1
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2025; 17:292-314. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Sun X, Yu L, Xiao M, Zhang C, Zhao J, Narbad A, Chen W, Zhai Q, Tian F. Exploring Core fermentation microorganisms, flavor compounds, and metabolic pathways in fermented Rice and wheat foods. Food Chem 2025; 463:141019. [PMID: 39243605 DOI: 10.1016/j.foodchem.2024.141019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
The unique flavors of fermented foods significantly influence consumer purchasing choices, prompting widespread scientific interest in the flavor development process. Fermented rice and wheat foods are known for their unique flavors and they occupy an important place in the global diet. Many of these are produced on an industrial scale using starter cultures, whereas others rely on spontaneous fermentation, homemade production, or traditional activities. Microorganisms are key in shaping the sensory properties of fermented products through different metabolic pathways, thus earning the title "the essence of fermentation." Therefore, this study systematically summarizes the key microbial communities and their interactions that contribute positively to iconic fermented rice and wheat foods, such as steamed bread, bread, Mifen, and rice wine. This study revealed the mechanism by which these core microbial communities affect flavor and revealed the strategies of core microorganisms and related enzymes to enhance flavor during fermentation.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxing Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk NR4 7UA, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Impact of Leavening Agent and Wheat Variety on Bread Organoleptic and Nutritional Quality. Microorganisms 2022; 10:microorganisms10071416. [PMID: 35889135 PMCID: PMC9317705 DOI: 10.3390/microorganisms10071416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Leavened bread can be made with different wheat varieties and leavening agents. Several studies have now demonstrated that each of these factors can play a role in bread quality. However, their relative impact in artisanal bread making remains to be elucidated. Here, we assessed the impact of two wheat varieties as well as the impact of sourdoughs and yeasts on multiple components of bread organoleptic and nutritional quality. Using a participatory research approach including scientists and bakers, we compared breads leavened with three different sourdoughs and three different commercial yeasts as well as a mix of sourdough and yeast. Breads were made from two wheat varieties commonly used in organic farming: the variety “Renan” and the landrace “Barbu”. Except for bread minerals contents that mostly depended on wheat variety, bread quality was mostly driven by the fermenting agent. Sourdough breads had lower sugar and organic acids contents. These differences were mostly attributable to lower amounts of maltose and malate. They also had a higher proportion of soluble proteins than yeast breads, with specific aroma profiles. Finally, their aroma profiles were specific and more diverse compared to yeast breads. Interestingly, we also found significant nutritional and organoleptic quality differences between sourdough breads. These results highlight the value of sourdough bread and the role of sourdough microbial diversity in bread nutritional and organoleptic quality.
Collapse
|
4
|
Go HY, Lee SH, Kim HY. The Effect of Hot-Air Dried Lentinula edodes on the Quality and Oranoleptic Properties of Rolled-Dumplings. Food Sci Anim Resour 2022; 42:593-608. [PMID: 35855265 PMCID: PMC9289801 DOI: 10.5851/kosfa.2022.e24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
The effect of hot-air dried Lentinula edodes pileus (DLE) on the quality and organoleptic properties of rolled-dumplings was evaluated. DLE was prepared by drying at 60°C for 24 h and added (Non, 7%, and 9%) to rolled-dumplings. The proximate composition, pH, color (CIE L*, a*, b*), and cooking yield were analyzed. Texture profile analysis, electronic-nose (e-nose), electronic-tongue (e-tongue), and organoleptic evaluation were also conducted. The cooking yield of dumplings with 9% DLE was significantly lower than that of the congeners without DLE, whereas 7% DLE did not lead to significant differences compared without DLE. With increasing DLE addition, the pH and lightness of the dumplings decreased significantly, whereas the redness tended to increase. The texture profile was significantly higher for the dumplings with DLE compared to those without DLE. E-nose analysis confirmed that DLE addition led to the positive odors (methanethiol: meaty, sulfurous; 3-methylbutanal: malty, toasted) and the negative odors (trimethylamine: ammoniacal; acetic acid: acidic, sour). E-tongue analysis showed that DLE addition decreased the intensity of the sourness and increased the intensity of the saltiness and umami of rolled-dumplings. DLE addition improved the overall organoleptic properties, but 9% DLE can be recognized as a foreign substance in organoleptic acceptance. Consequently, DLE has the potential to serve as a flavor and odor enhancer for rolled-dumplings, and the addition of DLE can positively improve consumer acceptance by improving the quality and organoleptic properties.
Collapse
Affiliation(s)
- Ha-Yoon Go
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Sol-Hee Lee
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
5
|
Wolgamuth E, Yusuf S, Hussein A, Pasqualone A. A survey of laxoox/canjeero, a traditional Somali flatbread: production styles. JOURNAL OF ETHNIC FOODS 2022; 9:22. [PMCID: PMC9210053 DOI: 10.1186/s42779-022-00138-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/10/2022] [Indexed: 08/27/2023]
Abstract
Flatbreads are traditional food products of ancient origin, still produced and appreciated in their original locations and beyond, having spread through historical and modern migration. While the history and preparation of Somali flatbread, known as canjeero in southern regions and laxoox in northern regions, has been shared orally for generations among the women who cook it at home, it has not been the object of scientific studies. An in-field study was therefore carried out in various cities in Somalia, Somaliland, and Ethiopia’s Somali State to document the formulation, production methods, and consumption patterns of this Somali flatbread. Laxoox /canjeero production was found to be relatively homogenous, but the data revealed two significant divergences: in bread formulation and in the procedure for structure development. These divergences result from disparities in the mechanization of bread production between rural and urban, and from the destruction of infrastructure, including food processing machines in public markets, leading up to the Somali civil war. An original framework of four production styles (“heritage,” “new heritage,” “innovative,” and “global”) illustrates these divergences in detail. Heritage production is linked to the historic era of nomadic Somali pastoralism, while the other three styles originated in civil conflict and continue today.
Collapse
Affiliation(s)
| | | | | | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), Food Science and Technology Unit, University of Bari ‘Aldo Moro’, Via Amendola 165/a, 70126 Bari, Italy
- Brussels Institute of Advanced Studies (BrIAS), Fellow 2021/22, Brussels, Belgium
| |
Collapse
|
6
|
Statistical Approach to Potentially Enhance the Postbiotication of Gluten-Free Sourdough. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fermented products are permanently under the attention of scientists and consumers, both due to nutritional importance and health promoting effects. The fermented functional foods contribute to a more balanced diet and increase the immune responses (among many other health effects) with positive implications for quality of life. In this sense, improving the sourdough’s fermentation to boost the biotic (postbiotic and paraprobiotic) properties of the sourdough-based products has positive impacts on the nutritional and functional properties of the final baked products. These enhanced sourdoughs can be obtained in controlled fermentation conditions and used as sourdough bread improvers or novel bioingredients. In this context, our work aimed to optimize, using statistical tools, a gluten-free sourdough based on chickpea, quinoa, and buckwheat fermentation with selected lactic acid bacteria (LAB) to enhance its postbiotic properties. The most important biotechnological parameters were selected by Plackett–Burman Design (PBD) and then Response Surface Methodology (RSM) was applied to evaluate the interactions between the selected factors to maximize the gluten-free sourdough’s properties. As a result, the optimized fermented sourdough had antimicrobial activity with inhibition ratios between 71 and 100% against the Aspergillus niger, Aspergillus flavus, Penicillium spp. molds and against the Bacillus spp endospore-forming Gram-positive rods. The optimized variant showed a total titratable acidity (TTA) of 40.2 mL NaOH 0.1N. Finally, the high-performance liquid chromatography (HPLC) analysis highlighted a heterofermentative profile for the organic acids from the optimized sourdough. Among flavonoids and polyphenols, the level of caffeic and vanillic acids increased after lactic acid fermentation. The comparison between the optimized sourdough and the control evidenced significant differences in the metabolite profiles, thus highlighting its potential postbiotication effect.
Collapse
|
7
|
Qiu X, Zhang Y, Zhou Y, Li GH, Feng XS. Progress in pretreatment and analysis of organic Acids: An update since 2010. Food Chem 2021; 360:129977. [PMID: 34023712 DOI: 10.1016/j.foodchem.2021.129977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Organic acids, as an important component of food, have great influence on the flavor, texture, freshness of food. By lowering the pH of food to bacteriostatic acidity, organic acids are also used as additives and preservatives. Because organic acids are crucial to predict and evaluate food maturity, production and quality control, the rapid and sensitive determination methods of organic acids are necessary. This review aims to summarize and update the progress of the determination of organic acids in food samples. Pretreatment methods include simple steps (e.g., "dilute and shoot," protein precipitation, filtration, and centrifugation) and advanced microextraction methods (e.g., hollow fiber liquid phase microextraction, stir bar sorptive extraction and dispersive micro-solid phase extraction). Advances in novel materials (nanomaterial), solvents (ionic liquids and supercritical fluids) and hybrid methods are clearly displayed in detail. Continuous progress which has been made in electrochemical method, two-dimensional chromatography, high resolution mass is thoroughly illustrated.
Collapse
Affiliation(s)
- Xin Qiu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Jin J, Nguyen TTH, Humayun S, Park S, Oh H, Lim S, Mok IK, Li Y, Pal K, Kim D. Characteristics of sourdough bread fermented with Pediococcus pentosaceus and Saccharomyces cerevisiae and its bio-preservative effect against Aspergillus flavus. Food Chem 2020; 345:128787. [PMID: 33310248 DOI: 10.1016/j.foodchem.2020.128787] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/10/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
Six lactic acid bacteria (LAB) and four yeast strains were isolated from Pyeongchang spontaneous sourdough. In combination with the segregated Saccharomycopsis fibuligera and Saccharomyces cerevisiae, Pediococcus pentosaceus was employed for sourdough bread starters because of its antifungal action against Aspergillus flavus. The sourdough bread fermented with P. pentosaceus and S. cerevisiae displayed 56.4% ± 5.5% antifungal movement counter to A. flavus expansion at 96 h. The concentration of lactic and acetic acids in the sourdough bread was 4.5- and 1.6-folds above the control bread, respectively, contributing to the balanced sensory properties with a fermentation quotient (FQ) of 2.08-2.86. SPME- GC/MS newly distinguished twenty-two volatile compounds including six aldehydes, five alcohols, one phenol, three ketones, one acid, and six esters. The results suggest the P. pentosaceus and S. cerevisiae combination as promising sourdough starters for making enhanced quality bread free of preservatives.
Collapse
Affiliation(s)
- Juhui Jin
- Institute of Food Industrialization, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| | - Thi Thanh Hanh Nguyen
- Institute of Food Industrialization, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| | - Sanjida Humayun
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| | - SungHoon Park
- SPC Research Institute of Food and Biotechnology, Seoul National University, Gwanak-ro1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hyewon Oh
- SPC Research Institute of Food and Biotechnology, Seoul National University, Gwanak-ro1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Sangyong Lim
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| | - Il-Kyoon Mok
- Institute of Food Industrialization, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| | - Yan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Doman Kim
- Institute of Food Industrialization, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea; Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|