1
|
Elsharkawy ER, Alqahtani A, Uddin MN, Khan F, He Y, Li X, Gouda MM. The antidiabetic, haematological, and antioxidant implications of Schimpera arabica natural plant on Streptozotocin-diabetic rats. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2025; 21:101891. [DOI: 10.1016/j.jafr.2025.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
2
|
Nam SB, Choi JH, Lee GE, Kim JY, Lee MH, Yang G, Cho YY, Jeong HG, Bang G, Lee CJ. Extracts from Allium pseudojaponicum Makino Target STAT3 Signaling Pathway to Overcome Cisplatin Resistance in Lung Cancer. Mar Drugs 2025; 23:167. [PMID: 40278288 PMCID: PMC12028371 DOI: 10.3390/md23040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Lung cancer, particularly non-small-cell lung cancer (NSCLC), remains a leading cause of cancer-related mortality, with cisplatin-based chemotherapy being a standard treatment. However, the development of chemoresistance significantly limits its efficacy, necessitating alternative therapeutic approaches. Here, we demonstrate the anticancer effects of the extracts of Allium pseudojaponicum Makino (APE), a salt-tolerant plant, in cisplatin-resistant NSCLC. Metabolite profiling using UPLC-Q-TOF-MSE identified 13 major compounds, predominantly alkaloids (71.65%) and flavonoids (8.81%), with key bioactive constituents such as lycorine (29.81%), tazettine (17.22%), and tricetin (8.19%). APE significantly inhibited cell viability in A549 and H460 cells, reducing viability to 38.6% (A549-Ctr), 37.2% (A549-CR), 28.4% (H460-Ctr), and 30.4% (H460-CR) at 40 µg/mL after 48 h. APE also suppressed colony formation by over 90% in both 2D and soft agar assays, while showing no cytotoxicity in normal human keratinocytes up to 80 µg/mL. Flow cytometry analysis revealed APE-induced G1 phase arrest, with the G1 population increasing from 50.4% to 56.6% (A549-Ctr) and 47.5% to 58.4% (A549-CR), accompanied by reduced S phase populations. This effect was associated with the downregulation of G1/S transition regulators, including cyclin D1, CDK4, cyclin E, and CDK2. Furthermore, proteomic analysis identified STAT3 signaling as a major target of APE; APE decreased phosphorylated STAT3 and c-Myc expression, and STAT3 knockdown phenocopied the effects of APE. These findings highlight the potential of APE as a natural product-based therapeutic strategy for overcoming cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Soo-Bin Nam
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea; (S.-B.N.); (G.-E.L.)
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea;
| | - Jung Hoon Choi
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea; (J.H.C.); (J.Y.K.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Ga-Eun Lee
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea; (S.-B.N.); (G.-E.L.)
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea; (J.H.C.); (J.Y.K.)
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| | - Gabsik Yang
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju 55338, Republic of Korea;
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea;
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Geul Bang
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea; (J.H.C.); (J.Y.K.)
| | - Cheol-Jung Lee
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea; (S.-B.N.); (G.-E.L.)
- Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Hendawy MS, Hashem MM, Zaki AA, Rabie MA, Sayed NSE, El Dine RS, El-Halawany AM. Efficacy of Aster chinensis aerial parts metabolites in BALB/c mice model of Imiquimod-induced psoriasis skin inflammation. Inflammopharmacology 2025; 33:1973-1996. [PMID: 40072672 PMCID: PMC11991947 DOI: 10.1007/s10787-025-01652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/08/2025] [Indexed: 03/14/2025]
Abstract
Using a bioassay-guided fractionation approach, the most potent anti-psoriatic components of Aster squamatus herb, Aster chinensis stalks, and Aster chinensis flowers, cultivated in Egypt, were identified and evaluated against Imiquimod (IMQ)-induced psoriasis in female BALB/c mice and compared to standard drug, mometasone. The topical application of A. chinensis stalk methanolic extract exhibited the strongest anti-psoriatic effects against IMQ-induced psoriasis model, as evidenced by improvements in psoriasis area severity index (PASI) score, histopathological analysis, and spleen index. Further fractionation of A. chinensis stalk methanolic extract using petroleum ether, methylene chloride, ethyl acetate, and n-butanol revealed that the methylene chloride fraction (MCF) was the most potent. Indeed, MCF significantly reduced the PASI score, alleviated histopathological changes, and restored spleen index. Mechanistically, MCF exerted its anti-psoriatic effects by suppressing inflammation, evidenced by decreased TLR-4 gene expression and lower levels of HMGB1 and NFκBp65 protein contents. Additionally, MCF reduced serum levels of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, IL-23, and IL-17 while mitigating oxidative stress through increased superoxide dismutase (SOD) activity and reduced malondialdehyde (MDA) content. Notably, the efficacy of MCF was comparable to that of mometasone, with no significant differences observed. In parallel, the chemical profile of the MCF was analyzed using UHPLC-MS/MS techniques in negative and positive ionization full scan modes. MCF of A. chinensis stalk could be used a potential therapeutic agent for psoriasis.
Collapse
Affiliation(s)
- Mai S Hendawy
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Mona M Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Ahmed A Zaki
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Riham Salah El Dine
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
4
|
Dacoreggio MV, Santetti GS, Inácio HP, Baranzelli J, Emanuelli T, Hoff RB, Moroni LS, Fritzen Freire CB, Kempka AP, Amboni RDDMC. Phenolic compounds profile of optimised green and eco-friendly extracts of Eugenia pyriformis leaves: an alternative for antioxidant and antibacterial applications. Nat Prod Res 2025; 39:1422-1427. [PMID: 38146231 DOI: 10.1080/14786419.2023.2297403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
The Eugenia pyriformis Cambess (uvaia) is a well-known source of bioactive compounds. This study investigated the efficiency of Ultrasound-Assisted Extraction (UAE) and Enzyme-Assisted Extraction (EAE) in obtaining uvaia leaf extracts with high antioxidant and antibacterial activity. In a first step, different variables of the leaves were employed to define the best conditions for obtaining the extract with the highest total phenolic content. In a second step, the optimised extracts were characterised. In total, twenty-four phenolic compounds were identified through LC-ESI-MS/MS. The EAE in optimised conditions showed a higher amount of total phenolic compounds and antioxidant potential. It was possible to note an analogous potential of antibacterial activity of the extracts, which showed action mainly against Gram-positive bacteria. These findings suggest that the aqueous extracts of uvaia leaves are feasible, economic, and sustainable alternatives for adding value to uvaia leaves, which are an agricultural residue that is generally underutilised.
Collapse
Affiliation(s)
- Marina Volpato Dacoreggio
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Gabriela Soster Santetti
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Heloísa Patrício Inácio
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Julia Baranzelli
- Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tatiana Emanuelli
- Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Rodrigo Barcellos Hoff
- Seção Laboratorial Avançada, Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária, São José, Santa Catarina, Brasil
| | - Liziane Schittler Moroni
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Rua Fernando de Noronha, Pinhalzinho, Brasil
| | - Carlise Beddin Fritzen Freire
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Aniela Pinto Kempka
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Rua Fernando de Noronha, Pinhalzinho, Brasil
| | | |
Collapse
|
5
|
Crescenzi MA, Cerulli A, Masullo M, Montoro P, Piacente S. Comparison of Vegetable Waste Byproducts of Selected Cultivars of Foeniculum vulgare Mill. by an Integrated LC-(HR)MS and 1H-NMR-Based Metabolomics Approach. PHYTOCHEMICAL ANALYSIS : PCA 2025. [PMID: 39837564 DOI: 10.1002/pca.3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025]
Abstract
INTRODUCTION The metabolome of plants is influenced by various factors, especially environmental, as the season in which they are grown. So, distinct varieties of the identical plant might show an increase or decrease in metabolites. The diversity of content of primary and secondary metabolites can also determine the variation in their biological properties. Due to the current occurrence of various fennel varieties, the crop can now be grown for the entire year. OBJECTIVE This work used an integrated approach of LC/MS and NMR analysis to characterize the metabolome of fennel waste of different varieties by multivariate statistical analysis. METHODS The extracts were investigated by NMR and LC/MS analysis to focus attention on the primary and secondary metabolites. Both LC-HRMS and NMR data were analyzed by principal component analysis (PCA). RESULTS The 1H-NMR analysis led to the identification of 15 primary metabolites, such as amino acids, carbohydrates, and organic acid derivatives. The secondary metabolites identified by LC/MS analysis mainly belong to the phenolic, lipid, and fatty acid compounds classes. CONCLUSION This integrated approach guarantees a precise and complete overview of the variations in the metabolic expression of the fennel varieties grown in different seasons.
Collapse
Affiliation(s)
- Maria Assunta Crescenzi
- Department of Pharmacy, University of the Study of Salerno, Fisciano, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of the Study of Salerno, Fisciano, Italy
| | - Antonietta Cerulli
- Department of Pharmacy, University of the Study of Salerno, Fisciano, Italy
| | - Milena Masullo
- Department of Pharmacy, University of the Study of Salerno, Fisciano, Italy
| | - Paola Montoro
- Department of Pharmacy, University of the Study of Salerno, Fisciano, Italy
| | - Sonia Piacente
- Department of Pharmacy, University of the Study of Salerno, Fisciano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
6
|
Hussein HM, Abdel Kawy MA, Eltanany BM, Pont L, Benavente F, Fayez AM, Alnajjar R, Al-Karmalawy AA, Abdelmonem AR, Mohsen E. Cognitive-enhancing effect of Cordia dichotoma fruit on scopolamine-induced cognitive impairment in rats: metabolite profiling, in vivo, and in silico investigations. RSC Adv 2024; 14:40267-40286. [PMID: 39717818 PMCID: PMC11664333 DOI: 10.1039/d4ra06991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Many plants are reported to enhance cognition in amnesic-animal models. The metabolite profile of Cordia dichotoma fruit methanolic extract (CDFME) was characterized by LC-QTOF-MS/MS, and its total phenolics content (TPC) and total flavonoids content (TFC) were determined. In parallel, its cognitive-enhancing effect on scopolamine (SCOP)-induced AD in rats was evaluated. The TPC and TFC were 44.75 ± 1.84 mg gallic acid equiv. g-1 sample and 5.66 ± 0.67 mg rutin equiv. g-1 sample, respectively. In total, 81 metabolites were identified, including phenolic acids, lignans, coumarins, amino acids, fatty acids, and their derivatives, fatty acid amides, polar lipids, terpenoids, and others. The most abundant metabolites identified were quinic acid, caffeoyl-4'-hydroxyphenyllactate, rosmarinic acid, and oleamide. CDFME (200 mg kg-1) was found to significantly enhance recognition memory in the novel object recognition test. Furthermore, it nearly corrected acetylcholinesterase (AChE), acetylcholine, noradrenaline, and dopamine hippocampal levels, which changed due to SCOP. Further in silico validation of the in vivo results was conducted, focusing on the most abundant metabolites. Molecular docking showed that rosmarinic acid, caffeoyl-4'-hydroxyphenyllactate, sebestenoid C, and sagerinic acid exhibited the greatest affinity for receptor binding against AChE. However, molecular dynamics and mechanics calculations clarified that the complex of caffeoyl-4'-hydroxyphenyllactate with AChE was the most stable one. This study represents the first comprehensive metabolite profiling of CDFME to assess its cognition-enhancing effect both in vivo and in silico. These results demonstrate that CDFME protects against SCOP-induced cognitive impairment. Thus, additional preclinical and clinical studies on CDFME may provide an attractive approach in pharmacotherapy and AD prophylaxis.
Collapse
Affiliation(s)
- Hagar M Hussein
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Mostafa A Abdel Kawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA-UB), University of Barcelona Barcelona 08028 Spain
- Serra Húnter Program, Generalitat de Catalunya Barcelona 08007 Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA-UB), University of Barcelona Barcelona 08028 Spain
| | - Ahmed M Fayez
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Cairo 11835 Egypt
| | - Radwan Alnajjar
- Computer-Aided Drug Design (CADD) Unit, Faculty of Pharmacy, Libyan International Medical University Benghazi Libya
- Department of Chemistry, Faculty of Science, University of Benghazi Benghazi Libya
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| | - Azza R Abdelmonem
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Engy Mohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| |
Collapse
|
7
|
Peng Z, Wu Y, Fu Q, Xiao J. Free and bound phenolic profiles and antioxidant ability of eleven marine macroalgae from the South China Sea. Front Nutr 2024; 11:1459757. [PMID: 39469329 PMCID: PMC11513316 DOI: 10.3389/fnut.2024.1459757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Marine macroalgae are of broad interest because of their abundant bioactive phenolic compounds. However, only a few previous studies have focused on bound phenolic compounds. In this study, there were significant differences in total phenolic content, total phlorotannin content, total flavonoid content, and antioxidant ability in free and bound forms, as well as in their bound-to-free ratios, among 11 marine macroalgal species from the South China Sea. Padina gymnospora had the highest total phenolic content of free fractions, and total phlorotannin content, total flavonoid content, and antioxidant activity of free fractions. Sargassum thunbergii had the highest total phlorotannin content of bound fractions, whereas Sargassum oligocystum had the highest total flavonoid content and total phenolic content of bound fractions. Moreover, 15 phenolic acids, 35 flavonoids, 2 stilbenes, 3 bromophenols, and 3 phlorotannins were characterized and quantified using ultra-high-performance liquid chromatography with Xevo triple quadrupole mass spectrometry, and 42 phenolic compounds were reported in the bound fractions of seaweeds for the first time. Among the species, the number and amount of free and bound phenolic compounds varied greatly and the main components were different. Padina gymnospora had the largest total phenolic number, while Turbinaria ornata showed the highest total phenolic amount. Coutaric acid and diosmetin were dominant in Sargassum polycystum, and hinokiflavone was dominant in Caulerpa lentillifera, and cyanidin was dominant in the other seaweeds. Hierarchical cluster analysis was used to divide the seaweed species into seven groups. This study revealed that Padina gymnospora, Sargassum thunbergii, Turbinaria ornata, and Sargassum oligocystum are promising functional food resources.
Collapse
Affiliation(s)
- Ziting Peng
- National Health Commission of the People’s Republic of China, Key Laboratory of Control of Tropical Diseases Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yujiao Wu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qiongyao Fu
- National Health Commission of the People’s Republic of China, Key Laboratory of Control of Tropical Diseases Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Juan Xiao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
8
|
Silva JDR, Arruda HS, Andrade AC, Berilli P, Borsoi FT, Monroy YM, Rodrigues MVN, Sampaio KA, Pastore GM, Marostica Junior MR. Eugenia calycina and Eugenia stigmatosa as Promising Sources of Antioxidant Phenolic Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:2039. [PMID: 39124157 PMCID: PMC11313698 DOI: 10.3390/plants13152039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
In this study, Eugenia calycina and Eugenia stigmatosa, native Brazilian berries, were explored regarding their proximal composition, bioactive compounds, and antioxidant activities. The edible parts of both fruits presented a low content of lipids, proteins, and carbohydrates, resulting in a low caloric value (<70 kcal/100 g fw). E. stigmatosa fruit showed a high total fiber content (3.26 g/100 g fw), qualifying it as a source of dietary fiber. The sugar profile was mainly monosaccharides (glucose, fructose, and rhamnose). Significant contents of total phenolics and flavonoids, monomeric anthocyanins and, condensed tannins, were observed in both fruits. E. calycina contains a high level of anthocyanins, primarily cyanidin-3-glucoside (242.97 µg/g). Other phenolic compounds were also found, the main ones being rutin and ellagic acid. In contrast, E. stigmatosa is mainly composed of rutin and gallic acid. Furthermore, these fruits showed expressive antioxidant activity, evidenced by ORAC, FRAP, and ABTS. These Eugenia fruits are promising sources of bioactive compounds and have a low caloric and high dietary fiber content, making them interesting options for inclusion in a balanced diet, contributing to the promotion of health and the valorization and conservation of Brazilian biodiversity.
Collapse
Affiliation(s)
- Juliana Dara Rabêlo Silva
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Henrique Silvano Arruda
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Amanda Cristina Andrade
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Patrícia Berilli
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Felipe Tecchio Borsoi
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Yaneth Machaca Monroy
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (Y.M.M.); (K.A.S.)
| | - Marili Villa Nova Rodrigues
- Pluridisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), University of Campinas (UNICAMP), Paulínia 13148-218, São Paulo, Brazil;
| | - Klicia Araujo Sampaio
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (Y.M.M.); (K.A.S.)
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| |
Collapse
|
9
|
Wang Z, Zhang Y, Fu Z, Jin T, Zhao C, Zhao M. A comprehensive strategy for quality evaluation of Changan powder by fingerprinting combined with rapid qualitative and quantitative multi-ingredients profiling. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:840-859. [PMID: 38332540 DOI: 10.1002/pca.3332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Changan powder (CAP) is mainly used to treat various intestinal diseases. Few studies on CAP have been reported; therefore, it is necessary to clarify the material basis of CAP to lay the foundation for further elucidating its functional mechanism and support the rational use of drugs. OBJECTIVES In the present study, we aimed to propose a methodology for the quality control of CAP based on qualitative and quantitative analysis of its components. METHODS An ultra-performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry (UPLC-FT-ICR-MS) method was developed to identify chemical components in CAP. In addition, fingerprints of 10 different batches of CAP were established, and quantitative analysis based on UPLC was performed to analyze the quality of CAP. RESULTS A total of 58 compounds were preliminarily characterized. The similarity of 10 batches of CAP was greater than 0.995, and 23 common peaks were calibrated. Investigation of the quantitative analytical methodology showed that the four components had good linear relationships within their respective concentration ranges (r2 ≥ 0.9992), and the relative standard deviation (RSD) of precision and stability was less than 2%. The RSD of sample recovery ranged from 0.78% to 1.52%. CONCLUSION The established method can quickly and effectively identify the chemical components of CAP and accurately quantify the known components in CAP. The established fingerprinting and content determination method is stable, reliable, and easy to operate and can be applied in quality control and in vivo research on CAP.
Collapse
Affiliation(s)
- Zheyong Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Zixuan Fu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Tong Jin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| |
Collapse
|
10
|
Thakur N, Murali K, Bhadoriya K, Tripathi YC, Varshney VK. Phytochemical exploration of Neolitsea pallens leaves using UPLC-Q-TOF-MS/MS approach. Sci Rep 2024; 14:7770. [PMID: 38565919 PMCID: PMC10987493 DOI: 10.1038/s41598-024-58282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Neolitsea pallens (D. Don) Momiyama & H. Hara (Family: Lauraceae), commonly known as Pale Litsea, is an evergreen small tree, distributed in India at altitudes of 1500-3000 m. Traditionally utilized for various purposes, its leaves and bark are used as spices, and the plant is valued in preparing a hair tonic from freshly pressed juice. Secondary metabolites of the leaves have not comprehensively been analysed so far. The objective of the study was to determine the chemical composition of the leaves by analysing their 25% aqueous methanol extract with the aid of ultra-performance liquid chromatography quadrupole time of flight tandem mass spectrometry. Overall, 56 compounds were identified in the study. Phenolics represented by phenolic acids, phenolic glycosides, proanthocyanidins, and flavonoids were the main components of the extract.
Collapse
Affiliation(s)
- Nisha Thakur
- Chemistry and Bio-Prospecting Division, Forest Research Institute, Dehradun, India
| | - K Murali
- Chemistry and Bio-Prospecting Division, Forest Research Institute, Dehradun, India.
| | - Khushaboo Bhadoriya
- Chemistry and Bio-Prospecting Division, Forest Research Institute, Dehradun, India
| | - Y C Tripathi
- Chemistry and Bio-Prospecting Division, Forest Research Institute, Dehradun, India
| | - V K Varshney
- Chemistry and Bio-Prospecting Division, Forest Research Institute, Dehradun, India.
| |
Collapse
|
11
|
Ejaz B, Mujib A, Syeed R, Mamgain J, Malik MQ, Birat K, Dewir YH, Magyar-Tábori K. Phytocompounds and Regulation of Flavonoids in In Vitro-Grown Safflower Plant Tissue by Abiotic Elicitor CdCl 2. Metabolites 2024; 14:127. [PMID: 38393019 PMCID: PMC10891796 DOI: 10.3390/metabo14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, a Gas chromatography-mass spectrometry (GC-MS) investigation of embryogenic callus and somatic embryo regenerated shoots of Carthamus tinctorius revealed the presence of a variety of sugars, sugar acids, sugar alcohols, fatty acids, organic acids, and amino acids of broad therapeutic value. The in vitro developed inflorescence contained a wide range of active compounds. In embryogenic calluses, important flavonoids like naringenin, myricetin, kaempferol, epicatechin gallate, rutin, pelargonidin, peonidin, and delphinidin were identified. To augment the synthesis of active compounds, the effect of cadmium chloride (CdCl2) elicitation was tested for various treatments (T1-T4) along with a control (T0). Varying concentrations of CdCl2 [0.05 mM (T1), 0.10 mM (T2), 0.15 mM (T3), and 0.20 mM (T4)] were added to the MS medium, and flavonoid accumulation was quantified through ultra-high-pressure liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS). The flavonoids naringenin, kaempferol, epicatechin gallate, pelargonidin, cyanidin, and delphinidin increased by 6.7-, 1.9-, 3.3-, 2.1-, 1.9-, and 4.4-fold, respectively, at T3, whereas quercetin, myricetin, rutin, and peonidin showed a linear increase with the increase in CdCl2 levels. The impacts of stress markers, i.e., ascorbate peroxidase (APX), catalase (CAT), and superoxide dismutase (SOD), on defense responses in triggering synthesis were also evaluated. The maximum APX and SOD activity was observed at T3, while CAT activity was at its maximum at T2. The impact of elicitor on biochemical attributes like protein, proline, sugar, and malondialdehyde (MDA) content was investigated. The maximum protein, proline, and sugar accumulation was noted at high elicitor dose T4, while the maximum MDA content was noted at T3. These elevated levels of biochemical parameters indicated stress in culture, and the amendment of CdCl2 in media thus could be a realistic approach for enhancing secondary metabolite synthesis in safflower.
Collapse
Affiliation(s)
- Bushra Ejaz
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Abdul Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Rukaya Syeed
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Jyoti Mamgain
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Moien Qadir Malik
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Kanchan Birat
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Katalin Magyar-Tábori
- Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, P.O. Box 12, 4400 Nyíregyháza, Hungary;
| |
Collapse
|
12
|
Siripongvutikorn S, Pumethakul K, Yupanqui CT, Seechamnanturakit V, Detarun P, Utaipan T, Sirinupong N, Chansuwan W, Wittaya T, Samakradhamrongthai RS. Phytochemical Profiling and Antioxidant Activities of the Most Favored Ready-to-Use Thai Curries, Pad-Ka-Proa (Spicy Basil Leaves) and Massaman. Foods 2024; 13:582. [PMID: 38397559 PMCID: PMC10887624 DOI: 10.3390/foods13040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Food is one of the factors with the highest impact on human health. Today, attention is paid not only to food properties such as energy provision and palatability but also to functional aspects including phytochemical, antioxidant properties, etc. Massaman and spicy basil leaf curries are famous Thai food dishes with a good harmony of flavor and taste, derived from multiple herbs and spices, including galangal rhizomes, chili pods, garlic bulbs, peppers, shallots, and coriander seeds, that provide an array of health benefits. The characterization of phytochemicals detected by LC-ESI-QTOF-MS/MS identified 99 components (Masaman) and 62 components (spicy basil leaf curry) such as quininic acid, hydroxycinnamic acid, luteolin, kaempferol, catechin, eugenol, betulinic acid, and gingerol. The cynaroside and luteolin-7-O-glucoside found in spicy basil leaf curry play a key role in antioxidant activities and were found at a significantly higher concentration than in Massaman curry. Phenolic and flavonoid compounds generally exhibit a bitter and astringent taste, but all the panelists scored both curries higher than 7 out of 9, confirming their acceptable flavor. Results suggest that the Massaman and spicy basil leaves contain various phytochemicals at different levels and may be further used as functional ingredients and nutraceutical products.
Collapse
Affiliation(s)
- Sunisa Siripongvutikorn
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Kanyamanee Pumethakul
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Chutha Takahashi Yupanqui
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Vatcharee Seechamnanturakit
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Preeyabhorn Detarun
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Tanyarath Utaipan
- Department of Science, Faculty of Science and Technology, Pattani Campus, Prince of Songkla University, Muang, Rusamilae 94000, Pattani, Thailand;
| | - Nualpun Sirinupong
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Worrapanit Chansuwan
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Thawien Wittaya
- Center of Excellence in Bio-Based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | | |
Collapse
|
13
|
Siripongvutikorn S, Pumethakul K, Yupanqui CT, Seechamnanturakit V, Detarun P, Utaipan T, Sirinupong N, Chansuwan W, Wittaya T, Samakradhamrongthai RS. Antioxidant and Nitric Oxide Inhibitory Activity of the Six Most Popular Instant Thai Curries. Foods 2024; 13:178. [PMID: 38254479 PMCID: PMC10814089 DOI: 10.3390/foods13020178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
All living organisms undergo molecular damage by free radical products. Disrupting the balance between antioxidants and free radicals leads to greater risks of diabetes, hypertension, stroke, and cancer. Consumption of curries containing various herbs and spices provides antioxidant and anti-inflammatory benefits which promote health. The antioxidant and nitric oxide (NO) inhibitory properties of six popular Thai curries, including green curry (G), Panang curry (P), Massaman curry (M), spicy basil leaf curry (SB), southern sour curry (SS), and southern spicy yellow curry (SY) were determined. All six curries contained phenolic and flavonoid compounds and provided antioxidant activity based on electron transfer and hydrogen atom donor properties, as well as having the ability to reduce oxidized metal. The highest antioxidant value was found in SB, followed by M, SS, and SY. The replacement of sugar with dried stevia powder at 50% (Re) improved antioxidant activity. The ORAC assay provided five times higher results than DPPH, ABTS, and FRAP. Extracts of all curries at 1 mg/mL on the macrophage cell line RAW 264.7 showed no cytotoxicity. The highest NO inhibition was found in SB (p < 0.05). All curry extracts contained quercetin, kaempferol, luteolin, and apigenin. The six selected popular Thai curries had antioxidant and anti-inflammatory health benefits. Nutraceuticals, functional foods, and the ingredients of each raw material and curry powder should be further investigated.
Collapse
Affiliation(s)
- Sunisa Siripongvutikorn
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Kanyamanee Pumethakul
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Chutha Takahashi Yupanqui
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Vatcharee Seechamnanturakit
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Preeyabhorn Detarun
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Tanyarath Utaipan
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Rusamilae, Muang, Pattani 94000, Thailand;
| | - Nualpun Sirinupong
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Worrapanit Chansuwan
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Thawien Wittaya
- Center of Excellence in Bio-Based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand;
| | | |
Collapse
|
14
|
Aishah Baharuddin S, Nadiah Abd Karim Shah N, Saiful Yazan L, Abd Rashed A, Kadota K, Al-Awaadh AM, Aniza Yusof Y. Optimization of Pluchea indica (L.) leaf extract using ultrasound-assisted extraction and its cytotoxicity on the HT-29 colorectal cancer cell line. ULTRASONICS SONOCHEMISTRY 2023; 101:106702. [PMID: 38041881 PMCID: PMC10701412 DOI: 10.1016/j.ultsonch.2023.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023]
Abstract
Colorectal cancer (CRC) is the most common malignancy and the third primary cause of cancer-related mortalities caused by unhealthy diet, hectic lifestyle, and genetic damage. People aged ≥ 50 are more at risk for CRC. Nowadays, bioactive compounds from plants have been widely studied in preventing CRC because of their anticancer and antioxidant properties. Herein, ultrasound-assisted extraction (UAE) was used to extract the bioactive compounds of Pluchea indica (L.) leaves. The resultant total phenolic content (TPC) and total flavonoid content (TFC) of P. indica (L.) leaves were analyzed using a response surface methodology (RSM). The central composite design was implemented to evaluate the amplitude (10 %-70 %) and treatment time (2-10 min) on both responses, i.e., TPC and TFC of P. indica (L.) leaves. The optimum UAE conditions were observed 40 % amplitude and 6 min of treatment, where the TPC and TFC were 3.26 ± 0.00 mg GAE/g d.w. and 67.58 ± 1.46 mg QE/g d.w., respectively. The optimum P. indica (L.) leaf extract was then screened for its cytotoxicity on the HT-29 colorectal cancer cell line. This extract had strong cytotoxicity with a half-maximal inhibitory concentration value (IC50) of 12 µg/mL. The phytochemical screening of bioactive compounds revealed that the optimal P. indica (L.) leaf extract contains flavonoids, namely, kaempferol 3-[2''',3''',5'''-triacetyl]-alpha-L-arabinofuranosyl-(1->6)-glucoside, myricetin 3-glucoside-7-galactoside, quercetin 3-(3''-sulfatoglucoside), and kaempferol 7,4'-dimethyl ether 3-O-sulfate, which could be good sources for promising anticancer agents. This study employs the RSM approach to utilize UAE for bioactive compounds extraction of P. indica (L.) leaves, identified the specific compounds present in the optimized extract and revealed its potential in preventing CRC.
Collapse
Affiliation(s)
- Siti Aishah Baharuddin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Engineering and Built Environment, Tunku Abdul Rahman University of Management and Technology, Penang Branch, 11200 Tanjong Bungah, Penang, Malaysia
| | - Nor Nadiah Abd Karim Shah
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 Serdang, Selangor, Malaysia
| | - Latifah Saiful Yazan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Aswir Abd Rashed
- Nutrition Unit, Institute for Medical Research, National Institutes of Health, Seksyen U13 Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Alhussein M Al-Awaadh
- Department of Agricultural Engineering, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
15
|
Spinelli LV, Anzanello MJ, Areze da Silva Santos R, Carboni Martins C, Freo Saggin J, Aparecida Silva Da Silva M, Rodrigues E. Uncovering the phenolic diversity of Guabiju fruit: LC-MS/MS-based targeted metabolomics approach. Food Res Int 2023; 173:113236. [PMID: 37803550 DOI: 10.1016/j.foodres.2023.113236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 10/08/2023]
Abstract
The comprehensive composition of phenolic compounds (PC) from seven genotypes of guabiju were analyzed by high-performance liquid chromatography coupled to a diode array detector and mass spectrometry (HPLC-ESI-qTOF-MS/MS), and a targeted metabolomic approach was utilized to explore the PC-related similarities among the genotypes. Sixty-seven phenolic compounds were annotated and twenty-four were quantified in all genotypes of guabiju. The phenolic acids and anthocyanins were the major PC, representing more than 63% (w/w) of the total PC. Di-O-galloylquinic and tri-O-galloylquinic acids and ellagitannins were reported for the first time in guabiju. The results of hierarchical clustering and principal components analysis (PCA) suggested seven groups as suitable clusters to be formed according to phenolic composition. Eleven PC were selected as relevant for sample clustering, and six of them were highlighted as the most informative (in decreasing order of importance): epicatechin, catechin, (epi)gallocatechin gallate II, di-O-galloylquinic acid I, tri-O-galloylquinic acid and delphinidin 3-O-glucoside. To the best of our knowledge, this study contributes to the literature with the most complete phenolic profile of guabiju genotypes up to date. Moreover, guabiju susceptibility to fungal infestation related to PC composition was briefly discussed based on a parallel study using the same genotypes.
Collapse
Affiliation(s)
- Liziane V Spinelli
- Food Science and Technology Institute, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Michel J Anzanello
- Department of Industrial Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rodrigo Areze da Silva Santos
- Department of Horticulture and Forestry, Agronomy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Caroline Carboni Martins
- Food Science and Technology Institute, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Justine Freo Saggin
- Food Science and Technology Institute, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Eliseu Rodrigues
- Food Science and Technology Institute, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
16
|
Wen JH, Guo AQ, Li MN, Yang H. A structural similarity networking assisted collision cross-section prediction interval filtering strategy for multi-compound identification of complex matrix by ion-mobility mass spectrometry. Anal Chim Acta 2023; 1278:341720. [PMID: 37709461 DOI: 10.1016/j.aca.2023.341720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Ion mobility coupled with mass spectrometry (IM-MS), an emerging technology for analysis of complex matrix, has been facing challenges due to the complexities of chemical structures and original data, as well as low-efficiency and error-proneness of manual operations. In this study, we developed a structural similarity networking assisted collision cross-section prediction interval filtering (SSN-CCSPIF) strategy. We first carried out a structural similarity networking (SSN) based on Tanimoto similarities among Morgan fingerprints to classify the authentic compounds potentially existing in complex matrix. By performing automatic regressive prediction statistics on mass-to-charge ratios (m/z) and collision cross-sections (CCS) with a self-built Python software, we explored the IM-MS feature trendlines, established filtering intervals and filtered potential compounds for each SSN classification. Chemical structures of all filtered compounds were further characterized by interpreting their multidimensional IM-MS data. To evaluate the applicability of SSN-CCSPIF, we selected Ginkgo biloba extract and dripping pills. The SSN-CCSPIF subtracted more background interferences (43.24%∼43.92%) than other similar strategies with conventional ClassyFire criteria (10.71%∼12.13%) or without compound classification (35.73%∼36.63%). Totally, 229 compounds, including eight potential new compounds, were characterized. Among them, seven isomeric pairs were discriminated with the integration of IM-separation. Using SSN-CCSPIF, we can achieve high-efficient analysis of complex IM-MS data and comprehensive chemical profiling of complex matrix to reveal their material basis.
Collapse
Affiliation(s)
- Jia-Hui Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China
| | - An-Qi Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China
| | - Meng-Ning Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China.
| |
Collapse
|
17
|
Selvakumarasamy S, Rengaraju B. Enhancement of Antioxidant Properties of the Medicinal Plant, Costus Pictus by Optimization of its Drying and Extraction Criteria. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:546-551. [PMID: 37505434 DOI: 10.1007/s11130-023-01083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Antioxidants act as major protective factors against different infections and diseases. The search for natural antioxidants has gained significant momentum due to its associated health benefits. It prompted the investigation of the antioxidant properties of widely recognized medicinal plants, considering their prominent role in conventional medicine. The incorporation of natural antioxidants derived from medicinal plants into food products has the potential to enhance their health benefits. The present investigation is the first study on the optimization of drying and extraction techniques in Costus pictus leaves. C. pictus leaves were dried under varying conditions (40, 50 and 60 °C) and dried powders were subjected to various solvents, namely water, ethanol, methanol and ethyl acetate. The leaves dried at 60 °C and treated with ethanol showed improved activities and were subsequently selected for further extraction. Among the various extraction methods, ultrasound-assisted extraction demonstrated superior antioxidant properties and increased phytochemical contents, making it the optimal technique for our study. Fourier transform infrared spectroscopy (FTIR) reports also substantiated these quantitative results. The extraction process played a significant role in enhancing the desirable attributes and properties of the leaf extracts, surpassing the results obtained from both dried and fresh leaves. The application of liquid chromatography-mass spectrometry (LC-MS) analysis to the leaf extracts facilitated the identification of phenolic compounds and flavonoids, presenting a comprehensive insight into the composition of the extract. Exploration of antioxidant properties, phenolic compounds and flavonoids would validate the benefits and expand the applications of C. pictus in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Saranya Selvakumarasamy
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, India.
| | | |
Collapse
|
18
|
Geng Y, Xie Y, Li W, Mou Y, Chen F, Xiao J, Liao X, Hu X, Ji J, Ma L. Toward the bioactive potential of myricitrin in food production: state-of-the-art green extraction and trends in biosynthesis. Crit Rev Food Sci Nutr 2023; 64:10668-10694. [PMID: 37395263 DOI: 10.1080/10408398.2023.2227262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.
Collapse
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Antioxidant Capacity through Electrochemical Methods and Chemical Composition of Oenocarpus bataua and Gustavia macarenensis from the Ecuadorian Amazon. Antioxidants (Basel) 2023; 12:antiox12020318. [PMID: 36829877 PMCID: PMC9952757 DOI: 10.3390/antiox12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
This study evaluated the antioxidant properties and chemical composition of the seeds, pulp and peels of Ungurahua (Oenocarpus bataua) and Pasu (Gustavia macarenensis)-fruits, native to the Ecuadorian Amazon. The antioxidant capacity was measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and cyclic voltammetry (antioxidant index 50 (AI50)) assays; differential pulse voltammetry was used to evaluate antioxidant power using the electrochemical index. The total phenolic content, as well as the yellow flavonoid and anthocyanin content, were quantified via spectrophotometry. In addition, the trans-resveratrol and ascorbic acid content were evaluated through high performance liquid chromatography (HPLC). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to identify secondary metabolites with possible therapeutic properties. Results showed that the Pasu peel and seed extracts had the highest antioxidant capacity, followed by the Ungurahua peel; these results were consistent for both spectroscopic and electrochemical assays. HPLC and UPLC-MS analysis suggest that Oenocarpus bataua and Gustavia macarenensis are important sources of beneficial bioactive compounds.
Collapse
|
20
|
Gok HN, Pekacar S, Deliorman Orhan D. Investigation of Enzyme Inhibitory Activities, Antioxidant Activities, and Chemical Properties of Pistacia vera Leaves Using LC-QTOF-MS and RP-HPLC. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e127033. [PMID: 36060918 PMCID: PMC9420224 DOI: 10.5812/ijpr-127033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
Since the leaves of some Pistacia species are used in traditional folk medicine for diabetes, this study investigated the in vitro antidiabetic effect (α-glucosidase and α-amylase) of Pistacia vera leaves. Additionally, the current study investigated the antihypercholesterolemic (cholesterol esterase), antiobesity (pancreatic lipase), and antioxidant activities (i.e., total antioxidant capacity, DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical scavenging activity, metal chelating activity, and ferric-reducing antioxidant power) of P. vera leaves. The aqueous-alcoholic leaf extract inhibited α-amylase, α-glucosidase, and pancreatic lipase with the half-maximal inhibitory concentration values of 7.74 ± 0.72, 11.08 ± 3.96, and 168.43 ± 26.10 µg/mL, respectively. It was determined that the crude extract had high DPPH radical scavenging activity, ferric-reducing power, and moderate metal chelating activity. The ethyl acetate (EtOAc) subextract obtained by the liquid-liquid fractionation of the crude extract showed potent α-amylase and α-glucosidase inhibitory activities. The EtOAc subextract (5.794 ± 0.027 g/100 g subextract) was standardized by reversed-phase high-performance liquid chromatography based on β-pentagalloyl glucose, which showed inhibitory effects on both amylase and glucosidase enzymes. Fifteen compounds, seven of which are organic acid derivatives and eight of which are flavonoids, were identified by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) analysis in the crude extract of P. vera leaves. Seven of the fifteen phenolic compounds detected in the crude extract by LC-QTOF-MS have both glucosidase and amylase inhibitory effects. As a result, P. vera leaves can be a potential source for compounds with high antioxidant effects that show inhibitory effects on enzymes involved in carbohydrate digestion in the prevention and treatment of diabetes or can be evaluated as a standardized extract.
Collapse
Affiliation(s)
- Hasya Nazli Gok
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- Corresponding Author: Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey. Tel: +90-3122023172, Fax: +90-3122235018,
| | - Sultan Pekacar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | | |
Collapse
|
21
|
Duarte JA, Alves-Ribeiro G, Machado FP, Folly D, Peñaloza E, Garret R, Santos MG, Ventura JA, Wermelinger GF, Robbs BK, Rocha L, Fiaux SB. Glimpsing the chemical composition and the potential of Myrtaceae plant extracts against the food spoilage fungus Thielaviopsis ethacetica. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Antioxidant Activity, Total Phenolic and Flavonoid Content and LC–MS Profiling of Leaves Extracts of Alstonia angustiloba. SEPARATIONS 2022. [DOI: 10.3390/separations9090234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plants have a wide range of active compounds crucial in treating various diseases. Most people consume plants and herbals as an alternative medicine to improve their health and abilities. A. angustiloba extract showed antinematodal activity against Bursaphelenchus xylophilus, antitrypanosomal action against Trypanosoma brucei and anti-plasmodial activity against the chloroquine-resistant Plasmodium falciparum K1 strain. Moreover, it has demonstrated growth inhibitory properties towards several human cancer cell lines, such as MDA-MB-231, SKOV-3, HeLa, KB cells and A431. DPPH and ABTS assays were carried out to determine the antioxidant activity of the aqueous and 60% methanolic extract of A. angustiloba leaves. Moreover, total phenolic and flavonoid contents were quantified. The presence of potential active compounds was then screened using liquid chromatography coupled with a Q-TOF mass spectrometer (LC–MS) equipped with a dual electrospray ionisation (ESI) source. The EC50 values measured by DPPH for the 60% methanolic and aqueous extracts of A. angustiloba leaves were 80.38 and 94.11 µg/mL, respectively, and for the ABTS assays were 85.80 and 115.43 µg/mL, respectively. The 60% methanolic extract exhibited the highest value of total phenolic and total flavonoid (382.53 ± 15.00 mg GAE/g and 23.45 ± 1.04 mg QE/g), while the aqueous extract had the least value (301.17 ± 3.49 mg GAE/g and 9.73 ± 1.76 mg QE/g). The LC–MS analysis revealed the presence of 103 and 140 compounds in the aqueous and 60% methanolic extract, respectively. It consists of phenolic acids, flavonoids, alkaloids, amino acids, glycosides, alkaloids, etc. It can be concluded that the therapeutic action of this plant is derived from the presence of various active compounds; however, further research is necessary to determine its efficacy in treating diseases.
Collapse
|
23
|
Alves TDP, Pereira MTM, Charret TS, Thurler-Júnior JC, Wermelinger GF, Baptista AR, Robbs BK, Sawaya ACHF, Pascoal VDB, Pascoal ACRR. Evaluation of the antiproliferative potential of Eugenia pyriformis leaves in cervical cancer cells. Chem Biodivers 2022; 19:e202200114. [PMID: 35798670 DOI: 10.1002/cbdv.202200114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/02/2022] [Indexed: 11/07/2022]
Abstract
Eugenia pyriformis , typically known as uvaia, ubaia, uvaieira, uvalha or uvalha-do-campo, is a plant representative of the Myrtaceae family. E. pyriformis decreased HeLa cells proliferation, can induce cell death and reduce cell migration that may be related to metastasis and induction of cell death by apoptosis in vitro assays. Its leaves are used in folk medicine for hypertension control, decreased cholesterol and uric acid, slimming, astringent, and digestive. In this work, the evaluation of the in vitro anticancer potential Cervical Cancer (HeLa cells) and phytochemical analysis in E. pyriformes was performed. It was possible to quantify phenolic compounds and total flavonoids and identify Chlorogenic acid, Quercetrin, and Myricitrin in this species. The crude extract and ethyl acetate fraction inhibited cell viability by 50% in the dose of 44.42 μg/mL and 40.39 μg/mL, respectively. The induced effector caspase 3/7 activation, which results in apoptosis and the ethyl acetate fraction , decreases cell migration of cancer cell line; it is responsible for the cleavage of several cellular proteins that will result in the classic phenotype of the apoptotic cell.
Collapse
Affiliation(s)
- Thiago De Paula Alves
- UFF: Universidade Federal Fluminense, Graduate Program in Science and Biotechnology, Rua Prof. Marcos Waldemar de Freitas Reis, Niteroi, BRAZIL
| | - Mariana Toledo Martins Pereira
- UFF: Universidade Federal Fluminense, Graduate Program in Science and Biotechnology, Fluminense Federal University, Rua Prof. Marcos Waldemar de Freitas Reis, Niteroi, BRAZIL
| | - Thiago Sardou Charret
- UFF: Universidade Federal Fluminense, Graduate Program in Science and Biotechnology, Rua Prof. Marcos Waldemar de Freitas Reis, Niteroi, BRAZIL
| | - Júlio César Thurler-Júnior
- UFF: Universidade Federal Fluminense, Department of Basic Sciences, Rua Doutor Sílvio Henrique Braune, 28625650, Nova Friburgo, BRAZIL
| | - Guilherme Freimann Wermelinger
- UFF: Universidade Federal Fluminense, Department of Basic Sciences, Rua Doutor Sílvio Henrique Braune, 28625650, Nova Friburgo, BRAZIL
| | - Andrea Regina Baptista
- UFF: Universidade Federal Fluminense, Graduate Program in Science and Biotechnology, Rua Prof. Marcos Waldemar de Freitas Reis, Niteroi, BRAZIL
| | - Bruno Kaufmann Robbs
- UFF: Universidade Federal Fluminense, Department of Basic Sciences, Rua Doutor Sílvio Henrique Braune, 28625650, Nova Friburgo, BRAZIL
| | - Alexandra C H F Sawaya
- UNICAMP: Universidade Estadual de Campinas, Faculty of Pharmaceutical Sciences, Rua Monteiro Lobato, 255, Campinas, BRAZIL
| | | | | |
Collapse
|
24
|
Phenolic Compound Profile by UPLC-MS/MS and Encapsulation with Chitosan of Spondias mombin L. Fruit Peel Extract from Cerrado Hotspot-Brazil. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082382. [PMID: 35458580 PMCID: PMC9028924 DOI: 10.3390/molecules27082382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022]
Abstract
Taperebá (Spondias mombin L.) is a native species of the Brazilian Cerrado that has shown important characteristics such as a significant phenolic compound content and biological activities. The present study aimed to characterize the phenolic compound profile and antioxidant activity in taperebá peel extract, as well as microencapsulating the extract with chitosan and evaluating the stability of the microparticles. The evaluation of the profile of phenolic compounds was carried out by UPLC-MS/MS. The in vitro antioxidant activity was evaluated by DPPH and ABTS methods. The microparticles were obtained by spray drying and were submitted to a stability study under different temperatures. In general, the results showed a significant content of polyphenols and antioxidant activity. The results of UPLC-MS/MS demonstrated a significant content of polyphenols in taperebá peel, highlighting the high content of ellagic acid and quercetin compounds. There was significant retention of phenolic compounds when microencapsulated, demonstrating high retention at all evaluated temperatures. This study is the first to microencapsulate the extract of taperebá peel, in addition to identifying and quantifying some compounds in this fruit.
Collapse
|
25
|
Trifan A, Zengin G, Brebu M, Skalicka-Woźniak K, Luca SV. Phytochemical Characterization and Evaluation of the Antioxidant and Anti-Enzymatic Activity of Five Common Spices: Focus on Their Essential Oils and Spent Material Extractives. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122692. [PMID: 34961163 PMCID: PMC8708095 DOI: 10.3390/plants10122692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 05/27/2023]
Abstract
The essential oil industry of aromatic herbs and spices is currently producing a significant amount of by-products, such as the spent plant materials remaining after steam or hydrodistillation, that are simply discarded. The aim of this study was to comparatively investigate the phytochemical composition, antioxidant and multi-enzymatic inhibitory potential of the essential oils and spent plant material extractives obtained from cinnamon, cumin, clove, laurel, and black pepper. The essential oils were characterized by the presence of several phytochemical markers (cinnamaldehyde, cuminaldehyde, eugenol, eucalyptol, α-terpinene, limonene, β-caryophyllene or β-pinene). On the other hand, the LC-HRMS/MS profiling of the spent material extracts allowed the annotation of species specific and non-specific metabolites, such as organic acids, phenolic acids, flavonoids, proanthocyanidins, hydrolysable tannins, fatty acids, or piperamides. All samples exhibited very strong antioxidant effects, with the clove essential oil displaying the strongest radical scavenging (525.78 and 936.44 mg TE/g in DPPH and ABTS assays), reducing (2848.28 and 1927.98 mg TE/g in CUPRAC and FRAP), and total antioxidant capacity (68.19 mmol TE/g). With respect to the anti-acetylcholinesterase (0.73-2.95 mg GALAE/g), anti-butyrylcholinesterase (0-3.41 mg GALAE/g), anti-tyrosinase (0-76.86 mg KAE/g), anti-amylase and anti-glucosidase (both 0-1.00 mmol ACAE/g) assays, the spice samples showed a modest activity. Overall, our study reports that, not only the volatile fractions of common spices, but also their spent plant materials remaining after hydrodistillation can be regarded as rich sources of bioactive molecules with antioxidant and multi-enzymatic inhibitory effects.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey;
| | - Mihai Brebu
- Physical Chemistry of Polymers Laboratory, “Petru Poni” Institute of Macromolecular Chemistry, 700481 Iasi, Romania;
| | | | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
26
|
Peixoto Araujo NM, Silva EK, Arruda HS, Rodrigues de Morais D, Angela A. Meireles M, Pereira GA, Pastore GM. Recovering phenolic compounds from Eugenia calycina Cambess employing high-intensity ultrasound treatments: A comparison among its leaves, fruit pulp, and seed as promising sources of bioactive compounds. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Peixoto Araujo NM, Arruda HS, Marques DRP, de Oliveira WQ, Pereira GA, Pastore GM. Functional and nutritional properties of selected Amazon fruits: A review. Food Res Int 2021; 147:110520. [PMID: 34399498 DOI: 10.1016/j.foodres.2021.110520] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 01/23/2023]
Abstract
This review reports the nutritional, phytochemical compounds and biological properties of 4 fruits commonly consumed by people living in Amazon region, namely Biribá (Rollinia mucosa Jacq.), Rambutan (Nephelium lappaceum L.), Pupunha (Bactris gasipaes Kunth) and Tucumã (Astrocaryum aculeatum Meyer). These fruits have been high held nutritional, functional and economic potential and contribute to the daily intake of nutrients, energy and bioactive compounds by people living in Amazon rainforest region. Phytochemical compounds with biological properties were detected in these fruits, for instance (but not limited to), annonaceous acetogenins in Biribá, geraniin and corilagin in Rambutan, rutin and catechin in Pupunha, and β-carotene and flavonoids in Tucumã. The biological properties of Biribá, Rambutan, Pupunha and Tucumã have been evaluated by in vitro and in vivo assays, especially antioxidant and antimicrobial activities. Therefore, these Amazonian fruits can be exploited by the food industry as a food and therapeutic plant-material to develop valuable products, such as medicine products and can be used as sources for obtaining compounds for the food, cosmetics and pharmaceutical applications.
Collapse
Affiliation(s)
- Nayara Macêdo Peixoto Araujo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| | - Henrique Silvano Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil; Nutrition and Metabolism Laboratory, Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - David Roger Paixão Marques
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Williara Queiroz de Oliveira
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Gustavo Araujo Pereira
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), 66075-110 Belém, PA, Brazil
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
28
|
Crescenzi MA, D’Urso G, Piacente S, Montoro P. LC-ESI/LTQOrbitrap/MS Metabolomic Analysis of Fennel Waste ( Foeniculum vulgare Mill.) as a Byproduct Rich in Bioactive Compounds. Foods 2021; 10:foods10081893. [PMID: 34441670 PMCID: PMC8392248 DOI: 10.3390/foods10081893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Food industries produce a high amount of waste every year. These wastes represent a source of bioactive compounds to be used to produce cosmetic and nutraceutical products. In this study, the possibility to retrain food waste as a potential source of bioactive metabolites is evaluated. In particular, metabolite profiles of different parts (bulb, leaves, stems and little stems) of fennel waste were investigated by liquid chromatography coupled with mass spectrometry (LC-ESI/LTQ Orbitrap MS). To discriminate the different plant parts, a Multivariate Data Analysis approach was developed. Metabolomic analysis allowed the identification of different metabolites mainly belonging to hydroxycinnamic acid derivatives, flavonoid glycosides, flavonoid aglycons, phenolic acids, iridoid derivatives and lignans. The identification of compounds was based on retention times, accurate mass measurements, MS/MS data, exploration on specific metabolites database and comparison with data reported in the literature for F. vulgare. Moreover, the presence of different oxylipins was relieved; these metabolites for the first time were identified in fennel. Most of the metabolites identified in F. vulgare possess anti-inflammatory, antioxidant and/or immunomodulatory properties. Considering that polyphenols are described to possess antioxidant activity, spectrophotometric tests were performed to evaluate the antioxidant activity of each part of the fennel.
Collapse
|
29
|
Peixoto Araujo NM, Arruda HS, de Paulo Farias D, Molina G, Pereira GA, Pastore GM. Plants from the genus Eugenia as promising therapeutic agents for the management of diabetes mellitus: A review. Food Res Int 2021; 142:110182. [PMID: 33773658 DOI: 10.1016/j.foodres.2021.110182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
This review combined scientific data regarding the use of genus Eugenia plants for the management of diabetes. Diabetes mellitus is a chronic metabolic disease mainly characterized by hyperglycaemia, which can lead to serious health complications. Scientists have been seeking therapeutic compounds in plants, reporting the species of the genus Eugenia as a potential source of phytochemicals with antidiabetic properties. In vitro and in vivo studies have proved that the bioactive compounds in the genus Eugenia can positively affect the biomarkers of diabetes. We discussed the phytochemical profile of the genus Eugenia and its mechanism of action on diabetes, which could modulate carbohydrate metabolism, glucose homeostasis, and insulin secretion, inhibit carbohydrases and reduce oxidative stress, suppressing the formation of advanced glycation end-products and protecting/regenerating pancreatic β-cells. Therefore, plants of the genus Eugenia showed therapeutic potential to be used in the treatment of diabetes and its comorbidities.
Collapse
Affiliation(s)
- Nayara Macêdo Peixoto Araujo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| | - Henrique Silvano Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil; Nutrition and Metabolism Laboratory, Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Gustavo Molina
- Institute of Science and Technology, Food Engineering, UFVJM, 39100-000 Diamantina, MG, Brazil
| | - Gustavo Araujo Pereira
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), 66075-110 Belém, PA, Brazil
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
30
|
Pinto IC, Seibert JB, Pinto LS, Santos VR, de Sousa RF, Sousa LRD, Amparo TR, Dos Santos VMR, do Nascimento AM, de Souza GHB, Vasconcellos WA, Vieira PMA, Andrade ÂL. Preparation of glass-ionomer cement containing ethanolic Brazilian pepper extract (Schinus terebinthifolius Raddi) fruits: chemical and biological assays. Sci Rep 2020; 10:22312. [PMID: 33339861 PMCID: PMC7749175 DOI: 10.1038/s41598-020-79257-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Plants may contain beneficial or potentially dangerous substances to humans. This study aimed to prepare and evaluate a new drug delivery system based on a glass-ionomer-Brazilian pepper extract composite, to check for its activity against pathogenic microorganisms of the oral cavity, along with its in vitro biocompatibility. The ethanolic Brazilian pepper extract (BPE), the glass-ionomer cement (GIC) and the composite GIC-BPE were characterized by scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and thermal analysis. The BPE compounds were identified by UPLC–QTOF–MS/MS. The release profile of flavonoids and the mechanical properties of the GIC-BPE composite were assessed. The flavonoids were released through a linear mechanism governing the diffusion for the first 48 h, as evidenced by the Mt/M∞ relatively to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt t$$\end{document}t, at a diffusion coefficient of 1.406 × 10–6 cm2 s−1. The ATR-FTIR analysis indicated that a chemical bond between the GIC and BPE components may have occurred, but the compressive strength of GIC-BPE does not differ significantly from that of this glass-ionomer. The GIC-BPE sample revealed an ample bacterial activity at non-cytotoxic concentrations for the human fibroblast MRC-5 cells. These results suggest that the prepared composite may represent an alternative agent for endodontic treatment.
Collapse
Affiliation(s)
- Isabelle C Pinto
- Departamento de Química, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | - Janaína B Seibert
- Departamento de Química, Universidade Federal de São Carlos, UFSCar, São Carlos, 13565-905, Brazil
| | - Luciano S Pinto
- Departamento de Química, Universidade Federal de São Carlos, UFSCar, São Carlos, 13565-905, Brazil
| | - Vagner R Santos
- Departamento de Clínica, Patologia e Cirurgias Odontológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, 31270-901, Brazil
| | - Rafaela F de Sousa
- Departamento de Química, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | - Lucas R D Sousa
- Departamento de Química, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil.,Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | - Tatiane R Amparo
- Laboratório de Fitotecnologia, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | - Viviane M R Dos Santos
- Departamento de Química, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | - Andrea M do Nascimento
- Departamento de Química, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | | | - Walisson A Vasconcellos
- Departamento de Odontologia Restauradora, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, 31270-901, Brazil
| | - Paula M A Vieira
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | - Ângela L Andrade
- Departamento de Química, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil.
| |
Collapse
|
31
|
Grgić J, Šelo G, Planinić M, Tišma M, Bucić-Kojić A. Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants (Basel) 2020; 9:E923. [PMID: 32993196 PMCID: PMC7601682 DOI: 10.3390/antiox9100923] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Plant-derived phenolic compounds have multiple positive health effects for humans attributed to their antioxidative, anti-inflammatory, and antitumor properties, etc. These effects strongly depend on their bioavailability in the organism. Bioaccessibility, and consequently bioavailability of phenolic compounds significantly depend on the structure and form in which they are introduced into the organism, e.g., through a complex food matrix or as purified isolates. Furthermore, phenolic compounds interact with other macromolecules (proteins, lipids, dietary fibers, polysaccharides) in food or during digestion, which significantly influences their bioaccessibility in the organism, but due to the complexity of the mechanisms through which phenolic compounds act in the organism this area has still not been examined sufficiently. Simulated gastrointestinal digestion is one of the commonly used in vitro test for the assessment of phenolic compounds bioaccessibility. Encapsulation is a method that can positively affect bioaccessibility and bioavailability as it ensures the coating of the active component and its targeted delivery to a specific part of the digestive tract and controlled release. This comprehensive review aims to present the role of encapsulation in bioavailability of phenolic compounds as well as recent advances in coating materials used in encapsulation processes. The review is based on 258 recent literature references.
Collapse
Affiliation(s)
| | | | | | | | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (J.G.); (G.Š.); (M.P.); (M.T.)
| |
Collapse
|