsha Liquor Wine Cellar Co., Ltd., Bijie 551800, China
| | - Xiangmei Chen
- Guizhou Jinsha Liquor Wine Cellar Co., Ltd., Bijie 551800, China
| | - Heli Wei
- Guizhou Jinsha Liquor Wine Cellar Co., Ltd., Bijie 551800, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214100, China
- Key Laboratory of Baijiu Supervision Technology for State Market Regulation, Chengdu 610097, China
| |
Collapse
|
18
|
Characterization of empty cup aroma in Soy sauce aroma type Baijiu by vacuum assisted sorbent extraction. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Niu Y, Zhao W, Xiao Z, Zhu J, Xiong W, Chen F. Characterization of aroma compounds and effects of amino acids on the release of esters in Laimao baijiu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1784-1799. [PMID: 36260337 DOI: 10.1002/jsfa.12281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Laimao baijiu is a typical soy-sauce aroma-type baijiu in China. Amino acids are non-volatile compounds in baijiu and are beneficial to human health. Aroma is one of the important indicators that are used to evaluate the quality of baijiu. The interaction between aroma-active compounds and non-volatile compounds can also affect the release of aroma compounds. In this study, we identified the active-aroma compounds and amino acids in Laimao baijiu by stir bar sorptive extraction (SBSE), gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The interaction between amino acids and key esters was investigated by sensory analysis and partition coefficients. RESULTS A total of 63 aroma compounds and 21 amino acids were identified. Twenty-one esters were identified from them as major aroma-active ester compounds with odor activity values ≥ 1. Finally, sensory analysis revealed that l-alanine had a significant effect on the strength of the aromas of esters, suggesting that low concentrations of amino acids were more likely to promote the release of esters and high concentrations were more likely to inhibit this. The partition coefficient can be a good explanation for this phenomenon. CONCLUSION l-Alanine can significantly affect the aroma intensity of key ester aroma compounds in Laimao baijiu, and the effects of different concentrations of amino acids are different. This work shows that amino acids, as non-volatile compounds, have a regulatory effect on the release of aroma compounds in alcoholic beverages, which may provide new technical support for the aroma modulation of alcoholic beverages. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Wenqi Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiancai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Wen Xiong
- China Tobacco Yunnan Industrial Co. LTD, Kunming, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
20
|
Jiang X, Peng Z, Zhu Q, Zheng T, Liu X, Yang J, Zhang J, Li J. Exploration of seasonal fermentation differences and the possibility of flavor substances as regulatory factors in Daqu. Food Res Int 2023; 168:112686. [PMID: 37120185 DOI: 10.1016/j.foodres.2023.112686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Medium-high temperature Daqu is a characteristic starter for Chinese strong-flavor Baijiu fermentation, and its final quality determines the character and type of Baijiu. Nonetheless, its formation is affected by the interaction of physical and chemical, environmental and microbial interaction, and the differences in seasonal fermentation performance emerge. Here, the differences in the two seasons' Daqu fermentation properties were revealed by the detection of the enzyme activity. The respective dominant enzyme in summer Daqu (SUD) was protease and amylase, while cellulase and glucoamylase in spring Daqu (SPD). The underlying causes of this phenomenon were then investigated through an evaluation of nonbiological variables and microbial community structure. A greater absolute number of microorganisms, particularly Thermoactinomyces, were created in the SPD as a result of the superior growth environment (higher water activity). Additionally, the correlation network and discriminant analysis hypothesized that the volatile organic compound (VOC) guaiacol, which had a different content between SUD and SPD, may be a contributing element to the microbial composition. In contrast to SUD, the enzyme system activity related to guaiacol production in SPD was significantly higher. To support this notion that the volatile flavor chemicals mediate microbial interactions in Daqu, the growth effect of guaiacol on several bacteria isolated from the Daqu was examined in both a contact and non-contact manner. This study emphasized that VOCs not only have the basic characteristics of flavor compounds but also have ecological significance. Because the strains' varied structures and enzyme activities affected how the microorganisms interacted, the VOCs produced in this way ultimately had a synergistic effect on the various effects of Daqu fermentation.
Collapse
|
21
|
Characterization of terpenoids and norisoprenoids from base and retail Qingke Baijiu by GC × GC-TOFMS and multivariate statistical analysis. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Qin D, Duan J, Li H, Zheng F, Cheng H, Ye X, Sun B. Characterization and comparison of the aroma-active compounds on different grades of sesame-flavor Baijiu by headspace solid-phase microextraction and gas chromatography-olfactometry-mass spectrometry. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Niu Y, Zhang Y, Xiao Z, Zhu J, Zhang F, Chen F. Release effect of aroma compounds of Keemun black tea brewed with deuterium-depleted water with different deuterium content. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Qin D, Shen Y, Yang S, Zhang G, Wang D, Li H, Sun J. Whether the Research on Ethanol-Water Microstructure in Traditional Baijiu Should Be Strengthened? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238290. [PMID: 36500382 PMCID: PMC9736648 DOI: 10.3390/molecules27238290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Baijiu is a unique and traditional distilled liquor in China. Flavor plays a crucial rule in baijiu. Up to now, the research on the flavor of baijiu has progressed from the identification of volatile compounds to the research on key aroma compounds, but the release mechanism of these characteristic compounds is still unclear. Meanwhile, volatile compounds account for only a tiny fraction, whereas ethanol and water account for more than 98% of the content in baijiu. By summarizing the ethanol-water hydrogen bond structure in different alcoholic beverages, it was found that flavor compounds can affect the association strength of the ethanol-water hydrogen bond, and ethanol-water can also affect the interface distribution of flavor compounds. Therefore, the research on ethanol-water microstructure in baijiu is helpful to realize the simple visualization of adulteration detection, aging determination and flavor release mechanism analysis of baijiu, and further uncover the mystery of baijiu.
Collapse
Affiliation(s)
- Dan Qin
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Shen
- Sichuan Langjiu Co., Ltd., Gulin 646523, China
| | - Shiqi Yang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Guihu Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | | | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| | - Jinyuan Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
25
|
Cai W, Wang Y, Liu Z, Liu J, Zhong J, Hou Q, Yang X, Shan C, Guo Z. Depth-depended quality comparison of light-flavor fermented grains from two fermentation rounds. Food Res Int 2022; 159:111587. [DOI: 10.1016/j.foodres.2022.111587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022]
|
26
|
Zhu L, Song X, Li X, Geng X, Zheng F, Li H, Sun J, Huang M, Sun B. Interactions between kafirin and pickle-like odorants in soy sauce flavor Baijiu: Aroma profile change and binding mechanism. Food Chem 2022; 400:133854. [DOI: 10.1016/j.foodchem.2022.133854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/09/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
|
27
|
Wang C, Li J, Zhang Y, Wu X, He Z, Zhang Y, Zhang X, Li Q, Huang J, Liu Z. Salting-out re-distillation combined with sensory-directed analysis to recover odor-active compounds for improving the flavor quality of instant Pu-erh tea. Food Chem X 2022; 14:100310. [PMID: 35492251 PMCID: PMC9043642 DOI: 10.1016/j.fochx.2022.100310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
The objective of this study was to develop an effective recovery technology of odor-active compounds (OACs) to improve the flavor quality of instant Pu-erh tea (IPT) based on their released behaviors. Salting-out re-distillation (SRD) combined with sensory-directed analysis was developed. The contributing factors, including the soaking time of tea, recovery volume of condensed water of first distillation, amount of sodium chloride, recovery volume of condensed water of SRD, and re-use times of sodium chloride, were studied systematically. Under optimized conditions, 41 OACs were recovered in the first distillation, and the total recovery rate was 83.94%. Forty-one OACs were recovered via SRD, and the total recovery rate reached 72.29%, significantly better than membrane method (33.46%). The IPT prepared by adding OACs that recovered via SRD showed strong aroma attributes intensities and good coordination. This developed method can provide a more effective scheme to improve the flavor quality of IPT.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Ya Zhang
- Yunnan Tasly Deepure Biological Tea Group Co., Ltd, Simao, Yunnan 665000, PR China
| | - Xuejiao Wu
- Yunnan Tasly Deepure Biological Tea Group Co., Ltd, Simao, Yunnan 665000, PR China
| | - Zhongrong He
- Yunnan Tasly Deepure Biological Tea Group Co., Ltd, Simao, Yunnan 665000, PR China
| | - Yin Zhang
- Yunnan Tasly Deepure Biological Tea Group Co., Ltd, Simao, Yunnan 665000, PR China
| | - Xingmin Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| |
Collapse
|
28
|
Ethyl carbamate regulate esters degradation by activating hydrolysis during Baijiu ripening. Food Res Int 2022; 156:111157. [DOI: 10.1016/j.foodres.2022.111157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
29
|
Effects of electrostatic spray drying on the sensory qualities, aroma profile and microstructural features of instant Pu-erh tea. Food Chem 2022; 373:131546. [PMID: 34799127 DOI: 10.1016/j.foodchem.2021.131546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/24/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022]
Abstract
The sensory qualities, aroma profile, and microstructural features of instant Pu-erh teas (IPTs) produced by electrostatic spray drying (ESD) were evaluated by sensory and instrumental analyses and compared with those produced by other drying methods (freeze-drying [FD], vacuum drying [VD], and conventional spray drying [CSD]). The sensory qualities of ESDIPT were similar to those of FDIPT, and better than those of VDIPT and CSDIPT. Eighty-eight volatiles were detected in all IPTs, and 45 odor-active compounds were captured. Most of their OAVs were higher in ESDIPT than in VDIPT and CSDIPT but were lower than those in FDIPT. Dihydro-β-ionone had the highest OAV. Aroma recombination experiments were performed to verify the identification results. ESDIPT was present in the shape of microspheres with many regular concave surfaces, which was different from those treated by other drying methods. In terms of sensory quality and productivity, ESD would be a potential method for IPT production.
Collapse
|
30
|
Flavor mystery of Chinese traditional fermented baijiu: The great contribution of ester compounds. Food Chem 2022; 369:130920. [PMID: 34461518 DOI: 10.1016/j.foodchem.2021.130920] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 12/22/2022]
Abstract
Chinese traditional fermented baijiu is a famous alcoholic beverage with unique flavor. Despite its consumption for millennia, the flavor mystery behind baijiu is still unclear. Studies indicate that esters are the most important flavor substances, and bring health benefits. However, the aroma contribution and formation mechanism of esters still need to be clarified to reveal the flavor profile of baijiu. This review systematically summarizes all the 510 esters and finds 9 ethyl esters contribute greatly to the flavor of baijiu. The 508 different microbial species that have been identified affect the synthesis of esters through fatty acid and amino acid metabolism. The determination of minimum functional microbial groups and the analysis of their metabolic characteristics are crucial to reveal the mechanism of formation of baijiu flavor, and ensure the reproducible formation of flavor substances.
Collapse
|
31
|
Duan J, Yang S, Li H, Qin D, Shen Y, Li H, Sun J, Zheng F, Sun B. Why the key aroma compound of soy sauce aroma type baijiu has not been revealed yet? Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Low Quantity but Critical Contribution to Flavor: Review of The Current Understanding of Volatile Sulfur-containing Compounds in Baijiu. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Comparison of two cooked vegetable aroma compounds, dimethyl disulfide and methional, in Chinese Baijiu by a sensory-guided approach and chemometrics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111427] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Yang L, Fan W, Xu Y. GC × GC-TOF/MS and UPLC-Q-TOF/MS based untargeted metabolomics coupled with physicochemical properties to reveal the characteristics of different type daqus for making soy sauce aroma and flavor type baijiu. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111416] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Niu Y, Deng J, Xiao Z, Zhu J. Characterization of the major aroma-active compounds in peach (Prunus persica L. Batsch) by gas chromatography-olfactometry, flame photometric detection and molecular sensory science approaches. Food Res Int 2021; 147:110457. [PMID: 34399457 DOI: 10.1016/j.foodres.2021.110457] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Aroma profiles and aroma-active compounds of "Yulu" peach from Fenghua (the peach known for the best flavor and quality in China) were investigated by headspace solid-phase microextraction (HS-SPME), solvent-assisted flavor evaporation (SAFE), gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and flame photometric detection (FPD). The combination of these methods improved the analysis and identification of aroma substances compared to the combination of a single aroma extraction method and GC-MS. A total of 85 aroma-active compounds, including 10 sulfur compounds were detected. Methional, methyl 3-(methylthio)propionate, methionol, and benzothiazole were first detected in peaches. These aroma compounds cannot only supplement the database of aroma substances of peaches, but also provide data support for traceability of the origins of "Yulu" peaches. In addition, the odor activity value (OAV) was used to identify the contributions of the most important compounds. The results indicated that hexanal, 3-methylbutanal, (E)-2-hexen-1-ol, 3-mercaptohexyl acetate, (E,E)-2,4-decadienal, 2-methylpropanal, γ-decalactone, 2-methylbutanal, theaspirane, and δ-decalactone were the key aroma-active compounds. The key characteristic aroma components were further ascertained by aroma reconstitution and omission experiments, which showed that the fruity, floral, sulfur, and sour notes could be well simulated. Finally, the perceptual interactions between different sulfur compounds and fruity recombination (FR) were explored. 3-mercaptohexanol and 4-methyl-4-mercaptopentan-2-one could significantly decrease the threshold of FR. The possible reason was that these two sulfur compounds had synergistic effects with the aroma compounds in FR, with the U model confirming the results of these synergistic effects. The perceptual interactions provide a basis for the regulation of characteristic fruity aroma of peach products.
Collapse
Affiliation(s)
- Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jianming Deng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Jiancai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| |
Collapse
|
36
|
Song X, Zhu L, Geng X, Li Q, Zheng F, Zhao Q, Ji J, Sun J, Li H, Wu J, Zhao M, Sun B. Analysis, occurrence, and potential sensory significance of tropical fruit aroma thiols, 3-mercaptohexanol and 4-methyl-4-mercapto-2-pentanone, in Chinese Baijiu. Food Chem 2021; 363:130232. [PMID: 34134075 DOI: 10.1016/j.foodchem.2021.130232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Fruity notes are important to the flavor of Baijiu (Chinese Liquor) and are considered to originate from ester compounds; however, little is known about the other chemicals that contribute to the fruity aroma. In this study, the sensory impacts of two tropical fruit aroma thiols, 3-mercaptohexanol (3MH) and 4-methyl-4-mercapto-2-pentanone (4MP), in Chinese Light-, Strong- and Soy sauce flavor type Baijiu were systemically subjected to a sensory evaluation, qualitative and quantitative analysis, and multivariate statistical analyses. The flavor dilution factors of 3MH and 4MP were 9-729. The contents of 3MH and 4MP were the highest (p < 0.001) in Strong- and Soy sauce aroma-type Baijiu, respectively. According to their odor activity values (OAVs), 3MH (OAV: 1-22) and 4MP (OAV: 1-9) are important to the aroma of Baijiu. Notably, 4MP was identified for the first time in Baijiu, and the multivariate statistical analysis demonstrated that 3MH and 4MP could be used to differentiate Baijiu.
Collapse
Affiliation(s)
- Xuebo Song
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lin Zhu
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaojie Geng
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Qing Li
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Ji
- School of Food Science, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinyuan Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hehe Li
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jihong Wu
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Mouming Zhao
- School of Food Science, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
37
|
Wang L, Zhu L, Zheng F, Zhang F, Shen C, Gao X, Sun B, Huang M, Li H, Chen F. Determination and comparison of flavor (retronasal) threshold values of 19 flavor compounds in Baijiu. J Food Sci 2021; 86:2061-2074. [PMID: 33884627 DOI: 10.1111/1750-3841.15718] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 11/27/2022]
Abstract
Nineteen compounds, including ten esters, six acids, and three alcohols, were characterized and considered as significant tastants and aromas in Baijiu (Chinese Liquor). The flavor (retronasal) threshold values (FTVs) of these 19 compounds were determined by the 10 samples test method in hydroalcoholic solutions (46% v/v in ethanol). The FTVs of the compounds were calculated based on the best estimate threshold method. All the FTVs determined by the professional Chinese Baijiu tasters were lower than those by the nonprofessional tasters. For instance, the detection (2.31 mg/kg) and recognition (11.74 mg/kg) values of ethyl hexanoate determined by the nonprofessional group were higher than the respectively corresponding values 0.44 and 3.80 mg/kg determined by the professional group. All of the odor activity values (OAVs) of ethyl valerate (OAV: 1176.00 to 2321.17), ethyl octanoate (OAV: 6841.20 to 7851.60), and 1-butanol (OAV: 26.78 to 39.72) in Gujinggong Baijiu were more than 10-fold larger than their dose-over-threshold values (DoTs), for which the DoTs of ethyl valerate, ethyl octanoate, and 1-butanol were 92.84 to 183.25, 180.03 to 206.62, 1.18 to 1.75, respectively. On the contrary, the OAVs of ethyl heptanoate (OAV: 3.60 to 5.70) and isoamyl alcohol (OAV: 1.18 to 1.57) were lower than their corresponding DoTs at 152.62 to 241.63 and 12.26 to 16.41. The results demonstrated that it is necessary to consider and compare their DoTs and OAVs simultaneously on evaluating the contribution of flavor compounds in Baijiu. PRACTICAL APPLICATION: Sensory evaluation of threshold values of various flavor compounds could be significantly affected by their existing matrix. Most of the published results of the flavor threshold value of compounds were determined from the matrix such as beer, whiskey, red wine, rather than Chinese Baijiu. The results of this work not only could provide valuable information for flavor studies of Chinese Baijiu but also give useful information for the Baijiu industry to quality control.
Collapse
Affiliation(s)
- Lihua Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China.,Shangxi Xinghuacun Fenjiu Distillery Co., Ltd., Fenyang, Shanxi, China.,Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Lin Zhu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Fuping Zheng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Fengguo Zhang
- Shandong Bandaojing Co., Ltd., Zibo, Shandong, China
| | - Caihong Shen
- Luzhou Laojiao Co., Ltd., Luzhou, Sichuan, China
| | - Xiaojuan Gao
- Shangxi Xinghuacun Fenjiu Distillery Co., Ltd., Fenyang, Shanxi, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
38
|
Duan N, Yang S, Tian H, Sun B. The recent advance of organic fluorescent probe rapid detection for common substances in beverages. Food Chem 2021; 358:129839. [PMID: 33940297 DOI: 10.1016/j.foodchem.2021.129839] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
The beverage industry is confronted with tremendous challenges in terms of quality assurance. The allowed contents of common ingredients such as copper ions, hydrogen sulfide, cysteine and caffeine are stipulated by various governing bodies, and the beverage industry must ensure that it meets these requirements. Due to its unique advantages of high sensitivity, low cost and relatively low toxicity over high-performance liquid chromatography, atomic absorption spectrometry and nanomaterials, the use of organic fluorescent probes for the rapid detection of beverage contents has become a hot research topic. This review summarizes the detection of common substances in wine, tea, mineral water, milk and other beverages. Furthermore, the preparation of test paper and simple colour comparison are discussed to display the rapid qualitative capability of designed probes. To improve the current state of beverage safety, future trends and strategies for fast organic fluorescent probe detection in the beverage industry are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
39
|
Wang W, Fan G, Li X, Fu Z, Liang X, Sun B. Application of Wickerhamomyces anomalus in Simulated Solid-State Fermentation for Baijiu Production: Changes of Microbial Community Structure and Flavor Metabolism. Front Microbiol 2020; 11:598758. [PMID: 33329488 PMCID: PMC7728721 DOI: 10.3389/fmicb.2020.598758] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Wickerhamomyces anomalus is conducive to the synthesis of ester compounds in brewing the Chinese liquor Baijiu; esters are crucial for the quality of Baijiu. In this study, simulated solid-state fermentation for Baijiu production was used to explore whether artificial addition of W. anomalus could improve the flavor substance in Baijiu, and the underlying mechanisms. Two experimental groups were studied, in which W. anomalus Y3604 (Group A) and YF1503 (Group B) were added, respectively; in the control group (Group C), no W. anomalus was added. Adding strain Y3604 increased the content of esters in fermentation samples, especially ethyl acetate and ethyl caproate, and reduced the content of higher alcohols. Adding strain YF1503 had little effect on the ester content but decreased the content of higher alcohols. The diversity and abundance of prokaryotic genera in Group A and B samples were similar, but there were some differences compared with Group C. The correlations of genera in Group A or B samples were simple compared with group C. Although the predominant eukaryotic genera in the three groups were consistent, the abundance of each gene varied among groups. Based on our findings, bioaugmentation of Baijiu fermentation with W. anomalus will change the ethyl acetate content and cause changes in the levels of other flavor substances. We suggest that the changes in flavor substances caused by the addition of W. anomalus are mainly due to changes in the microbial community structure that result from the addition of W. anomalus.
Collapse
Affiliation(s)
- Wenhua Wang
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Guangsen Fan
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhilei Fu
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xin Liang
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
40
|
Song X, Zhu L, Jing S, Li Q, Ji J, Zheng F, Zhao Q, Sun J, Chen F, Zhao M, Sun B. Insights into the Role of 2-Methyl-3-furanthiol and 2-Furfurylthiol as Markers for the Differentiation of Chinese Light, Strong, and Soy Sauce Aroma Types of Baijiu. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7946-7954. [PMID: 32615756 DOI: 10.1021/acs.jafc.0c04170] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sensory impacts of two thiols, 2-methyl-3-furanthiol (MFT) and 2-furfurylthiol (FFT), in Chinese soy sauce aroma-type Baijiu (SSB), strong aroma-type Baijiu (STB), and light aroma-type Baijiu (LTB) (liquor) were evaluated and combined with partial least squares discriminant analysis (PLS-DA) to differentiate Chinese Baijiu. The flavor dilution factors of these two thiols ranged from 81 to 6561, and quantitative results showed that MFT and FFT were significantly more abundant (p < 0.001) in SSB than in STB and LTB. The determined odor activity values (OAVs) suggest that MFT (OAV: 34-121) and FFT (OAV: 11-103) contribute significantly to the overall aroma profiles of LTB and STB. Interestingly, the OAVs of these two thiols were high (256-263) and did not significantly differ (p > 0.05) in SSB. Notably, hierarchical cluster analysis and PLS-DA results revealed that these compounds can be used to differentiate Chinese LTB, STB, and SSB. According to their prominent organoleptic and distinguishing roles, these two thiols can be regarded as flavor markers for SSB.
Collapse
Affiliation(s)
- Xuebo Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Lin Zhu
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Si Jing
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Qing Li
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Ji
- School of Food Science, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fuping Zheng
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinyuan Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Feng Chen
- Department of Food Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|