1
|
Adeyemi KD, Sulaimon RO, Ishola H, Shittu RM, Olaniran FJ, Jimoh JO, Akinola HO, Rasheed AO, Yusuf YI, Oluwasola A, Olabisi BM. Influence of Capsicum chinense concentration and salt varieties on the quality attributes of Kilishi, a sundried beef jerky. Meat Sci 2025; 219:109653. [PMID: 39277995 DOI: 10.1016/j.meatsci.2024.109653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
The impact of Capsicum chinense concentration and salt varieties on cholesterol oxides, physicochemical properties, microbial profiles and organoleptic attributes of Kilishi, a sundried beef jerky, was assessed. Kilishi (KL) was prepared from sundried strips of Biceps femoris and marinated with either 2 % Sodium chloride (NaCl) + 7 % fresh Capsicum chinense (CC) (KL-1), 1 % NaCl + 1 % Potassium chloride (KCl) + 7 % CC (KL-2), 1 % NaCl + 1 % Potassium citrate (C6H5K3O7) + 7 % CC (KL-3), 1 % NaCl + 14 % CC (KL-4), 1 % KCl + 14 % CC (KL-5) or 1 % C6H5K3O7 + 14 % CC (KL-6), and stored at 29 ± 1 °C for 90 d. The partial or total replacement of NaCl lowered (P < 0.05) the Na content in KL. The KL samples treated with 14 % CC had lower (P < 0.05) 25-hydroxy cholesterol, cholesta-3,5-dien-7-one, carbonyl, pH, malondialdehyde, and lightness and greater (P < 0.05) redness and Lactobacillus counts than those treated with 7 % CC. The chemical composition, sensory scores and water activity were unaffected by the additives. The taste, flavor, and overall acceptance scores of KL decreased (P < 0.05) after 30 days of storage. The substitution of KCl and C6H5K3O7 for NaCl and the increase in CC concentration from 7 to 14 % lowered the Na content and selected cholesterol oxides, respectively, without impairing the organoleptic traits of Kilishi.
Collapse
Affiliation(s)
- Kazeem D Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria.
| | - Rasheed O Sulaimon
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria; Department of Animal Science, Faculty of Agriculture, University of Abuja, Abuja, Nigeria
| | - Hakeem Ishola
- Department of Animal Production, Faculty of Agriculture, Kwara State University, Malete, Nigeria
| | - Rafiat M Shittu
- Department of Food Science and Technology, Faculty of Agriculture, Kwara State University, Malete, Nigeria
| | - Feranmi J Olaniran
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Jamiu O Jimoh
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Halimat O Akinola
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Ahmed O Rasheed
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Yusuf Ibn Yusuf
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Abdulfatai Oluwasola
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Bukunmi M Olabisi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| |
Collapse
|
2
|
Xiong K, Li MM, Chen YQ, Hu YM, Jin W. Formation and Reduction of Toxic Compounds Derived from the Maillard Reaction During the Thermal Processing of Different Food Matrices. J Food Prot 2024; 87:100338. [PMID: 39103091 DOI: 10.1016/j.jfp.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), and polycyclic aromatic hydrocarbons (PAHs) are toxic substances that are produced in certain foods during thermal processing by using common high-temperature unit operations such as frying, baking, roasting, grill cooking, extrusion, among others. Understanding the formation pathways of these potential risk factors, which can cause cancer or contribute to the development of many chronic diseases in humans, is crucial for reducing their occurrence in thermally processed foods. During thermal processing, food rich in carbohydrates, proteins, and lipids undergoes a crucial Maillard reaction, leading to the production of highly active carbonyl compounds. These compounds then react with other substances to form harmful substances, which ultimately affect negatively the health of the human body. Although these toxic compounds differ in various forms of formation, they all partake in the common Maillard pathway. This review primarily summarizes the occurrence, formation pathways, and reduction measures of common toxic compounds during the thermal processing of food, based on independent studies for each specific contaminant in its corresponding food matrix. Finally, it provides several approaches for the simultaneous reduction of multiple toxic compounds.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Meng-Meng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yi-Qiang Chen
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yu-Meng Hu
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
3
|
Mercatante D, Curró S, Rosignoli P, Cardenia V, Sordini B, Taticchi A, Rodriguez-Estrada MT, Fabiani R. Effects of Phenols from Olive Vegetation Water on Mutagenicity and Genotoxicity of Stored-Cooked Beef Patties. Antioxidants (Basel) 2024; 13:695. [PMID: 38929134 PMCID: PMC11200613 DOI: 10.3390/antiox13060695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This explorative study aimed to assess the mutagenicity and genotoxicity of stored-cooked beef patties formulated with and without phenols (7.00 mg of phenols/80-g patty) extracted from olive vegetation water (OVW), as related to the formation of cholesterol oxidation products (COPs) and heterocyclic amines (HCAs). The patties were packaged in a modified atmosphere, sampled during cold storage (4 °C) for 9 days, and grilled at 200 °C. The genotoxicity was evaluated by the Comet assay. The patty extract was found to be genotoxic on primary peripheral blood mononuclear cells (PBMCs), while no mutagenicity was detected. The addition of OVW phenols significantly decreased the genotoxicity of the patty extract and reduced the total COPs content in stored-cooked patties (4.59 times lower than control); however, it did not affect the content of total HCAs (31.51-36.31 ng/patty) and the revertants' number. Therefore, these results demonstrate that the OVW phenols were able to counteract the formation of genotoxic compounds in stored-cooked beef patties.
Collapse
Affiliation(s)
- Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Sarah Curró
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy;
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06129 Perugia, Italy; (P.R.); (R.F.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10124 Torino, Italy;
| | - Beatrice Sordini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum—University of Bologna, 47521 Cesena, Italy
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06129 Perugia, Italy; (P.R.); (R.F.)
| |
Collapse
|
4
|
Gumus D, Macit A, Guzel B, Tengilimoglu‐Metin MM, Kizil M. Bitter melon extract mitigates heterocyclic aromatic amine formation in chicken thigh meat. Food Sci Nutr 2024; 12:4259-4268. [PMID: 38873469 PMCID: PMC11167177 DOI: 10.1002/fsn3.4085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 06/15/2024] Open
Abstract
The purpose of the present research was to study the impact of bitter melon extract (BME) on the generation of heterocyclic aromatic amines (HAAs) in chicken thigh meat. Raw chicken samples were marinated overnight with various levels (0%, 0.5%, and 1%) of BME, and pan-fried at 150, 200, and 250°C for a total of 10 min. IQx, IQ, MeIQx, MeIQ, 7,8-DiMeIQx, 4,8-DiMeIQx, PhIP, AαC, and MeAαC were detected in quantities that varied according to the cooking temperature and the concentration of BME. Notably, IQx, MeIQx, MeIQ, 7,8-DiMeIQx, 4,8-DiMeIQx, and AαC levels were reduced through the application of the marinade. Cooking at higher temperatures led to elevated levels of total HAAs. Total HAA levels were 0.98 ± 1.12 ng/g, 3.82 ± 2.12 ng/g, and 6.25 ± 3.35 ng/g in samples cooked at 150, 200, and 250°C, respectively (p < .01). BME demonstrated its effectiveness in mitigating total HAA levels, showing reductions ranging from 25.9% to 69.9%. The most effective concentration of BME in reducing total HAAs was 1% for all cooking temperatures, which might be attributed to its antioxidant activity. These results carry substantial implications for potentially incorporating natural extracts such as BME into chicken products as a viable strategy to reduce HAAs, thus enhancing the safety and quality of meat products.
Collapse
Affiliation(s)
- Damla Gumus
- Department of Nutrition and Dietetics, Faculty of Health SciencesHacettepe UniversityAnkaraTurkey
| | - Arife Macit
- Department of Nutrition and Dietetics, Faculty of Health SciencesHacettepe UniversityAnkaraTurkey
| | - Bengu Guzel
- Department of Nutrition and Dietetics, Faculty of Health SciencesHacettepe UniversityAnkaraTurkey
| | | | - Mevlude Kizil
- Department of Nutrition and Dietetics, Faculty of Health SciencesHacettepe UniversityAnkaraTurkey
| |
Collapse
|
5
|
Nie R, Zhang C, Liu H, Wei X, Gao R, Shi H, Zhang D, Wang Z. Characterization of key aroma compounds in roasted chicken using SPME, SAFE, GC-O, GC-MS, AEDA, OAV, recombination-omission tests, and sensory evaluation. Food Chem X 2024; 21:101167. [PMID: 38420500 PMCID: PMC10900400 DOI: 10.1016/j.fochx.2024.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Aroma compounds in the roasted breasts, thighs and skins of chicken were isolated by solvent-assisted flavor evaporation (SAFE), quantitated by gas chromatography-olfactometry-mass (GC-O-MS), analyzed by aroma extract dilution analysis (AEDA), and determined by recombination-omission tests and sensory evaluation. Forty-seven aroma compounds in total, including aldehydes, ketones, furans, pyrazines, and furanones, were selected by AEDA. Twenty-five compounds were selected as pivotal odorants (Odor Activity Value, OAV ≥ 1). Twenty aroma compounds significantly were identified by recombination and omission experiments. Anethole (fennel odor) was the highest OAV (> 1843). Hexanal (grassy) and (E, E)-2,4-decadienal (meaty) were the most abundant aldehydes identified in roasted chicken. 1-octen-3-ol (mushroom), methanethiol (cabbage) and dimethyl trisulfide (areca, sulfur) were considered the key compounds of the breast and thighs of roasted chicken. Notably, furanone and pyrazines, 4-hydroxy-5-methyl-3(2H)-furanone (caramel, sweet and burning odor), 3-ethyl-2,5-dimethylpyrazine (nutty, toasty) and 2,3-dimethyl-5-ethylpyrazine (nutty, toasty) had the most significant effect on roasted chicken odor, especially in the skin.
Collapse
Affiliation(s)
- Ruotong Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chunjiang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Huan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xiangru Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Rongmei Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Haonan Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Processing Technology for Chinese Meat Dishes, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
6
|
Wang H, Chu X, Du P, He H, He F, Liu Y, Wang W, Ma Y, Wen L, Wang Y, Oz F, Abd El-Aty A. Unveiling heterocyclic aromatic amines (HAAs) in thermally processed meat products: Formation, toxicity, and strategies for reduction - A comprehensive review. Food Chem X 2023; 19:100833. [PMID: 37780237 PMCID: PMC10534170 DOI: 10.1016/j.fochx.2023.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
This comprehensive review focuses on heterocyclic aromatic amines (HAAs), a class of chemicals that commonly form during the cooking or processing of protein-rich foods. The International Agency for Research on Cancer (IARC) has categorized certain HAAs as probable human carcinogens, highlighting the significance of studying their formation and control in food safety research. The main objective of this review is to address the knowledge gaps regarding HAAs formation and propose approaches to reduce their potential toxicity during thermal processing. By summarizing the mechanisms involved in HAAs formation and inhibition, the review encompasses both conventional and recent detection methods. Furthermore, it explores the distribution of HAAs in thermally processed meats prepared through various cooking techniques and examines their relative toxicity. Additionally, considering that the Maillard reaction, responsible for HAAs formation, also contributes to the unique flavors and aromas of cooked meat products, this review investigates the potential effects of inhibiting HAAs formation on flavor substances. A thorough understanding of these complex interactions provides a foundation for developing targeted interventions to minimize the formation of HAAs and other harmful compounds during food processing.
Collapse
Affiliation(s)
- Haijie Wang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiaoran Chu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Feng He
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Lei Wen
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yuanshang Wang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
7
|
Lai Y, Lee Y, Cao H, Zhang H, Chen B. Extraction of heterocyclic amines and polycyclic aromatic hydrocarbons from pork jerky and the effect of flavoring on formation and inhibition. Food Chem 2023; 402:134291. [DOI: 10.1016/j.foodchem.2022.134291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
8
|
De Falco E, Rigano D, Fico V, Vitti A, Barile G, Pergola M. Spontaneous Officinal Plants in the Cilento, Vallo di Diano and Alburni National Park: Tradition, Protection, Enhancement, and Recovery. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030465. [PMID: 36771560 PMCID: PMC9919598 DOI: 10.3390/plants12030465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 05/27/2023]
Abstract
The aim of this study was to deepen our knowledge on the heritage and traditional uses of some medicinal plants of the Cilento, Vallo di Diano and Alburni National Park (Salerno province) and to evaluate their productive potential, in order to increase possible uses to recover and enhance the territory. Biometric surveys and biomass evaluation were carried out. Two types of aqueous extract were prepared using air-dried samples of six harvested species and tested for anti-germination activity on Lepidium sativum L. Hydrolates were recovered via steam distillation from aromatic species and the chemical-physical characteristics were determined. Historical evidence of industrial activity was collected in the territory of Sanza on Monte Cervati, where lavender essential oil has been distilled in the past century, and characterization of the essential oil components was carried out. The ethnobotanical uses detected mainly concerned traditional medicine and nutritional, ritual, or religious uses. The experimental results highlight that spontaneous medicinal plants could become potential sources of local economic development, with uses not only in the phytotherapeutic sector, but also in others, such as food and agriculture for weed control. Moreover, the evidence derived from industrial archeology could represent a further driving force for the enhancement of the territory's resources.
Collapse
Affiliation(s)
- Enrica De Falco
- Degree Course of Agriculture, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Daniela Rigano
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Vito Fico
- Associazione “Sanza Città della Lavanda”, 84030 Sanza, Italy
| | - Antonella Vitti
- Degree Course of Agriculture, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Gaia Barile
- Degree Course of Agriculture, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Maria Pergola
- Degree Course of Agriculture, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
9
|
Gao H, Yang F, Zhu B, Yin S, Fu Y, Li Y, Liao Y, Kang M, Zhang Y, He J, Yin Y, Xu K. Optimization of HS-SPME-GC-MS for the Determination of Volatile Flavor Compounds in Ningxiang Pork. Foods 2023; 12:foods12020297. [PMID: 36673389 PMCID: PMC9857953 DOI: 10.3390/foods12020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
This study attempts to explore the suitable conditions for the detection of volatile flavor compounds (VFCs) in Ningxiang pork by headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS). Ningxiang pigs were harvested from a slaughterhouse and a longissimus dorsi sample was collected from each animal. The VFCs of Ningxiang pork can be strongly impacted by the detection conditions (columns, weight of meat samples, heat treatment time, equilibrium conditions, and extraction conditions) that need to be optimized. Our results also provided the optimal test conditions: weighing 5 g of meat samples, grinding for 30 s in a homogenizer, heat treatment at 100 °C for 30 min, equilibration at 70 °C for 30 min, and extraction at 100 °C for 50 min. Furthermore, the feasibility and representativeness of the test method were confirmed based on principal component analysis and a comparison of the three pork VFCs. These findings offer researchers a unified and efficient pretreatment strategy to research pork VFCs.
Collapse
Affiliation(s)
- Hu Gao
- Animal Nutrition Genome and Germplasm Innovation Research Center and Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fang Yang
- Animal Nutrition Genome and Germplasm Innovation Research Center and Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bangqiang Zhu
- Animal Nutrition Genome and Germplasm Innovation Research Center and Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shishu Yin
- Animal Nutrition Genome and Germplasm Innovation Research Center and Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yawei Fu
- Animal Nutrition Genome and Germplasm Innovation Research Center and Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yiyang Li
- Animal Nutrition Genome and Germplasm Innovation Research Center and Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yinchang Liao
- Animal Nutrition Genome and Germplasm Innovation Research Center and Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Meng Kang
- Animal Nutrition Genome and Germplasm Innovation Research Center and Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuebo Zhang
- Animal Nutrition Genome and Germplasm Innovation Research Center and Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jun He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulong Yin
- Animal Nutrition Genome and Germplasm Innovation Research Center and Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Chinese Academy of Sciences, The Institute of Subtropical Agriculture, Changsha 410125, China
- Correspondence: (Y.Y.); (K.X.)
| | - Kang Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Chinese Academy of Sciences, The Institute of Subtropical Agriculture, Changsha 410125, China
- Correspondence: (Y.Y.); (K.X.)
| |
Collapse
|
10
|
Heterocyclic aromatic amines in roasted chicken: formation and prediction based on heating temperature and time. Food Chem 2022; 405:134822. [DOI: 10.1016/j.foodchem.2022.134822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/03/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
11
|
Lai YW, Lee YT, Inbaraj BS, Chen BH. Formation and Inhibition of Heterocyclic Amines and Polycyclic Aromatic Hydrocarbons in Ground Pork during Marinating. Foods 2022; 11:3080. [PMID: 36230156 PMCID: PMC9563804 DOI: 10.3390/foods11193080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
This study aims to simultaneously extract heterocyclic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) from ground pork for respective analysis by UPLC-MS/MS and GC-MS/MS, and study the effects of different flavorings and marinating time length on their formation and inhibition. Results showed that both HA and PAH contents followed a time-dependent increase during marinating, with HAs being more susceptible to formation than PAHs. The total HA contents in unmarinated pork and juice was, respectively, 61.58 and 139.26 ng/g, and rose to 2986.46 and 1792.07 ng/g after 24-h marinating, which can be attributed to the elevation of reducing sugar and creatinine contents. The total PAH contents in unmarinated pork and juice were, respectively, 34.56 and 26.84 ng/g, and increased to 55.93 and 44.16 ng/g after 24-h marinating, which can be due to the increment of PAH precursors such as benzaldehyde, 2-cyclohexene-1-one and trans,trans-2,4-decadienal. Incorporation of 0.5% (w/v) cinnamon powder or 0.5% (w/v) green tea powder was effective in inhibiting HA formation with the former showing a more pronounced effect for marinated pork, while the latter was for marinated juice. However, their addition was only effective in inhibiting PAH formation in marinated pork. Principle component analysis revealed the relationship between HA and PAH formation in ground pork and juice during marinating.
Collapse
Affiliation(s)
- Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yu-Tsung Lee
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
12
|
Khan IA, Shi B, Shi H, Nawaz A, Zhu Z, Ijaz MU, Hussain M, Khan A, Wang M, Chen F, Wang D, Cheng KW. Perilla frutescens seed meal as a fat substitute mitigates heterocyclic amine formation and protein oxidation and improves fatty acid profile of pan-fried chicken patties. Front Nutr 2022; 9:975831. [PMID: 36204376 PMCID: PMC9530322 DOI: 10.3389/fnut.2022.975831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Fatty acid profile, protein and fatty acid oxidation and flavor profile of pan-fried chicken patties formulated with various levels of Perilla frutescens seed meal (PSM) as a fat substitute was investigated in this study. The formation of heterocyclic amines (HCAs) in the chicken patties was also evaluated. The results showed that pan-fried patties formulated with 20% PSM (PSM4) had the highest ranges of oleic acid and ΣMUFA content and ΣPUFA/ΣSFA ratio. Low to medium levels of PSM (PSM1, 2, and 3 corresponding to 5, 10, and 15% of PSM, respectively) reduced the content of lipid peroxidation products, while high level (PSM4) increased it. All levels of PSM were also found to be effective against elevation in carbonyl content relative to the control. Moreover, the PSM effectively inhibited HCA formation in the chicken patties. The total contents of HCAs in PSM1, PSM2, PSM3, and PSM4 samples were significantly (P < 0.05) lower than that of the control sample, corresponding to 31.9, 46.1, 57.2, and 44.8% inhibition, respectively. PSM4, however, had no or very little effect on the formation of PhIP, 4,8-DiMeIQx and AαC, despite a strong inhibitory effect on MeIQx formation. These findings not only support the promising potential of PSM for application as a fat substitute to improve the fatty acid profile and reduce the content of harmful by-products in heat-processed chicken, but also highlight that appropriate addition level is a critical factor in optimizing the functional capacity of this natural agent.
Collapse
Affiliation(s)
- Iftikhar Ali Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Baoping Shi
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Haibo Shi
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Asad Nawaz
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Zongshuai Zhu
- Nanjing Innovation Center of Meat Products Processing, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Umair Ijaz
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Muzahir Hussain
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Asad Khan
- Key Laboratory of Mucosal Immunology, College of Preventive Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Daoying Wang,
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Ka-Wing Cheng,
| |
Collapse
|
13
|
Zhang L, Badar IH, Chen Q, Xia X, Liu Q, Kong B. Changes in flavor, heterocyclic aromatic amines, and quality characteristics of roasted chicken drumsticks at different processing stages. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Fang J, Liu C, Law CL, Mujumdar AS, Xiao HW, Zhang C. Superheated steam processing: An emerging technology to improve food quality and safety. Crit Rev Food Sci Nutr 2022; 63:8720-8736. [PMID: 35389273 DOI: 10.1080/10408398.2022.2059440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.
Collapse
Affiliation(s)
- Jiajia Fang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China)
| | - Chongxin Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China)
| | - Chung-Lim Law
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| | - Chunjiang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China)
| |
Collapse
|
15
|
Hung YT, Lee YT, Inbaraj BS, Sridhar K, Chen BH. Analysis and formation of polycyclic aromatic hydrocarbons and cholesterol oxidation products in thin slices of dried pork during processing. Food Chem 2021; 353:129474. [PMID: 33740509 DOI: 10.1016/j.foodchem.2021.129474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 11/28/2022]
Abstract
This study aims to determine toxic compounds polycyclic aromatic hydrocarbons (PAHs) and cholesterol oxidation products (COPs) in thin slices of dried pork as affected by different flavorings and roasting temperature treatments through employing a QuEChERS method coupled with gas chromatograph-tandem mass spectrometer (GC-MS/MS) and gas chromatograph-mass spectrometer (GC-MS), respectively. By employing this method, high accuracy and precision was attained for freeze-dried pork hind leg sample. Following addition of 8 different flavorings with roasting temperature at 120, 160, and 200 °C, the levels of total COPs and PAHs in thin slices of dried pork followed a temperature-dependent increase during roasting, which was further confirmed by principle component analysis. High level of soy sauce or sugar inhibited COP formation, while the low-level minimized PAH formation in thin slices of dried pork during roasting. Sugar was more effective in inhibiting COP formation while soy sauce was more efficient in reducing PAH formation.
Collapse
Affiliation(s)
- Yu-Ting Hung
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Tsung Lee
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan City 333, Taiwan
| | | | - Kandi Sridhar
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
16
|
Xu Y, Li H, Liang J, Ma J, Yang J, Zhao X, Zhao W, Bai W, Zeng X, Dong H. High-throughput quantification of eighteen heterocyclic aromatic amines in roasted and pan-fried meat on the basis of high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry. Food Chem 2021; 361:130147. [PMID: 34051597 DOI: 10.1016/j.foodchem.2021.130147] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/11/2021] [Accepted: 05/16/2021] [Indexed: 12/22/2022]
Abstract
Triple quadrupole mass spectrometry has been the main technique for HAAs analysis in recent decade, while it requires extensive optimization of compound-dependent parameters. A novel method based on HPLC-Q-Orbitrap-HRMS was developed firstly for simultaneous determination of eighteen HAAs. Extraction and purification conditions were optimized and the developed method was validated in terms of linearity, accuracy and precision. Results indicated eighteen HAAs and two internal standards could be separated in 12 min using a gradient elution program. The full MS/dd-MS2 scan was adopted for analysis, which indicated favorable recoveries (71.3-114.8%) along with LODs and LOQs in the ranges of 0.02-0.6 and 0.05-2.0 μg/kg, respectively. Internal standards used for calibration could effectively reduce quantification errors produced by matrix effects. The validated method was successfully applied for HAAs analysis in roasted and pan-fried meat and was confirmed to be an alternative method when triple quadrupole mass spectrometry is absent in lab.
Collapse
Affiliation(s)
- Yan Xu
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Haixia Li
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jian Liang
- Guangzhou Highgoal Biotech Company Limited, Guangzhou 510110, China
| | - Jina Ma
- Guangzhou Highgoal Biotech Company Limited, Guangzhou 510110, China
| | - Juan Yang
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaojuan Zhao
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hao Dong
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
17
|
Impact of thermal processing and storage on fatty acid composition and cholesterol oxidation of canned traditional low-fat meat product of India. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Hashari SZ, Rahim AA, Meng GY, Ramiah SK. Quantification of Cooking Method Effect on COP Content in Meat Types Using Triple Quadrupole GC-MS/MS. Molecules 2020; 25:molecules25214978. [PMID: 33126403 PMCID: PMC7662975 DOI: 10.3390/molecules25214978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022] Open
Abstract
A diet containing cholesterol is an essential component of biological function; however, cholesterol oxidation products (COPs) remain a major public health concern. This study investigated the effects of cooking methods (boiling and frying) on the production levels of COPs in processed foods. Samples, as represented by minced beef, chicken sausages, and fish fillets, were subjected to different cooking methods followed by COP extraction using a saponification method. Then, six common COPs, 5α-cholest, α-epoxy, β-epoxy, 25-HC, triol, and 7-keto, were quantified by triple quadrupole gas chromatography-mass spectrometry (GS-MS/MS). A significantly high number of COPs were detected in minced meat, of which 7-keto and triol were detected as major oxidation products, followed by chicken sausages and fish fillets (p ≤ 0.05). Compared to boiling, frying generated significantly more COPs, specifically triol (0.001-0.004 mg/kg) and 7-keto (0.001-0.200 mg/kg), in all samples. Interestingly, cholesterol level was found to be slightly (but not significantly) decreased in heat-treated samples due to oxidation during cooking, producing a higher number of COPs. Notably, the fish fillets were found to produce the fewest COPs due to the presence of a low amount of cholesterol and unsaturated fatty acids. In conclusion, adapting boiling as a way of cooking and choosing the right type of meat could serve to reduce COPs in processed foods.
Collapse
Affiliation(s)
- Shazamawati Zam Hashari
- Food Biotechnology Program, Faculty of Science and Technology, University Sains Islam Malaysia, Bandar Baru Nilai 71800, Malaysia; (S.Z.H.); (A.A.R.)
| | - Alina Abdul Rahim
- Food Biotechnology Program, Faculty of Science and Technology, University Sains Islam Malaysia, Bandar Baru Nilai 71800, Malaysia; (S.Z.H.); (A.A.R.)
| | - Goh Yong Meng
- Department of Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Veterinary Pre Clinical Science, Faculty of Veterinary Medicine, University Putra Malaysia, Persiaran UPM-Serdang, Serdang 43400, Malaysia
| | - Suriya Kumari Ramiah
- Department of Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Correspondence: ; Tel.: +60-8947-1173
| |
Collapse
|
19
|
Rather SA, Masoodi FA, Rather JA, Akhter R, Gani A, Ganaie TA. Effects of xanthan gum, canning and storage period on fatty acid profile and cholesterol oxidation of restructured low-fat meat product of India. Food Chem 2020; 359:128450. [PMID: 34078541 DOI: 10.1016/j.foodchem.2020.128450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/04/2020] [Accepted: 10/18/2020] [Indexed: 11/28/2022]
Abstract
This study evaluated the impact of xanthan gum (XG), canning and storage on fatty acids (FAs) contents and formation of cholesterol oxidation products (COPs) in low-fat meat product (goshtaba) of Jammu and Kashmir (J&K), India. The FAs composition i.e. saturated FAs, monounsaturated FAs, polyunsaturated FAs and trans FAs during processing and storage showed non-significant difference in all goshtaba products (P > 0.05). The cholesterol content decreased significantly after canning in all products (P < 0.05) while, maximum reduction was observed in high-fat goshtaba (HFC). During storage all products exhibited significant decrease in cholesterol upto 6th month, thereafter showed non-significant variation. The COPs determined were 7-β-OH-ch, 5-ch-3β-ol-7-one and 25-OH-ch. After canning two COPs (7-β-OH-ch, 5-ch-3β-ol-7-one) were produced in all products. But during storage there was formation of 25-OH-ch, increase in 7-β-OH-ch and decrease in 5-ch-3β-ol-7-one and lower COPs were observed in low-fat goshtaba containing 1.5% XG. The results concluded that fat replacer (XG), processing and storage had no significant effect on the FAs compositions of all goshtaba products including HFC. However, cholesterol content exhibited significant variation and minimum reduction in cholesterol and formation of lower COPs were observed in low-fat goshtaba formulated with 1.5% XG.
Collapse
Affiliation(s)
- Sajad A Rather
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - F A Masoodi
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Jahangir A Rather
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Rehana Akhter
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Tariq A Ganaie
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
20
|
Hsu KY, Chen BH. A comparative study on the formation of heterocyclic amines and cholesterol oxidation products in fried chicken fiber processed under different traditional conditions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|