1
|
Takahashi JA, Melo JOF, de Araújo RLB, Pimenta LPS, Mazzinghy ACDC, Ramos ALCC, Silva VDM. Economic, nutritional, and innovative aspects of non-conventional Brazilian fruits in the international novel foods market. Food Res Int 2024; 197:115223. [PMID: 39593308 DOI: 10.1016/j.foodres.2024.115223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/29/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Recent advances in fruit research have reignited interest in the market of tropical and unconventional fruit varieties, leading to increased investment in this sector. Additionally, consumers are currently seeking healthier food options to maintain the nutritional integrity of their diets and maximize health benefits, which has driven the demand for novel fruits and a deeper understanding of existing varieties. Despite this growing interest, knowledge of the full potential and diversity of these fruits remains insufficient for key stakeholders to reconcile sustainable production with the promotion of healthier diets within the global context. In this context, many endemic fruits from countries renowned for their rich biodiversity, such as Brazil, are still not produced and consumed regularly. Focusing on nutritional value, the distinctive composition of Brazilian fruits offers numerous health benefits, including essential vitamins, minerals, antioxidants, and anti-inflammatory compounds. This review delves into the economic implications of the Brazilian fruit industry, highlighting its capacity to penetrate the global market for novel foods. The introduction of new features, such as new flavors and textures, presents an excellent opportunity for product differentiation and market expansion. Furthermore, it discusses the importance of developing the fruit industry to promote a circular economy, reduce food insecurity, and generate income. This development can bring substantial social, economic, and environmental benefits to various regions around the globe.
Collapse
Affiliation(s)
- Jacqueline A Takahashi
- Chemistry Department, ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Júlio O F Melo
- Department of Exact and Biological Sciences, Universidade Federal de São João Del-Rei, Rua Sétimo Moreira Martins, 188, CEP 35702-031 Sete Lagoas, MG, Brazil
| | - Raquel L B de Araújo
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Lúcia P S Pimenta
- Chemistry Department, ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Ana C do C Mazzinghy
- Department of Exact and Biological Sciences, Universidade Federal de São João Del-Rei, Rua Sétimo Moreira Martins, 188, CEP 35702-031 Sete Lagoas, MG, Brazil
| | - Ana L C C Ramos
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Viviane D M Silva
- Department of Exact and Biological Sciences, Universidade Federal de São João Del-Rei, Rua Sétimo Moreira Martins, 188, CEP 35702-031 Sete Lagoas, MG, Brazil
| |
Collapse
|
2
|
de Paula de Almeida Duarte S, Teixeira-Costa BE, do Rosário RC, Amante ER, Pires MB, dos Santos OV. Valorization of Taioba Products and By-Products: Focusing on Starch. Foods 2024; 13:2415. [PMID: 39123606 PMCID: PMC11311412 DOI: 10.3390/foods13152415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Unconventional food plants, popularized in Brazil as PANC, remain underutilized globally. In that sense, this study aims to explore the nutritional and functional properties of taioba (Xanthosoma sagittifolium), a plant with edible leaves and tubers, and to investigate its potential for industrial-scale application as a source of starch. A systematic review was carried out and meta-analysis following the PRISMA guidelines was conducted based on a random effects synthesis of multivariable-adjusted relative risks (RRs). The searches were carried out in seven search sources, among which were Web of Science, Elsevier's Science Direct, Wiley Online Library, Springer Nature, Taylor & Francis, Hindawi, Scielo, ACS-American Chemical Society, and Google Scholar. The systematic review was guided by a systematic review protocol based on the POT strategy (Population, Outcome, and Types of studies), adapted for use in this research. Mendeley was a resource used for organization, to manage references, and to exclude duplicates of studies selected for review. The findings revealed that taioba leaves are abundant in essential nutrients, proteins, vitamins, and minerals. Additionally, the tubers offer rich starch content along with vitamins and minerals like iron, potassium, and calcium, making them an ideal substitute for conventional sources on an industrial scale. This research highlights the significance of studying the functionalities, applicability, and integration of this PANC in our diets, while also emphasizing its capability as a substitute for traditional starch varieties. Moreover, exploiting this plant's potential adds value to Amazonian resources, reduces import costs, and diversifies resource utilization across multiple industrial sectors.
Collapse
Affiliation(s)
- Samanta de Paula de Almeida Duarte
- Graduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil (R.C.d.R.); (E.R.A.)
| | - Bárbara E. Teixeira-Costa
- Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro 24220-900, RJ, Brazil;
| | - Rosely Carvalho do Rosário
- Graduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil (R.C.d.R.); (E.R.A.)
| | - Edna Regina Amante
- Graduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil (R.C.d.R.); (E.R.A.)
| | - Márlia Barbosa Pires
- Graduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil (R.C.d.R.); (E.R.A.)
| | - Orquídea Vasconcelo dos Santos
- Graduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil (R.C.d.R.); (E.R.A.)
| |
Collapse
|
3
|
Bonin AMF, Ávila S, Etgeton SAP, de Lima JJ, Dos Santos MP, Grassi MT, Krüger CCH. Ripening stage impacts nutritional components, antiglycemic potential, digestibility and antioxidant properties of grumixama (Eugenia brasiliensis Lam.) fruit. Food Res Int 2024; 178:113956. [PMID: 38309876 DOI: 10.1016/j.foodres.2024.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
This study aimed to determine the nutritional components (macronutrients ans minerals) and α-amylase inhibition capacity of freeze-dried grumixama (Eugenia brasiliensis Lam) seeds (S) and pulp/peel (P) portions, at ripe and mid-ripe stages. In vitro digestion was also performed on S and P from grumixama to assess the bioaccessibility of total phenolic compound (TPC), flavonoids (TFC), and anthocyanins (TAC), as well as to examine their impact on antioxidant activity (DPPH, ABTS, FRAP). The ripening process impacts the bioactive compounds and individual phenolics of S and P portions. The ripe S was source of myricetin and exhibited higher antioxidant activity, while mid-ripe S was high in flavonoids and cinnamic acid with higher antiglycemic potential. Ripe P showed higher soluble fiber, carbohydrate, TAC, and caffeic acid content, whereas mid-ripe P had increased mineral content (calcium, potassium, manganese), catechin, and TPC. After in vitro digestion, the P portion showed a bioaccessibility of total phenolic content (TPC) and total flavonoid content (TFC) exceeding 40% at intestinal phase. In contrast, the S portions had better release of TPC and TFC and antioxidant activity at gastric phase. Considering the outstanding nutritional and biological properties of grumixama fruit, freeze-dried S and P portions from both ripening stages possess could be explored as valuable sources of nutrients and antioxidant compounds.
Collapse
Affiliation(s)
- Anna Maria Forcelini Bonin
- Postgraduate Program in Food and Nutrition, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil.
| | - Suelen Ávila
- Postgraduate Program in Food and Nutrition, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil.
| | - Schaina Andriela Pontarollo Etgeton
- Postgraduate Program in Food and Nutrition, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil
| | - Jair José de Lima
- Postgraduate Program in Food and Nutrition, Nutrition Department, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil
| | - Mayara Padovan Dos Santos
- Postgraduate Program in Chemistry, Federal University of Paraná, Polytechnic Center, 81531-980 Curitiba, Paraná, Brazil
| | - Marco Tadeu Grassi
- Chemistry Department, Federal University of Paraná, Polytechnic Center, 81530-000 Curitiba, Paraná, Brazil
| | - Claudia Carneiro Hecke Krüger
- Postgraduate Program in Food and Nutrition, Nutrition Department, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Sereno AB, Pinto CD, Gibbert L, de Andrade MTP, da Silva MAB, Etgeton SAP, Miguel OG, Dias JDFG, Krüger CCH, de Messias Reason IJ. Cytotoxic and Phytotoxic Activities of Native Brazilian Forest Gabiroba ( Campomanesia xanthocarpa Berg.), Fruits, and Flour against Shrimp ( Artemia salina L.) and Lettuce ( Lactuca sativa L.). Foods 2023; 13:123. [PMID: 38201151 PMCID: PMC10779049 DOI: 10.3390/foods13010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Gabiroba, a native fruit in Brazil's Atlantic Forest region, has significant nutritional and therapeutic properties. However, due to its seasonality, consumption by the population is limited. Thus, the development of gabiroba byproducts would add significant value to the food and therapeutic industries. Therefore, it is essential to study and support the lack of toxicity of gabiroba fruit extracts. In the present study, physicochemical analyses of fresh fruits (GF) and dehydrated whole gabiroba flour (WGF) and preliminary toxicity analyses of WGF were performed. The toxicity results showed a microcrustacean LC50 of >1000 mg/mL when exposed to WGF extracts at various concentrations (10-1000 μg/mL; p = 0.062) using the Artemia salina method, with no evidence observed of proliferative activity or toxic metabolic compounds in the WGF extract. The phytotoxicity of WGF using Lactuca sativa L. allowed germination and root growth at various concentrations of WGF extract, with the lowest (100 μg/mL) and highest (1000 μg/mL) concentrations exhibiting 98.3% and 100% seed germination, respectively. In conclusion, these results indicate that the WGF preparation preserved the nutritional and antioxidant potential of gabiroba fruits and that WGF is safe for use as a raw material in the food industry and for therapeutic purposes.
Collapse
Affiliation(s)
- Aiane Benevide Sereno
- Graduate Program in Internal Medicine, and Health Sciences, Federal University of Paraná (UFPR), R. Padre Camargo, 280, Curitiba 80.069-900, Paraná, Brazil; (C.D.P.); (M.A.B.d.S.); (I.J.d.M.R.)
| | - Carla Dayane Pinto
- Graduate Program in Internal Medicine, and Health Sciences, Federal University of Paraná (UFPR), R. Padre Camargo, 280, Curitiba 80.069-900, Paraná, Brazil; (C.D.P.); (M.A.B.d.S.); (I.J.d.M.R.)
| | - Luciana Gibbert
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná (UFPR), Av. Lothário Meissner, 632, Curitiba 80.210-170, Paraná, Brazil; (L.G.); (M.T.P.d.A.); (O.G.M.)
| | - Marina Talamini Piltz de Andrade
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná (UFPR), Av. Lothário Meissner, 632, Curitiba 80.210-170, Paraná, Brazil; (L.G.); (M.T.P.d.A.); (O.G.M.)
| | - Michelli Aparecida Bertolazo da Silva
- Graduate Program in Internal Medicine, and Health Sciences, Federal University of Paraná (UFPR), R. Padre Camargo, 280, Curitiba 80.069-900, Paraná, Brazil; (C.D.P.); (M.A.B.d.S.); (I.J.d.M.R.)
| | - Schaina Andriela Pontarollo Etgeton
- Graduate Program in Food, and Nutrition, Federal University of Paraná (UFPR), Av. Lothário Meissner, 632, Curitiba 80.210-170, Paraná, Brazil;
| | - Obdulio Gomes Miguel
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná (UFPR), Av. Lothário Meissner, 632, Curitiba 80.210-170, Paraná, Brazil; (L.G.); (M.T.P.d.A.); (O.G.M.)
| | - Josiane de Fátima Gaspari Dias
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná (UFPR), Av. Lothário Meissner, 632, Curitiba 80.210-170, Paraná, Brazil; (L.G.); (M.T.P.d.A.); (O.G.M.)
| | - Claudia Carneiro Hecke Krüger
- Department of Nutrition, Federal University of Paraná (UFPR), Av. Lothário Meissner, 632, Curitiba 80.210-170, Paraná, Brazil
| | - Iara José de Messias Reason
- Graduate Program in Internal Medicine, and Health Sciences, Federal University of Paraná (UFPR), R. Padre Camargo, 280, Curitiba 80.069-900, Paraná, Brazil; (C.D.P.); (M.A.B.d.S.); (I.J.d.M.R.)
- Department of Medical Pathology, Clinical Hospital, Federal University of Paraná (UFPR), R. Padre Camargo, 280, Curitiba 80.069-900, Paraná, Brazil
| |
Collapse
|
5
|
Dos Santos JS, Biduski B, Colussi R, Pinto VZ, Dos Santos LR. Hydrogel properties of non-conventional starches from guabiju, pinhão, and uvaia seeds. Food Res Int 2023; 173:113243. [PMID: 37803556 DOI: 10.1016/j.foodres.2023.113243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
The physicochemical properties of starch vary depending on the botanical sources, thereby influencing the gelatinisation/retrogradation properties and subsequently affecting the hydrogels characteristics. This study aimed to assess the influence of botanical sources influence on starch and hydrogel properties using non-conventional starch derived from guabiju, pinhão, and uvaia seeds. Hydrogels were prepared by starch gelatinisation followed by 6 h ageing period at room temperature (20 ± 2 °C) and subjected to five freeze-thaw cycles. Pinhão starch exhibited a higher viscosity peak and breakdown, along with a lower final viscosity and setback, compared to guabiju and uvaia starches. The significantly different pasting properties influenced the porous microstructure, water absorption (p-value: 0.01), and resistance of the hydrogels (p-value: 0.01). The guabiju starch hydrogels showed a uniform pore structure without cavities, whereas pinhão and uvaia starch hydrogels exhibited agglomerated and spongy pore structures. Furthermore, the guabiju starch hydrogel demonstrated the lowest water absorption (4.56 g/g) and the highest compression resistance (1448.50 g) among all the studied starch hydrogels. In contrast, the pinhão starch hydrogel showed the highest water absorption (7.43 g/; p-value: 0.01) among all studied starch hydrogels. The hardness of uvaia starch hydrogel did not differ significantly from the guabiju and pinhão starch hydrogel. The different non-conventional starches reveal important variations in the hydrogels characteristics. This provides insights into how amylose and amylopectin interact and present alternatives for using these unique starch-based hydrogels in diverse applications.
Collapse
Affiliation(s)
- Jucilene Sena Dos Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| | - Bárbara Biduski
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil; Food Quality and Sensory Science Department, Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| | - Rosana Colussi
- Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas, Pelotas, RS 96010-900, Brazil.
| | - Vania Zanella Pinto
- Graduate Program in Food Science and Technology, Universidade Federal da Fronteira Sul, Laranjeiras do Sul, PR 85301-970B, Brazil.
| | - Luciana Ruschel Dos Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil; Graduate Program in Bioexperimentation, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| |
Collapse
|
6
|
da Silva APG, Sganzerla WG, Jacomino AP, da Silva EP, Xiao J, Simal-Gandara J. Chemical composition, bioactive compounds, and perspectives for the industrial formulation of health products from uvaia (Eugenia pyriformis Cambess – Myrtaceae): A comprehensive review. J Food Compost Anal 2022; 109:104500. [DOI: 10.1016/j.jfca.2022.104500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
de Souza FG, de Araújo FF, Orlando EA, Rodrigues FM, Chávez DWH, Pallone JAL, Neri-Numa IA, Sawaya ACHF, Pastore GM. Characterization of Buritirana ( Mauritiella armata) Fruits from the Brazilian Cerrado: Biometric and Physicochemical Attributes, Chemical Composition and Antioxidant and Antibacterial Potential. Foods 2022; 11:786. [PMID: 35327209 PMCID: PMC8949527 DOI: 10.3390/foods11060786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
The buritirana is a little-explored species of the Arecaceae family. The biometric and physicochemical characteristics, nutritional and chemical composition and antioxidant and antibacterial potential of the buritirana fruit fractions were evaluated here for the first time. The fruits presented an oblong shape. The pulp represented 16.58% of the whole-fruit weight (10.07 g). The moisture, ash and soluble fiber contents were similar for the whole fraction without seed (WS) and pulp. Although the total carbohydrate content was the same for seed and peel (23.24 g·100 g-1), the seed showed higher protein and insoluble fiber contents. Except for glucose (1256.63 mg·100 g-1), the seed showed the highest concentrations of mono-, di- and oligosaccharides. Mineral content ranged from 0.43 to 800 mg·100 g-1 in all fractions. The peel fraction showed the highest content of vitamin C. The physicochemical results indicate the pulp and WS fraction have potential for the production of fruit-derived food products. Protocatechuic and quinic acids and epicatechin/catechin were found in all fractions. The assay antioxidant capacity DPPH, phenolic content and total flavonoids were higher in the pulp; TEAC and ORACHF values were lower in the seed. Volatile organic compounds were not identified, and the fractions did not show antibacterial activity.
Collapse
Affiliation(s)
- Florisvaldo Gama de Souza
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Fábio Fernandes de Araújo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Eduardo Adilson Orlando
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Fernando Morais Rodrigues
- Department of Food Science and Technology, Federal Institute of Education, Science and Technology of Tocantins, Paraíso of Tocantins 77600-000, TO, Brazil;
| | - Davy William Hidalgo Chávez
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil;
| | - Juliana Azevedo Lima Pallone
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Iramaia Angélica Neri-Numa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| |
Collapse
|
8
|
Gomes BDO, Santos KC, Carvalho GR, Bitencourt BS, Guedes JS, Augusto PED. Uvaia fruit (
Eugenia pyriformis
Cambess) drying: Ethanol as pre‐treatment, convective drying kinetics and bioactive compounds. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bruna de Oliveira Gomes
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Quiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
| | - Karoline Costa Santos
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Quiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
| | - Gisandro Reis Carvalho
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Quiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
| | - Bruna Sousa Bitencourt
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Quiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
- Department of Food Science (DCA) Federal University of Lavras (UFLA) Lavras Brazil
| | - Jaqueline Souza Guedes
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Quiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
| | - Pedro Esteves Duarte Augusto
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Quiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
- Food and Nutrition Research Center (NAPAN) University of São Paulo (USP) São Paulo Brazil
| |
Collapse
|
9
|
Effect of in vitro digestion on the bioaccessibility and bioactivity of phenolic compounds in fractions of Eugenia pyriformis fruit. Food Res Int 2021; 150:110767. [PMID: 34865782 DOI: 10.1016/j.foodres.2021.110767] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/02/2021] [Accepted: 10/17/2021] [Indexed: 11/20/2022]
Abstract
Uvaia is a Brazilian fruit species that has great economic and nutritional potential, in addition to being a good source of compounds of biological interest. In this study, we evaluated for the first time the influence of in vitro gastrointestinal digestion on the bioaccessibility and bioactivity of phenolic compounds from two fractions of uvaia (edible and seed). It was observed that the content of total phenolic compounds was about 3 times higher in the seed (undigested extract), but reduced significantly after intestinal digestion (-50.08%). In turn, the total flavonoid content was about 5 times higher in the undigested seed extract. After intestinal digestion, the flavonoid content increased in the edible fraction (+109.49%) and decreased in the uvaia seed (-70.20%). The heatmap analysis showed that after intestinal digestion, there was an increase in the relative intensity of the flavonoids, while phenolic acids reduced their intensity. The antioxidant capacity of the undigested extract was 4-7 times greater for the seed, but decreased after intestinal digestion (-8.04-27.23%), while the antioxidant capacity of the edible fraction increased by 72.12-107.89% in this same stage of digestion. Thus, the content of phenolic compounds and antioxidant capacity were higher in the uvaia seed, and the bioaccessibility of the bioactive compounds in this fruit were dependent on the fraction and digestive phase evaluated. These results can contribute to the establishment of uvaia as a novel ingredient for preparations with functional claims.
Collapse
|
10
|
Guedes JS, Lima DC, Castanha N, Matta Junior MD, Augusto PED. Physicochemical and functional properties of a novel starch from uvaia (
Eugenia pyriformis
) seed, a native fruit from Brazil. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jaqueline Souza Guedes
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Queiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
| | - Dâmaris Carvalho Lima
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Queiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
| | - Nanci Castanha
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Queiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
| | - Manoel Divino Matta Junior
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Queiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
| | - Pedro Esteves Duarte Augusto
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Queiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
- Food and Nutrition Research Center (NAPAN) University of São Paulo (USP) São Paulo Brazil
| |
Collapse
|
11
|
Oliveira ALMD, Vilela DR, Zitha EZM, de Barros HEA, Lago RCD, Carvalho EEN, Vilas Boas EVDB. Cell wall break down of pitanga fruit (
Eugenia uniflora
L.) is associated with pectic solubilisation and softening. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Daiana Ribeiro Vilela
- Department of Food Science Federal University of Lavras UFLA Lavras MG 37200‐900 Brazil
| | | | | | | | | | | |
Collapse
|
12
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Dias-Audibert FL, Delafiori J, de Souza FG, Catharino RR, do Sacramento CK, Pastore GM. Gastrointestinal bioaccessibility and bioactivity of phenolic compounds from araçá-boi fruit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Dias-Audibert FL, Delafiori J, de Souza FG, Catharino RR, do Sacramento CK, Pastore GM. Influence of high-intensity ultrasound on color, chemical composition and antioxidant properties of araçá-boi pulp. Food Chem 2020; 338:127747. [PMID: 32858434 DOI: 10.1016/j.foodchem.2020.127747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/01/2023]
Abstract
In this study, we evaluated the influence of the ultrasound application on five levels of energy density (1000; 3000; 5000 and 7000 J g-1) compared to two pasteurization techniques (70 °C/5 min and 94 °C/0.5 min) on color parameters, polyphenoloxidase activity, chemical composition, and antioxidant properties of araçá-boi pulp. Ultrasound caused changes in the parameters brightness/darkness, hue angle, and total color difference, but did not change chroma, yellowness/blueness, color index, and yellow index. Moreover, this technique was efficient for inactivating polyphenoloxidase. Ultrasound at 7000 J g-1 was responsible for an increase in soluble solids (16%), vitamin C (46.5%), phenolics (15.65%), flavonoids (50%) and antioxidant capacity in relation to untreated pulp, while ultrasound at 5000 J g-1 increased the relative intensity of compounds of biological interest. Thus, ultrasound can be considered as a promising technique to maintain the shelf life, without drastically affecting the nutritional and functional qualities of this fruit.
Collapse
Affiliation(s)
- Fábio Fernandes de Araújo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP, 13083-862 Campinas, SP, Brazil.
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP, 13083-862 Campinas, SP, Brazil.
| | - Iramaia Angélica Neri-Numa
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP, 13083-862 Campinas, SP, Brazil
| | - Flávia Luísa Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Florisvaldo Gama de Souza
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP, 13083-862 Campinas, SP, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP, 13083-862 Campinas, SP, Brazil
| |
Collapse
|