1
|
Liu T, Chen Y, Feng L, Wang F, Shang M, Wang Y, Bao Y, Zheng J. Sustained-release mechanism of β-Cyclodextrin/cationic cellulose-stabilized Pickering emulsions loaded with citrus essential oil. Food Chem 2024; 460:140674. [PMID: 39089025 DOI: 10.1016/j.foodchem.2024.140674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Citrus oil (CO) is a commonly used natural flavor with high volatility, which is not conducive to sustained release under food environmental stress. This study constructed novel β-cyclodextrin/cationic cellulose nanocrystal (β-CD/C-CNC) complexes via noncovalent interaction, which were used to stabilize CO-loaded Pickering emulsions (PEβ-CD/C-CNC). The C-CNC greatly improved the physical stability, droplet dispersion and viscoelasticity of PEβ-CD/C-CNC by forming a tight network structure, as verified by rheological behavior. Moreover, C-CNC improved the wettability of β-CD/C-CNC complexes and enhanced the interaction between adjacent β-CD/C-CNC complexes. C-CNC also contributed to the interfacial viscoelasticity, hydrated mass, and layer thickness via the interfacial dilational modulus and QCM-D. β-CD/C-CNC complexes adsorbed on the oil-water interface gave rise to a dense filling layer as a physical barrier, enhancing the sustained-release performance of PEβ-CD/C-CNC by limiting diffusion of citrus essential oil into the headspace. This study provides new technical approaches for aroma retention in the food industry.
Collapse
Affiliation(s)
- Ting Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengzhang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengshan Shang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuming Bao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Yang S, Feng M, Xu J, Deng Z, Zhang H. Encapsulation, characterization and in vitro releasing of xylanase and glucose oxidase (GOD) into cellulose nanocrystals stabilized three-layer microcapsules. Int J Biol Macromol 2024:135515. [PMID: 39260632 DOI: 10.1016/j.ijbiomac.2024.135515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
The xylanase and glucose oxidase (GOD) are easily inactivated, restricting their applicaiton in food and agriculture fields. In this work, xylanase and glucose oxidase (GOD) were encapsulated into cellulose nanocrystals (CNC) stabilized three-layer microcapsules via ionic gelation technique to improve their bioavailability and targeted delivery. Encapsulation efficiency (EE), physicochemical properties, and in vitro releasing of xylanase and GOD encapsulated in microcapsules were investigated. EE of xylanase and GOD reached the highest values (73.34 % and 67.16 %, respectively) at an enzyme concentration of 35 mg/mL. In vitro experiments revealed that cumulative release of both enzymes encapsulated in microcapsules was greater than that of controls in simulated gastric tract (SGT) and simulated intestinal tract (SIT). The release of xylanase increased from 41.62 % (gastric tract) to 77.13 % (intestine tract), and release of GOD increased from 42.63 % to 72.11 %, respectively. Novel hydrogel carriers as enzymes encapsulation system could effectively improve the survival rate of enzymes in harsh environments and could be widely employed in food, feed and other industries.
Collapse
Affiliation(s)
- Shoufeng Yang
- Shanghai Veterinary Bio-tech Key Laboratory, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miaomiao Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jianxiong Xu
- Shanghai Veterinary Bio-tech Key Laboratory, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hongcai Zhang
- Shanghai Veterinary Bio-tech Key Laboratory, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Gao J, Zhang L, Zhao D, Lu X, Sun Q, Du H, Yang H, Lu K. Aspergillus oryzae β-D-galactosidase immobilization on glutaraldehyde pre-activated amino-functionalized magnetic mesoporous silica: Performance, characteristics, and application in the preparation of sesaminol. Int J Biol Macromol 2024; 270:132101. [PMID: 38734354 DOI: 10.1016/j.ijbiomac.2024.132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Aspergillus oryzae β-D-galactosidase (β-Gal) efficiently hydrolyzes sesaminol triglucoside into sesaminol, which has higher biological activity. However, β-Gal is difficult to be separate from the reaction mixture and limited by stability. To resolve these problems, β-Gal was immobilized on amino-functionalized magnetic nanoparticles mesoporous silica pre-activated with glutaraldehyde (Fe3O4@mSiO2-β-Gal), which was used for the first time to prepare sesaminol. Under the optimal conditions, the immobilization yield and recovered activity of β-Gal were 57.9 ± 0.3 % and 46.5 ± 0.9 %, and the enzymatic loading was 843 ± 21 Uenzyme/gsupport. The construction of Fe3O4@mSiO2-β-Gal was confirmed by various characterization methods, and the results indicated it was suitable for heterogeneous enzyme-catalyzed reactions. Fe3O4@mSiO2-β-Gal was readily separable under magnetic action and displayed improved activity in extreme pH and temperature conditions. After 45 days of storage at 4 °C, the activity of Fe3O4@mSiO2-β-Gal remained at 92.3 ± 2.8 %, which was 1.29 times than that of free enzyme, and its activity remained above 85 % after 10 cycles. Fe3O4@mSiO2-β-Gal displayed higher affinity and catalytic efficiency. The half-life was 1.41 longer than free enzymes at 55.0 °C. Fe3O4@mSiO2-β-Gal was employed as a catalyst to prepare sesaminol, achieving a 96.7 % conversion yield of sesaminol. The excellent stability and catalytic efficiency provide broad benefits and potential for biocatalytic industry applications.
Collapse
Affiliation(s)
- Jinhong Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450044, China; Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450044, China
| | - Lingli Zhang
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, Henan 450044, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, China
| | - Xin Lu
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450044, China
| | - Qiang Sun
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450044, China
| | - Heng Du
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450044, China
| | - Hongyan Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450044, China
| | - Kui Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450044, China; School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, Henan 450044, China.
| |
Collapse
|
4
|
Olunusi SO, Ramli NH, Fatmawati A, Ismail AF, Okwuwa CC. Revolutionizing tropical fruits preservation: Emerging edible coating technologies. Int J Biol Macromol 2024; 264:130682. [PMID: 38460636 DOI: 10.1016/j.ijbiomac.2024.130682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Tropical fruits, predominantly cultivated in Southeast Asia, are esteemed for their nutritional richness, distinctive taste, aroma, and visual appeal when consumed fresh. However, postharvest challenges have led to substantial global wastage, nearly 50 %. The advent of edible biopolymeric nanoparticles presents a novel solution to preserve the fruits' overall freshness. These nanoparticles, being edible, readily available, biodegradable, antimicrobial, antioxidant, Generally Recognized As Safe (GRAS), and non-toxic, are commonly prepared via ionic gelation owing to the method's physical crosslinking, simplicity, and affordability. The resulting biopolymeric nanoparticles, with or without additives, can be employed in basic formulations or as composite blends with other materials. This study aims to review the capabilities of biopolymeric nanoparticles in enhancing the physical and sensory aspects of tropical fruits, inhibiting microbial growth, and prolonging shelf life. Material selection for formulation is crucial, considering coating materials, the fruit's epidermal properties, internal and external factors. A variety of application techniques are covered such as spraying, and layer-by-layer among others, including their advantages, and disadvantages. Finally, the study addresses safety measures, legislation, current challenges, and industrial perspectives concerning fruit edible coating films.
Collapse
Affiliation(s)
- Samuel Olugbenga Olunusi
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Nor Hanuni Ramli
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Adam Fatmawati
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Ahmad Fahmi Ismail
- Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200, Bandar Indera Mahkota Razak, Kuantan, Pahang, Malaysia
| | - Chigozie Charity Okwuwa
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| |
Collapse
|
5
|
Iqbal SZ, Haider A, Rehman FU, Cui G, Waseem M, Iqbal M, Mousavi Khaneghah A. Application of carboxymethylcellulose in combination with essential oils nano-emulsions edible coating for the preservation of kiwifruit. Int J Biol Macromol 2024; 261:129947. [PMID: 38316326 DOI: 10.1016/j.ijbiomac.2024.129947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
The present research investigates the effectiveness of nano-emulsified coatings (C-1, C-2, and C-3) in preserving the kiwifruit at a temperature of 10 ± 2 °C with 90-95 % relative humidity (RH) for 30 days. The nano-emulsions were prepared from varied carboxymethyl cellulose (CMC) concentrations with different combinations of essential oils such as thyme, clove, and cardamom. Dynamic light scattering investigation with Zeta Sizer revealed that C-1, C-2, and C-3 nano-emulsions have nano sizes of 81.3 ± 2.3, 115.3 ± 4.2, and 63.2 ± 3.2 nm, respectively. The scanning electron microscopy images showed that the nanoemulsion of C-1 had homogenous spherical globules, C-2 had voids, and C-3 showed a non-porous structure with uniform dispersion. The X-ray diffraction analysis indicated that C-1, C-2, and C-3 nano-emulsion exhibited distinct crystallinity and peaks. The nano-emulsion C-1 had reduced crystallinity, while C-2 had lower intensity peaks, and C-3 had increased crystallinity. The results documented that compared to control kiwifruit samples, the samples coated with C-3 nano-emulsion have decreased weight loss, decay incidence, soluble solids, maturity index activity, ethylene production, total bacterial count, and increased titratable acid, and firmness attributes. The results of current research are promising and would be applicable in utilization in industrial applications.
Collapse
Affiliation(s)
- Shahzad Zafar Iqbal
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan.
| | - Ali Haider
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Fazal Ur Rehman
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Guihua Cui
- Department of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Muhammad Waseem
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Amin Mousavi Khaneghah
- Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka F St., 02-532 Warsaw, Poland
| |
Collapse
|
6
|
Li Z, Liu A, Wu H, Naeem A, Fan Q, Jin Z, Liu H, Ming L. Extraction of cellulose nanocrystalline from Camellia oleifera Abel waste shell: Study of critical processes, properties and enhanced emulsion performance. Int J Biol Macromol 2024; 254:127890. [PMID: 37931858 DOI: 10.1016/j.ijbiomac.2023.127890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Cellulose nanocrystals (CNCs) extracted from the waste shell of Camellia oleifera Abel (C. oleifera) are gaining attention as valuable materials. In this study, CNCs were extracted from the agricultural waste shell of C. oleifera through phosphoric acid and sulfuric acid hydrolysis, respectively. Firstly, we optimized the alkaline treatment process for cellulose isolation by using response surface methodology. Furthermore, the properties of CNCs were investigated by neutralizing them with NaOH and NH3·H2O, and by dialysis in water. In addition, the characterization methods including FT-IR, TGA, AFM and TEM were used to analysis the properties of the synthesized CNCs. Finally, CNCs were studied for their application in essential oil-based Pickering emulsions. CNCs obtained from sulfuric acid showed the smallest particle size and good dispersibility. Moreover, the release profiles of essential oils in the emulsions were followed by Peppa's kinetic release model. The antibacterial activity of the emulsions against E. coli and S. aureus showed that CNCs-stabilized emulsions enhanced the antibacterial activity of essential oils. Therefore, neutralization treatments may enhance the properties of CNCs, and CNCs stabilized Pickering emulsions can enhance antibacterial activity of essential oil. This study provides insight into the potential application of CNCs derived from C. oleifera waste shells.
Collapse
Affiliation(s)
- Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Ao Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Abid Naeem
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zhengji Jin
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| |
Collapse
|
7
|
Qi W, Tong X, Wang M, Liu S, Cheng J, Wang H. Impact of soybean protein isolate concentration on chitosan-cellulose nanofiber edible films: Focus on structure and properties. Int J Biol Macromol 2024; 255:128185. [PMID: 37977456 DOI: 10.1016/j.ijbiomac.2023.128185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Chitosan and cellulose nanofiber films are frequently employed as biodegradable materials for food packaging. However, many exhibit suboptimal hydrophobicity and antioxidant properties. To address these shortcomings, we enhanced the performance by adding different concentrations of soybean protein isolate (SPI) to chitosan-cellulose nanofiber (CS-CNF) films. As SPI concentration varied, the turbidity, particle size, and ζ-potential of the film-forming solutions initially decreased and subsequently increased. This suggests that 1 % SPI augments the electrostatic attraction and compatibility. Rheological analysis confirmed a pronounced apparent viscosity at this concentration. Analyses using Fourier transform infrared spectra, Raman spectra, X-ray diffraction, and Scanning electron microscope revealed the presence of hydrogen bonds and electrostatic interactions between SPI and CS-CNF, indicative of superior compatibility. When SPI concentration was set at 1 %, notable enhancements in film attributes were observed: improvements in tensile strength and elongation at break, a reduction in water vapor permeability by 8.23 %, and an elevation in the contact angle by 18.85 %. Furthermore, at this concentration, the ABTS+ and DPPH scavenging capacities of the film surged by 61.53 % and 46.18 %, respectively. Meanwhile, the films we prepare are not toxic. This research offers valuable insights for the advancement and application of protein-polysaccharide-based films.
Collapse
Affiliation(s)
- Weijie Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Tong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Mengmeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Hu X, Song M, Li S, Chu Y, Zhang WX, Deng Z. TEMPO oxidized cellulose nanocrystal (TOCNC) scaffolded nanoscale zero-valent iron (nZVI) for enhanced chromium removal. CHEMOSPHERE 2023; 343:140212. [PMID: 37742762 DOI: 10.1016/j.chemosphere.2023.140212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The conventional carboxymethyl cellulose (CMC) stabilization hampered available active sites of adsorption and reduction, due to irregular shape of nanoscale zero-valent iron (nZVI) particles with augmented average size and passivated surface, leading to insufficient removal and poor resistance against complex environmental conditions. Herein, we presented (2,2,6,6-Tetramethylpiperidine-1-oxyl)-mediated (TEMPO-mediated) oxidation of cellulose nanocrystal (TOCNC) scaffolded nZVI (nZVI@TOCNC) with enhanced efficiency for chromium removal in comparison with CMC stabilized nZVI (nZVI@CMC). The anchoring of nZVI at the functional sites of TOCNC was initiated by liquid-phase chemical reduction method. The nZVI@TOCNC showed improved nZVI distribution with uniform particle size and thinner shell (∼1 nm). Characterizations using FT-IR, XPS and XRD demonstrated that bindings between TOCNC and nZVI were through hydrogen bonds, electrostatic attractions, coordination-covalent bonds and bidentate chelation. TOCNC with shorter branch-chain (-COC-) surrounding the nZVI could potentially form a porous and compact "mesh" to rigidly encapsulate nZVI, while CMC wrapped around nZVI in the way of traditional polymeric stabilizers. Thus, 0.5 g/L nZVI@TOCNC achieved 99.96% Cr (Ⅵ) removal efficiency (20 mg/L) at pH = 7 and the removal capacity were up to 55.86 mg/g. The nZVI@TOCNC consistently presented higher removal efficiency than nZVI@CMC under wide pH range (3-7). Cr (Ⅵ) was reduced to Cr (Ⅲ) by nZVI@TOCNC with deposition of CrxFe1-x (OH)3 and Cr2O3. The predominant mechanisms of removal probably consisted of electrostatic attractions, reduction, co-precipitation and surface complexation. The pseudo-second-order kinetic model well-fitted the sorption kinetic, indicating TOCNC scaffold stabilized nZVI for efficient reduction of Cr (Ⅵ) through multi-layer adsorption. As a template and delivery carrier, TOCNC shows promising potential to further improve the capability and practice of nZVI for in situ treatment of industrial waste water with heavy metal pollution.
Collapse
Affiliation(s)
- Xiaolei Hu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mingyang Song
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, United States
| | - Shiyan Li
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Chu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
9
|
Luo Y, Wang J, Lv T, Wang H, Zhou H, Ma L, Zhang Y, Dai H. Chitosan particles modulate the properties of cellulose nanocrystals through interparticle interactions: Effect of concentration. Int J Biol Macromol 2023; 240:124500. [PMID: 37080408 DOI: 10.1016/j.ijbiomac.2023.124500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
The physical and chemical properties of cellulose nanocrystals (CNC) were regulated by physical crosslinking with chitosan particles (CSp). At a fixed concentration (0.5 wt%) of CNC, varying CSp concentration (0.02-0.5 wt%) influenced the morphologies and chemical properties of the obtained complex particles (CNC-CSp). The results of Fourier transform infrared spectroscopy (FTIR) and zeta potential confirmed the electrostatic and hydrogen bonding interactions between CSp and CNC. At a low CSp concentration (0.02-0.05 wt%), the charge shielding effect induced the formation of particle aggregation networks, thus showing increased viscosity, turbidity and size (153.4-2605.7 nm). At a higher CSp concentration (0.1-0.5 wt%), the hydrogen bonding interaction promoted CSp adsorption onto the surface of CNC, thus facilitating the dispersion of CNC-CSp due to electrostatic repulsion caused by surface-adsorbed CSp. In addition, CSp improved the thermal stability, hydrophobicity (41.87-60.02°) and rheological properties of CNC. Compared with CNC, CNC-CSp displayed a better emulsifying ability and emulsion stability, in which CSp could play a dual role (i.e., charge regulator and stabilizer). This study suggests that introducing CSp can improve the properties and application potentials of CNC as food colloids.
Collapse
Affiliation(s)
- Yuyuan Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Junjie Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tianyi Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, Chongqing 400715, China.
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
10
|
Mali P, Sherje AP. Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydr Polym 2022; 275:118668. [PMID: 34742407 DOI: 10.1016/j.carbpol.2021.118668] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/29/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022]
Abstract
The present review explores the recent developments of cellulose nanocrystals, a class of captivating nanomaterials in variety of applications. CNCs are made by acid hydrolysing cellulosic materials like wood, cotton, tunicate, flax fibers by sonochemistry. It has many desirable properties, including a high tensile strength, wide surface area, stiffness, exceptional colloidal stability, and the ability to be modified. CNCs are colloidally stable, hydrophilic, and rigid rod-shaped bio-based nanomaterials in the form of rigid rods with high strength and surface area that has a diverse set of applications and properties. The intriguing features emerging from numerous fibers studies, such as renewable character and biodegradability, piqued the curiosity of many researchers who worked on lowering the size of these fibers. Physicochemical properties such as rheological, mechanical, thermal, lipid crystalline, swelling capacity, microstructural properties result in affecting surface-area to volume ratio and crystallinity of cellulose nanocrystals. The present article highlights the fundamentals of cellulose nanocrystals such as sources, isolation, fabrication, properties and surface modification with an emphasis on plethora of biomedical applications. Selected nanocellulose studies with significant findings on cellular labelling and bioimaging, tissue engineering, biosensors, gene delivery, anti-viral property, anti-bacterial property, ocular delivery, modified drug release, anti-cancer activity and enzyme immobilization are emphasized.
Collapse
Affiliation(s)
- Prajakta Mali
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Atul P Sherje
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|