1
|
Sheng T, Mang L, Wu Y, Zhu H, Ha C, Xiao S, Yu Z, Zhou Y. Functions of high glycemic index carbohydrates: Exploring the effect of amorphous rice starch digestibility on glycometabolism. Int J Biol Macromol 2025; 307:142287. [PMID: 40112968 DOI: 10.1016/j.ijbiomac.2025.142287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
The digestive characteristics of amorphous starch in cooked rice have rarely been studied from a metabolic perspective. This study explores the effects of cooked rice starch on glycometabolism in rats to explore the role of high glycemic index (GI) carbohydrates in the daily diet. Utilizing X-ray diffraction and Fourier transform infrared spectroscopy allowed the structure of amorphous starch to be probed, while rats were subjected to a long-term pre-prandial gavage intervention (glucose as a positive control and normal saline as a negative control) to assess the effects of high GI carbohydrates on glucose tolerance, insulin sensitivity, and markers of glucose metabolism in skeletal muscle (SIRT1, PGC-1α, GSK-3β, GLUT4). Results showed that high-GI carbohydrates significantly enhanced systemic insulin sensitivity, glucose tolerance, and skeletal muscle glucose metabolism. Waxy rice starch (WRS), containing a high amylopectin content (98.57 %), was found to be particularly effective due to its high rapidly digestible starch (RDS) content (66.01 %) and a GI of 102 after cooked into an amorphous state. Consequently, it can be concluded that a long-term moderate intake of amorphous rice starch induces the body to increase insulin sensitivity and improve glycometabolism. These findings emphasize the functional characteristics of high-GI starchy foods, offering a more profound understanding of carbohydrate-based diets.
Collapse
Affiliation(s)
- Tao Sheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Lai Mang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yujie Wu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Hui Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Chuanzhi Ha
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Shixun Xiao
- Anhui Rural and Social Science and Technology Development Center, Hefei 230088, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Chen C, Yu W, Kou X, Niu Y, Ji J, Shao Y, Wu S, Liu M, Xue Z. Recent advances in the effect of simulated gastrointestinal digestion and encapsulation on peptide bioactivity and stability. Food Funct 2025; 16:1634-1655. [PMID: 39943857 DOI: 10.1039/d4fo04447a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Food-derived bioactive peptides have garnered significant attention from researchers due to their specific biological functions, including antihypertensive, antioxidant, antidiabetic, anticancer, anti-inflammatory, and anti-osteoporosis properties. Despite extensive in vitro research, the bioactivity of these peptides may be compromised in the gastrointestinal tract due to enzymatic hydrolysis before reaching the bloodstream or target cells. Therefore, understanding the fate of bioactive peptides during digestion is crucial before advancing to clinical trials and commercial applications. To exert their health-promoting effects, these peptides must maintain their bioactivity throughout digestion. Encapsulation has emerged as a promising strategy for protecting peptides in the gastrointestinal tract. This review examines the effects of in vitro simulated gastrointestinal digestion on peptide bioactivity and stability, highlighting recent research on encapsulation strategies designed to enhance their gastrointestinal stability. Furthermore, the review addresses existing research gaps and suggests future research directions to advance our understanding and the application of bioactive peptides.
Collapse
Affiliation(s)
- Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
3
|
Wu X, Yan X, Zhang B, Zhang Q, Zhang X, Zhang J, Wu X. Effect of strengthening agents on properties of dual-modified cassava starch-based degradable films. Int J Biol Macromol 2025; 291:139142. [PMID: 39722390 DOI: 10.1016/j.ijbiomac.2024.139142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Insufficient hydrophobicity and mechanical properties pose significant challenges in the development of starch-based degradable films. This study prepared modified (crosslinked, acetylated, and crosslinked & acetylated) cassava starch films, and different concentrations of strengthening agents (polyvinyl alcohol, sodium alginate, gelatin, and hyaluronic acid) were added to produce modified starch composite films. The physical properties, structure characteristics, and degradability of these films were systematically evaluated. The dual-modified (crosslinked & acetylated) starch film exhibited superior hydrophobic properties (contact angle = 90.04°), and the addition of strengthening agents significantly enhanced the tensile strength of the composite films (p < 0.05). Fourier transform infrared spectra confirmed that the strengthening agents interacted with starch through hydrogen bonding. Additionally, the hyaluronic acid-starch composite film exhibited the most rapid degradation in soil (53 % weight loss after 30 days of storage) and achieved the highest comprehensive score for physical properties. This film combined exceptional hydrophobicity and mechanical properties, making it an ideal candidate for food packaging applications. These findings suggest that the hyaluronic acid-starch composite film has broad potential applications in the field of degradable food packaging films.
Collapse
Affiliation(s)
- Xiuli Wu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| | - Xiangxuan Yan
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| | - Bingqian Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| | - Qing Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| | - Xiaojia Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| | - Jianwen Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| | - Xuexu Wu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
4
|
Wu Y, You F, Hou S. Application of natural materials containing carbohydrate polymers in rheological modification and fluid loss control of water-based drilling fluids: A review. Carbohydr Polym 2025; 348:122928. [PMID: 39567146 DOI: 10.1016/j.carbpol.2024.122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/05/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024]
Abstract
As the concept of green and sustainable development gains widespread acceptance, the demand for non-toxic, biodegradable, renewable, and widely sourced natural materials (NMs) is increasing across various fields. In oil and gas well drilling operations, water-based drilling fluids (WBDFs) are at the forefront of eco-friendly practices. Their rheological modification and fluid loss control properties are two fundamental and crucial aspects ensuring safe drilling. This review explores the research progress in enhancing these key properties of WBDFs using NMs, primarily focusing on polysaccharide polymers. It analyzes the sources, effective components, and potential functions of these NMs, and introduces three clean production methods: mechanical processing, extraction, and fermentation. Furthermore, the review focuses on the contributions of NMs obtained through these methods to the rheological and fluid loss control properties of WBDFs, highlighting their advantages and disadvantages. Despite challenges such as raw material supply stability, material synergy, compatibility, process scalability, field application, resistance to complex geological conditions, and economic feasibility, NMs, due to their outstanding environmental benefits, remain strong candidates for sustainable drilling fluid additives. Future research should focus on optimizing the performance of these materials and addressing existing issues to promote green and sustainable development in the drilling industry.
Collapse
Affiliation(s)
- Yu Wu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, Hubei 434023, China
| | - Fuchang You
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China; School of Petroleum Engineering, Yangtze University: National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Wuhan, Hubei 430100, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, Hubei 434023, China.
| | - Shanshan Hou
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, Hubei 434023, China
| |
Collapse
|
5
|
Su CY, Li D, Wang LJ. From micropores to mechanical strength: Fabrication and characterization of edible corn starch-sodium alginate double network hydrogels with Ca2+ cross-linking. Food Chem 2024; 467:142276. [PMID: 39631354 DOI: 10.1016/j.foodchem.2024.142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
This study explores the fabrication and characterization of corn starch‑sodium alginate double network hydrogels using two distinct calcium ion cross-linking methods: the gluconolactone immersed method (GIM) and the calcium chloride immersed method (CCIM). We investigated the ionic cross-linking mechanism of these hydrogels and compared their microstructure and mechanical properties. Our results highlight significant differences between GIM and CCIM hydrogels, with the CCIM method producing a more uniform and compact network. At the same calcium ion concentration, CCIM hydrogel exhibited higher mechanical strength and viscoelasticity properties compared to GIM hydrogel. The rapid release of Ca2+ in CCIM allowed for complete cross-linking with sodium alginate, forming a uniform 3D network structure. In contrast, the slow released Ca2+ in GIM resulted in a heterogeneous structure with a tough outer shell and incomplete internal cross-linking. Specifically, the CCIM hydrogel showed a compact network structure and the highest mechanical strength at a calcium chloride concentration of 1.6% (w/v). This study demonstrates that the Ca2+ release rate significantly impacts the microstructure and mechanical properties of double network hydrogels prepared by the immersion method. With this preparation strategy, corn starch‑sodium alginate edible gels that provided higher strength could be fabricated.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Lencina MMS, Brugnoni LI, Ninago MD, Villar MA, Vega DA, Del Barrio MC. Enhanced antibacterial activity of starch-alginate beads by a synergistic effect between Cu 2+ and Zn 2+ ions with a potential wound dressing application. Int J Biol Macromol 2024; 280:135798. [PMID: 39306150 DOI: 10.1016/j.ijbiomac.2024.135798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
The synthesis and characterization of starch/alginate composite beads, crosslinked with Cu2+, Zn2+, and Cu:Zn mixtures were investigated, focusing on their potential application in exudative wound dressings. Hydrogel beads were prepared using the external gelation method and then dried via freeze-drying to create cryogels and air-drying to create xerogels. Microstructural characterization was performed using SEM and EDS, showing the typical porous structure with a homogeneous distribution of cations across the beads. Unimetallic beads exhibited higher equilibrium water uptake compared to Cu:Zn bimetallic beads (500 % vs. 300 %). After the swelling study, the total amount of Cu2+ released was significantly below the maximum allowed level as a safeguard against copper toxicity. All beads demonstrated excellent antimicrobial activity against E. coli, S. aureus, and P. aeruginosa. Bimetallic materials, particularly cryogels with equal or greater amount of zinc relative to copper, were particularly effective against P. aeruginosa. Hence, the synthesized bimetallic starch-alginate materials presented superior water absorption capacity and significantly enhanced antibacterial response compared to unimetallic beads, due to the synergistic effect between Cu2+ and Zn2+ ions, making then suitable for use in exudative wound dressings.
Collapse
Affiliation(s)
- M M Soledad Lencina
- Instituto de Física del Sur, IFISUR (UNS-CONICET), Avenida Alem 1253, 8000 Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina.
| | - Lorena I Brugnoni
- Instituto de Investigaciones Biológicas y Biomédicas del Sur, INBIOSUR (UNS-CONICET), 12 de Octubre 991, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina.
| | - Mario D Ninago
- Instituto de Ingeniería y Ciencias Aplicadas a la Industria (ICAI-CONICET), Bernardo de Irigoyen 375, 5600 San Rafael, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Aplicadas a la Industria, Bernardo de Irigoyen 375, 5600 San Rafael, Argentina.
| | - Marcelo A Villar
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina.
| | - Daniel A Vega
- Instituto de Física del Sur, IFISUR (UNS-CONICET), Avenida Alem 1253, 8000 Bahía Blanca, Argentina; Departamento de Física, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina.
| | - M Cecilia Del Barrio
- Instituto de Física del Sur, IFISUR (UNS-CONICET), Avenida Alem 1253, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
7
|
Su CY, Li D, Sun W, Wang LJ, Wang Y. Green, tough, and heat-resistant: A GDL-induced strategy for starch-alginate hydrogels. Food Chem 2024; 449:139188. [PMID: 38579652 DOI: 10.1016/j.foodchem.2024.139188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Hydrogels fabricated by non-covalent interaction garnered significant attention for their eco-friendly and robust mechanical attributes, and are often used in food, medicine and other fields. Although starch-alginate hydrogels exhibit high adhesion and are environmentally sustainable, their applications are limited due to their low elasticity and hardness. Addressing this challenge, we introduce a solvent-induced strategy using glucolactone (GDL) to fabricate hydrogels with enhanced strength and thermal resilience. Utilizing corn starch with varying amylose contents, sodium alginate and calcium carbonate to prepare a double network structure. This GDL-induced hydrogel outperforms most previous starch-based hydrogels in mechanical robustness and thermal stability. Typical starch-alginate hydrogel had a homogeneous network structure and exhibited a high tensile stress of 407.57 KPa, and a high enthalpy value of 1857.67 J/g. This investigation furnishes a facile yet effective method for the synthesis of hydrogels with superior mechanical and thermal properties, thereby broadening the design landscape for starch-based hydrogels.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China.
| | - Weihong Sun
- College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, China.
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
8
|
Dorneles MS, de Azevedo ES, Noreña CPZ. Effect of incorporating modified pinhão starch in alginate-based hydrogel beads for encapsulation of bioactive compounds by hydrodynamic electrospray ionization jetting. Int J Biol Macromol 2024; 267:131555. [PMID: 38615858 DOI: 10.1016/j.ijbiomac.2024.131555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Known for its antioxidant properties, Araucaria angustifolia bracts extract was encapsulated using hydrodynamic electrospray ionization jetting within calcium alginate cross-linked hydrogel beads with varying contents of modified pinhão starch. The rheological properties of the dispersions and analysis of the physicochemical and digestive properties of encapsulated beads were studied. The results demonstrated that dispersions containing starch exhibited higher viscosity and reduced compliance values, indicating samples with stronger, more compact, and stable structures that are less susceptible to deformation. This was confirmed by the beads rupture strength test. The ATR-FTIR analysis suggest that no new chemical bonds were formed, with encapsulation being responsible only for physical interactions between the functional groups of the polymers used and the active groups of the compounds present in the extract. The thermal stability of starch-containing beads was higher. Total tannins were higher in beads containing starch, with 53.61 %, 56.83 %, and 66.99 % encapsulation yield for samples with 2 %, 4 %, and 6 % starch, respectively, and the remaining antioxidant activity ranged from 96.04 % to 81.08 %. In vitro gastrointestinal digestion simulation indicated that the highest releases occurred in the intestinal phase, ranging from 60.72 % to 63.50 % for the release of total phenolic compounds.
Collapse
Affiliation(s)
- Mariane Santos Dorneles
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Eduarda Silva de Azevedo
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Caciano Pelayo Zapata Noreña
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Lee JY, Kamel J, Yadav CJ, Yadav U, Afrin S, Son YM, Won SY, Han SS, Park KM. Production of Plant-Based, Film-Type Scaffolds Using Alginate and Corn Starch for the Culture of Bovine Myoblasts. Foods 2024; 13:1358. [PMID: 38731729 PMCID: PMC11083433 DOI: 10.3390/foods13091358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Natural scaffolds have been the cornerstone of tissue engineering for decades, providing ideal environments for cell growth within extracellular matrices. Previous studies have favored animal-derived materials, including collagen, gelatin, and laminin, owing to their superior effects in promoting cell attachment, proliferation, and differentiation compared to non-animal scaffolds, and used immortalized cell lines. However, for cultured meat production, non-animal-derived scaffolds with edible cells are preferred. Our study represents the first research to describe plant-derived, film-type scaffolds to overcome limitations associated with previously reported thick, gel-type scaffolds completely devoid of animal-derived materials. This approach has been employed to address the difficulties of fostering bovine muscle cell survival, migration, and differentiation in three-dimensional co-cultures. Primary bovine myoblasts from Bos Taurus Coreanae were harvested and seeded on alginate (Algi) or corn-derived alginate (AlgiC) scaffolds. Scaffold functionalities, including biocompatibility and the promotion of cell proliferation and differentiation, were evaluated using cell viability assays, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction. Our results reveal a statistically significant 71.7% decrease in production time using film-type scaffolds relative to that for gel-type scaffolds, which can be maintained for up to 7 days. Film-type scaffolds enhanced initial cell attachment owing to their flatness and thinness relative to gel-type scaffolds. Algi and AlgiC film-type scaffolds both demonstrated low cytotoxicity over seven days of cell culture. Our findings indicated that PAX7 expression increased 16.5-fold in alginate scaffolds and 22.8-fold in AlgiC from day 1 to day 3. Moreover, at the differentiation stage on day 7, MHC expression was elevated 41.8-fold (Algi) and 32.7-fold (AlgiC), providing initial confirmation of the differentiation potential of bovine muscle cells. These findings suggest that both Algi and AlgiC film scaffolds are advantageous for cultured meat production.
Collapse
Affiliation(s)
- Jun-Yeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Jihad Kamel
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Chandra-Jit Yadav
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Usha Yadav
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Sadia Afrin
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Yu-Mi Son
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung-Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| |
Collapse
|
10
|
Wang Z, Kozu H, Uemura K, Kobayashi I, Ichikawa S. Effect of mechanical properties on in vitro dynamic digestion of starch contained in hydrogels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3498-3506. [PMID: 38145927 DOI: 10.1002/jsfa.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND This study evaluates the effect of mechanical properties on the in vitro dynamic gastrointestinal digestion of hydrogels containing starch (HCSs) as a model for studying the nutrient digestibility of solid foods. It provides a useful theoretical basis for the processing of specific foods. RESULT Four types of HCSs with two levels of fracture stress (17.4-20.9 kPa and 55.5-57.6 kPa) and two levels of fracture strain (25.4-28.5% and 53.7-57.4%) were prepared. For these HCSs, the degree of gastric disintegration of hydrogels reduced significantly when fracture strain exceeded 30% (P < 0.05). The gastric emptying of HCS particles was also affected by mechanical properties. For example, even at the same level of fracture stress (ca. 20 kPa), the dry solids retention ratio decreased markedly from 0.90 to 0.43 with a decrease in fracture strain from 53.7% to 25.4% (P < 0.05). For the starch hydrolysis of HCSs after gastric digestion, more than 70% of starch in the particles of all types of HCSs emptied did not undergo digestion. The starch hydrolysis of HCSs during small intestinal digestion was also influenced by their mechanical properties. Fracture strains of HCSs, rather than their fracture stress, affected starch digestibility in hydrogels. CONCLUSION The gastric disintegration, the gastric emptying, and the starch hydrolysis of HCSs are suppressed when fracture strain exceeded 30%. Even with the amount of nutritional components contained in hydrogels being the same, the in vitro gastrointestinal digestion behavior of HCSs depends on their mechanical properties. This behavior has the potential to be used in the design of processed foods with controlled bioaccessibility. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zaitian Wang
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroyuki Kozu
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Institute of Food Research, NARO, Tsukuba, Japan
| | | | | | - Sosaku Ichikawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Kirmic Cosgun SN, Ceylan Tuncaboylu D, Alemdar M. G-POSS connected double network starch gels for protein release. Int J Biol Macromol 2024; 257:128705. [PMID: 38081486 DOI: 10.1016/j.ijbiomac.2023.128705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Starch is one of the most frequently preferred natural polymers in hydrogel synthesis. Herein, we combined two strategies of associating brittle and ductile networks in a structure and incorporating inorganic particles into the polymeric gel to design mechanically enhanced nanocomposite double network (DN) starch gels. For the first time in the literature, nanocomposite starch gels (s-NC) were designed by cross-linking starch chains with 8-armed glycidyl-polyhedral oligomeric silsesquioxane (g-POSS) units. Fourier Transform Infrared Spectroscopy and Energy Dispersive X-Ray Spectroscopy analyses have proven that g-POSS is included in the gel structure and is homogeneously distributed throughout the network. More stable d-NC-DMA and d-NC-VP gels were obtained by incorporating N,N-dimethylacrylamide (DMA), or 1-vinyl-2-pyrrolidinone (VP) units, respectively, into g-POSS-linked starch gels, and the reaction kinetics were followed in situ. In SEM images, it was observed that d-NC-DMA had smaller pores and thicker pore walls compared to s-NC and d-NC-VP starch gels, and its mechanical strength was shown to be much superior by rheological tests, compression, and tensile analyses. In addition to increasing the mechanical strength of the gels, the potential of starch in protein release applications using amylase sensitivity has been demonstrated in vitro experiments using the model protein BSA.
Collapse
Affiliation(s)
- Seyma Nur Kirmic Cosgun
- Bezmialem Vakıf University Health Sciences Institute, Department of Biotechnology, 34093 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, 34093 Istanbul, Turkey
| | - Deniz Ceylan Tuncaboylu
- Bezmialem Vakıf University Health Sciences Institute, Department of Biotechnology, 34093 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, 34093 Istanbul, Turkey.
| | - Mahinur Alemdar
- Bezmialem Vakıf University Health Sciences Institute, Department of Biotechnology, 34093 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, 34093 Istanbul, Turkey
| |
Collapse
|
12
|
Li Y, Niu L, Sun C, Tu J, Xiao J. Comparison of in vitro starch digestibility and structure of matcha-fortified starch vermicelli from different botanical sources. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7775-7784. [PMID: 37483079 DOI: 10.1002/jsfa.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/12/2023] [Accepted: 07/22/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND In a study to explore the utilization of polyphenols in complex digestive systems, starch-based vermicelli was employed as the carrier and matcha (MT) was used as the source of polyphenols. Four percent MT was extruded with A-, B-, and C-type starch of rice, sweet potato, and mung bean to prepared starch vermicelli rice starch vermicelli (RSV), sweet potato starch vermicelli (SPSV), and mung bean starch vermicelli (MBSV), respectively. The multi-scale structure of starch, the digestive kinetics of starch, and the bioaccessibility of polyphenols during in vitro digestion were monitored. RESULTS Matcha did not change the crystal configuration of vermicelli, but increased the relative crystallinity of RSV. Vermicelli with MT possessed a more uniform structure, and the polydispersity index decreased from 3.85-4.89 to 2.56-3.69. However, these structural changes made only a limited contribution to delaying digestion. The detection of polyphenols during digestion revealed that the release of most polyphenols was accomplished in the first 20 min of digestion. The release amount was in the order RSV + MT > MBSV + MT > SPSV + MT, and reached 4.81-5.45 mg GAE g-1 . Correspondingly, the activity of digestive enzyme decreased in the order RSV + MT < MBSV + MT < SPSV + MT. Consequently, MT significantly (P < 0.05) reduced the digestive rate of vermicelli, and the rapidly digested starch and predicted glycemic index of RSV + MT decreased from 71.28% to 56.31% and from 74.68 to 62.86, respectively. The released polyphenols were also the main source of the strong antioxidant capacity of vermicelli with MT. CONCLUSIONS These results provided a theoretical basis for using polyphenols to pursue healthy starch-based food. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Li
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chao Sun
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jin Tu
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
13
|
Chen H, Wang X, Jin D, Liu M, Wu X, Jiang Y, Fang Y, Lin Q, Ding Y. Characterization, in vitro digestibility and release properties of starch-linoleic acid-sodium alginate composite film. Food Res Int 2023; 174:113647. [PMID: 37981361 DOI: 10.1016/j.foodres.2023.113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
This study aimed to improve the complexing degree, digestibility and controlled release properties of the potato starch (PS)-linoleic acid (LA) complexes by encapsulating PS-LA complexes to sodium alginate (AG) beads. The results revealed that AG had a positive effect on the complexing index, R1047/1022 values, relative crystallinity, enthalpy and morphological structure of PS-LA-AG films, especially for PS-LA-AG film with the PS-LA: AG of 5:1. The in vitro digestion and hydrolysis kinetic analysis indicated that AG addition reduced the digestibility of PS-LA-AG films to a higher slowly digestible starch content and resistant starch content and a lower equilibrium hydrolysis percentage and kinetic constant. Furthermore, in vivo release study of PS-LA-AG films indicated a restrained release in simulated gastrointestinal conditions. Consequently, the results indicated that AG addition significantly improved the inclusion efficiency for the complex formation between PS and LA, which was beneficial for the design of resistant films to entrap and control release of unsaturated fatty.
Collapse
Affiliation(s)
- Huirong Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoyan Wang
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Danni Jin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Mingyue Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaonian Wu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yuling Jiang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023,China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
14
|
Bagnolo LM, Almeida FS, Silva KCG, Sato ACK. Starch can act differently when combined with alginate or gellan gum to form hydrogels. Food Res Int 2023; 173:113333. [PMID: 37803642 DOI: 10.1016/j.foodres.2023.113333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
Microgels were tailored by combining starches from different sources (corn, potato or phosphated) and anionic polysaccharides (gellan gum or alginate) using ionic gelation. Rheological analysis pointed out a lower consistency index for alginate-based solutions compared to the gellan-based ones and, therefore, this favored the formation of smaller droplets during the atomization process (58.74 ± 1.72 µm vs. 101.38 ± 2.71 µm). Additionally, it was noticed that the starch granule size isdirectly related to the diameter of the particle formed, both for gellan and alginate systems. The combination between starches and anionic gums still promoted an increase in the water holding capacity, probably due to the presence of additional hydrophilic groups from starch. According to the mechanical properties, starch acts differently when combined with alginate or gellan gum, considering it strengthened the biopolymeric network for the alginate-based gels increasing the stress at rupture values (except for potato starch), while it decreasedthe hardness and elasticity for gellan-based gels. Microparticles based on gellan and alginate showed high anthocyanin encapsulation efficiency (EE ≥ 80%) in all systems. In these cases, the addition of starch did not contribute to increasing this property, even though starch granules filled the gel pores. The high EE showed that the studied systems allow the encapsulation of anthocyanin and suggest possible encapsulation of other hydrophilic bioactive compounds, considering the best type of starch for each application.
Collapse
Affiliation(s)
- Luiza Moraes Bagnolo
- School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil.
| | - Flávia Souza Almeida
- School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil.
| | | | | |
Collapse
|
15
|
Polanía AM, Ramírez C, Londoño L, Bolívar G, Aguilar CN. Encapsulation of Pineapple Peel Extracts by Ionotropic Gelation Using Corn Starch, Weissella confusa Exopolysaccharide, and Sodium Alginate as Wall Materials. Foods 2023; 12:2943. [PMID: 37569212 PMCID: PMC10418400 DOI: 10.3390/foods12152943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Phenolic compounds that are present in pineapple by-products offer many health benefits to the consumer; however, they are unstable to many environmental factors. For this reason, encapsulation is ideal for preserving their beneficial effects. In this work, extracts were obtained by the combined method of solid-state fermentation with Rhizopus oryzae and ultrasound. After this process, the encapsulation process was performed by ionotropic gelation using corn starch, sodium alginate, and Weissella confusa exopolysaccharide as wall material. The encapsulates produced presented a moisture content between 7.10 and 10.45% (w.b), a solubility of 53.06 ± 0.54%, and a wettability of 31.46 ± 2.02 s. The total phenolic content (TPC), antioxidant capacity of DPPH, and ABTS of the encapsulates were also determined, finding 232.55 ± 2.07 mg GAE/g d.m for TPC, 45.64 ± 0.9 µm Trolox/mg GAE for DPPH, and 51.69 ± 1.08 µm Trolox/mg GAE for ABTS. Additionally, ultrahigh performance liquid chromatography (UHPLC) analysis allowed us to identify and quantify six bioactive compounds: rosmarinic acid, caffeic acid, p-coumaric acid, ferulic acid, gallic acid, and quercetin. According to the above, using ionotropic gelation, it was possible to obtain microencapsulates containing bioactive compounds from pineapple peel extracts, which may have applications in the development of functional foods.
Collapse
Affiliation(s)
- Anna María Polanía
- MIBIA Group, Biology Department, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760031, Colombia; (A.M.P.); (C.R.); (G.B.)
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Cristina Ramírez
- MIBIA Group, Biology Department, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760031, Colombia; (A.M.P.); (C.R.); (G.B.)
| | - Liliana Londoño
- BIOTICS Group, School of Basic Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia—UNAD, Palmira 763531, Colombia;
| | - German Bolívar
- MIBIA Group, Biology Department, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760031, Colombia; (A.M.P.); (C.R.); (G.B.)
| | - Cristobal Noe Aguilar
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| |
Collapse
|
16
|
Lencina MS, Piqueras CM, Vega DA, Villar MA, Del Barrio MC. Environmentally friendly starch/alginate aerogels for copper adsorption from aqueous media. A microstructural and kinetic study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:369-381. [PMID: 36946333 DOI: 10.1080/10934529.2023.2188847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
This work investigated the synthesis and characterization of alginate/starch porous materials and their application as copper ions adsorbents from aqueous media. Initially, pregel aqueous solutions with different biopolymer concentrations (1, 3, and 5% w/w) and alginate contents (25, 50, and 75% w/w) were prepared. Hydrogel formation was performed by internal and external gelation methods. Finally, the drying step was done via CO2sc leading to aerogels and via freeze-drying leading to cryogels. Process parameters influence on the final properties of materials was evaluated by BET isotherms, SEM, EDS, and TGA. Regardless the gelation method applied, interesting materials with meso- and macro-pore structure were prepared from pregel mixtures with 3% w/w biopolymer concentration and an alginate content of only 25% w/w. Low alginate content reduces the final cost of the materials. Concerning copper removal, the adsorption data were well fitted to the pseudo-second order kinetic model for aerogels and cryogels, showing aerogels the highest adsorption capacity (40 mg/g) and removal efficiency (∼ 92%). Materials demonstrated excellent reusability throughout five consecutive adsorption/desorption cycles. Hence, environmentally friendly materials with a high practical value as low-cost bioadsorbents were synthesized, having great performance in the removal of copper ions from aqueous solution.
Collapse
Affiliation(s)
- María S Lencina
- Instituto de Física del Sur, IFISUR (UNS-CONICET), Bahía Blanca, Argentina
- Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Cristian M Piqueras
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
- Departamento de Ingeniería Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Daniel A Vega
- Instituto de Física del Sur, IFISUR (UNS-CONICET), Bahía Blanca, Argentina
- Departamento de Física, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Marcelo A Villar
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
- Departamento de Ingeniería Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María C Del Barrio
- Instituto de Física del Sur, IFISUR (UNS-CONICET), Bahía Blanca, Argentina
- Departamento de Ingeniería Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
17
|
The Role of Amylose in Gel Forming of Rice Flour. Foods 2023; 12:foods12061210. [PMID: 36981139 PMCID: PMC10047920 DOI: 10.3390/foods12061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
In this study, Glutinous rice (GR), Japonica rice (JR), and Indica rice (IR), with amylose contents at 1.57 ± 0.18%, 15.88 ± 1.16%, and 26.14 ± 0.25%, respectively, were selected to reveal the role of amylose in the gel forming of rice flours. The strength and elasticity of the associated gels were found in an ascendant order with the increase in amylose content. For the retrograded gels (at 4 °C for 7 days), the peak temperature (Trp) was positively related to the amylose content. In general, Trp of IR increased to 63.21 ± 0.13 °C, and the relative crystallinities of IR were in the top ranking at 10.67 ± 0.16%, followed by those of JR and GR. The relative amounts of short-range ordered structures to amorphous regions in JR and IR were also higher than that of GR, and the number of compact network structure were positively related to the amylose content. These results indicated that amylose can enhance the strength and elasticity of gels by facilitating the formation of crystalline, short-range ordered, and compact network structures. These results can provide a reference for the development of rice products.
Collapse
|
18
|
Huang J, Yu M, Wang S, Shi X. Effects of jicama (Pachyrhizus erosus L.) non-starch polysaccharides with different molecular weights on structural and physiochemical properties of jicama starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Zhu Z, Wang C, Mei L, Xue W, Sun C, Wang Y, Du X. Effects of soy protein isolate hydrolysate on physicochemical properties and in vitro digestibility of corn starch with various amylose contents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Cui C, Jia Y, Sun Q, Yu M, Ji N, Dai L, Wang Y, Qin Y, Xiong L, Sun Q. Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydr Polym 2022; 291:119624. [DOI: 10.1016/j.carbpol.2022.119624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
|
21
|
|
22
|
Wang H, Li Y, Wang L, Wang L, Li Z, Qiu J. Multi-scale structure, rheological and digestive properties of starch isolated from highland barley kernels subjected to different thermal treatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Gao X, Fu C, Li M, Qi X, Jia X. Effects of Biodegradation of Corn-Starch-Sodium-Alginate-Based Liquid Mulch Film on Soil Microbial Functions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148631. [PMID: 35886488 PMCID: PMC9317586 DOI: 10.3390/ijerph19148631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022]
Abstract
In response to the problems of the poor degradability and mechanical properties of liquid mulch, natural non-toxic polymer compound corn starch and sodium alginate were used to prepare fully biodegradable liquid mulch. The preparation conditions of the mulch were optimized, and the mechanical properties of the mulch and the changes in the microbial community in soil with the mulch degradation were analyzed. The corn-starch–sodium-alginate-based liquid mulch film had an optimum performance at a tensile strength of 0.145 MPa and an elongation at a break of 16.05%, which was attained by adding 33.33% sodium alginate, 50% glycerol 22 and 4% citric acid to corn starch after moist heat modification. Fourier transform infrared spectroscopy analysis showed that the -COOH in sodium alginate could interact with the -OH in starch and glycerol through hydrogen bonding, thus, resulting in a denser structure and better mechanical properties of the liquid mulch as a non-crystalline material. The soil burial degradation study of mulch revealed that corn-starch–sodium-alginate-based liquid mulch degraded completely at 25 days macroscopically, and mulch degradation increased soil organic matter content. Microbial kinetic analysis showed that the abundance and diversity of the bacterial community decreased with the degradation of the mulch, which was conducive to the optimization of the bacterial community structure and function. Arthrobacter of the class Actinomycetes became the dominant microorganism, and its abundance increased by 16.48-times at 14 days of mulch degradation compared with that before degradation, and Acidophilus phylum (14 days) decreased by 99.33%. The abundance of fungal communities was elevated in relation to the main functional microorganisms involved in liquid mulch degradation, with Alternaria and Cladosporium of the Ascomycete phylum Zygomycetes being the most active at the early stage of mulch degradation (7 days), and the relative abundance of Blastocystis was significantly elevated at the late stage of mulch degradation (14 days), which increased by 13.32%. This study provides important support for the green and sustainable development of modern agriculture.
Collapse
Affiliation(s)
- Xia Gao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; (X.G.); (C.F.)
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Chenxing Fu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; (X.G.); (C.F.)
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.L.); (X.Q.)
| | - Xuejiao Qi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.L.); (X.Q.)
| | - Xuan Jia
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; (X.G.); (C.F.)
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| |
Collapse
|
24
|
Xiao M, Tang B, Qin J, Wu K, Jiang F. Properties of film-forming emulsions and films based on corn starch/sodium alginate/gum Arabic as affected by virgin coconut oil content. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Kian-Pour N, Akdeniz E, Toker OS. Influence of coating-blanching in starch solutions, on the drying kinetics, transport properties, quality parameters, and microstructure of celery root chips. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Faisal M, Kou T, Zhong Y, Blennow A. High Amylose-Based Bio Composites: Structures, Functions and Applications. Polymers (Basel) 2022; 14:polym14061235. [PMID: 35335565 PMCID: PMC8955870 DOI: 10.3390/polym14061235] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
As biodegradable and eco-friendly bio-resources, polysaccharides from a wide range of sources show steadily increasing interest. The increasing fossil-based production of materials are heavily associated with environmental and climate concerns, these biopolymers are addressing such concerns in important areas such as food and biomedical applications. Among polysaccharides, high amylose starch (HAS) has made major progress to marketable products due to its unique properties and enhanced nutritional values in food applications. While high amylose-maize, wheat, barley and potato are commercially available, HAS variants of other crops have been developed recently and is expected to be commercially available in the near future. This review edifies various forms and processing techniques used to produce HAS-based polymers and composites addressing their favorable properties as compared to normal starch. Low toxic and high compatibility natural plasticizers are of great concern in the processing of HAS. Further emphasis, is also given to some essential film properties such as mechanical and barrier properties for HAS-based materials. The functionality of HAS-based functionality can be improved by using different fillers as well as by modulating the inherent structures of HAS. We also identify specific opportunities for HAS-based food and biomedical fabrications aiming to produce cheaper, better, and more eco-friendly materials. We acknowledge that a multidisciplinary approach is required to achieve further improvement of HAS-based products providing entirely new types of sustainable materials.
Collapse
Affiliation(s)
- Marwa Faisal
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; (M.F.); (T.K.); (Y.Z.)
| | - Tingting Kou
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; (M.F.); (T.K.); (Y.Z.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; (M.F.); (T.K.); (Y.Z.)
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; (M.F.); (T.K.); (Y.Z.)
- Correspondence:
| |
Collapse
|
27
|
Li S, Liu H, Zheng Q, Hu N, Zheng M, Liu J. Effects of Soluble and Insoluble Dietary Fiber from Corn Bran on Pasting, Thermal, and Structural Properties of Corn Starch. STARCH-STARKE 2022. [DOI: 10.1002/star.202100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sheng Li
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 P.R.China
- National Engineering Laboratory of Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 P.R. China
| | - Huimin Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 P.R.China
- National Engineering Laboratory of Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 P.R. China
| | - Qihang Zheng
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 P.R.China
- National Engineering Laboratory of Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 P.R. China
| | - Nannan Hu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 P.R.China
- National Engineering Laboratory of Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 P.R. China
| | - Mingzhu Zheng
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 P.R.China
- National Engineering Laboratory of Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 P.R. China
| | - Jingsheng Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 P.R.China
- National Engineering Laboratory of Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 P.R. China
| |
Collapse
|
28
|
Demarco M, Oliveira de Moraes J, Matos ÂP, Derner RB, de Farias Neves F, Tribuzi G. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Zha F, Rao J, Chen B. Plant-based food hydrogels: Constitutive characteristics, formation, and modulation. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
In vitro digestibility of gels from different starches: Relationship between kinetic parameters and microstructure. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Bennacef C, Desobry-Banon S, Probst L, Desobry S. Advances on alginate use for spherification to encapsulate biomolecules. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106782] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Schiavi D, Balbi R, Giovagnoli S, Camaioni E, Botticella E, Sestili F, Balestra GM. A Green Nanostructured Pesticide to Control Tomato Bacterial Speck Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1852. [PMID: 34361238 PMCID: PMC8308196 DOI: 10.3390/nano11071852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Bacterial speck disease, caused by Pseudomonas syringae pv. tomato (Pst), is one of the most pervasive biological adversities in tomato cultivation, in both industrial and in table varieties. In this work synthesis, biochemical and antibacterial properties of a novel organic nanostructured pesticide composed of chitosan hydrochloride (CH) as active ingredient, cellulose nanocrystals (CNC) as nanocarriers and starch as excipient were evaluated. In order to study the possibility of delivering CH, the effects of two different types of starches, extracted from a high amylose bread wheat (high amylose starch-HA Starch) and from a control genotype (standard starch-St Starch), were investigated. Nanostructured microparticles (NMP) were obtained through the spray-drying technique, revealing a CH loading capacity proximal to 50%, with a CH release of 30% for CH-CNC-St Starch NMP and 50% for CH-CNC-HA Starch NMP after 24 h. Both NMP were able to inhibit bacterial growth in vitro when used at 1% w/v. Moreover, no negative effects on vegetative growth were recorded when NMP were foliar applied on tomato plants. Proposed nanostructured pesticides showed the capability of diminishing Pst epiphytical survival during time, decreasing disease incidence and severity (from 45% to 49%), with results comparable to one of the most used cupric salt (hydroxide), pointing out the potential use of CH-CNC-Starch NMP as a sustainable and innovative ally in Pst control strategies.
Collapse
Affiliation(s)
- Daniele Schiavi
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (E.B.); (F.S.)
| | - Rosa Balbi
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (R.B.); (S.G.); (E.C.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (R.B.); (S.G.); (E.C.)
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (R.B.); (S.G.); (E.C.)
| | - Ermelinda Botticella
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (E.B.); (F.S.)
- CNR-Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Francesco Sestili
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (E.B.); (F.S.)
| | - Giorgio Mariano Balestra
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (E.B.); (F.S.)
| |
Collapse
|
33
|
Influence of an O/W emulsion on the gelatinization, retrogradation and digestibility of rice starch with varying amylose contents. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Comunian TA, Drusch S, Brodkorb A. Advances of plant-based structured food delivery systems on the in vitro digestibility of bioactive compounds. Crit Rev Food Sci Nutr 2021; 62:6485-6504. [PMID: 33775182 DOI: 10.1080/10408398.2021.1902262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food researchers are currently showing a growing interest in in vitro digestibility studies due to their importance for obtaining food products with health benefits and ensuring a balanced nutrient intake. Various bioactive food compounds are sensitive to the digestion process, which results in a lower bioavailability in the gut. The main objective of structured food delivery systems is to promote the controlled release of these compounds at the desired time/place, in addition to protecting them during digestion processes. This review provides an overview of the influence of structured delivery systems on the in vitro digestive behavior. The main delivery systems are summarized, the pros and cons of different structures are outlined, and examples of several studies that optimized the use of these structured systems are provided. In addition, we have reviewed the use of plant-based systems, which have been of interest to food researchers and the food industry because of their health benefits, improved sustainability as well as being an alternative for vegetarian, vegan and consumers suffering from food allergies. In this context, the review provides new insights and comprehensive knowledge regarding the influence of plant-based structured systems on the digestibility of encapsulated compounds and proteins/polysaccharides used in the encapsulation process.
Collapse
Affiliation(s)
- Talita A Comunian
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| |
Collapse
|
35
|
Ji H, Hu J, Zuo S, Zhang S, Li M, Nie S. In vitro gastrointestinal digestion and fermentation models and their applications in food carbohydrates. Crit Rev Food Sci Nutr 2021; 62:5349-5371. [PMID: 33591236 DOI: 10.1080/10408398.2021.1884841] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Food nutrients plays a crucial role in human health, especially in gastrointestinal (GI) health. The effect of food nutrients on human health mainly depends on the digestion and fermentation process in the GI tract. In vitro GI digestion and fermentation models had the advantages of reproducibility, simplicity, universality, and could integrally simulate the in vivo conditions to mimic oral, gastric, small intestinal and large intestinal digestive processes. They could not only predict the relationship among material composition, structure and digestive characteristics, but also evaluate the bioavailability of material components and the impact of digestive metabolites on GI health. This review systematicly summarized the current state of the in vitro simulation models, and made detailed descriptions for their applications, advantages and disadvantages, and specially their applications in food carbohydrates. In addition, it also provided the suggestions for the improvement of in vitro models and firstly proposed to establish a set of standardized methods of in vitro dynamic digestion and fermentation conditions for food carbohydrates, which were in order to further evaluate more effects of the nutrients on human health in future.
Collapse
Affiliation(s)
- Haihua Ji
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Protection and targeted delivery of β-carotene by starch-alginate-gelatin emulsion-filled hydrogels. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110205] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Tu J, Brennan M, Brennan C. An insight into the mechanism of interactions between mushroom polysaccharides and starch. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Yang Z, Hao H, Wu Y, Liu Y, Ouyang J. Influence of moisture and amylose on the physicochemical properties of rice starch during heat treatment. Int J Biol Macromol 2020; 168:656-662. [PMID: 33220369 DOI: 10.1016/j.ijbiomac.2020.11.122] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Moisture and amylose are important factors affecting the quality of heat-treated starches. The amylose content in heat-treated rice starch increased as moisture content (MC) increased from 8% to 30%, but decreased at MC of 70%. With the increase of MC, the paste transmittance, gelatinization temperature, and digestibility of starch increased, whereas the swelling power and enthalpy decreased. The long- and short-range molecular order and the digestive properties of starch with MC ≤ 30% changed moderately, but high MC (70%) gelatinized the starch and drastically changed the physicochemical properties. High amylose content in rice starch led to low long- and short-range molecular order, swelling power, and gelatinization temperature, but increased resistant starch. The results indicated that 30% of MC separates effects of heat treatment of starch, where low MC (≤30%) and high amylose lowers digestibility, which is beneficial for diabetics, while high MC (>30%) promotes solubility and transparency.
Collapse
Affiliation(s)
- Zhenglei Yang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Henan Hao
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Beijing Center for Physical and Chemical Analysis, Beijing Food Safety Analysis and Testing Engineering Research Center, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|