1
|
Tu Z, Li S, Tao M, He W, Shu Z, Wang S, Liu Z. Effect of shaking and piling processing on improving the aroma quality of green tea. Food Res Int 2025; 201:115624. [PMID: 39849777 DOI: 10.1016/j.foodres.2024.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Aroma plays a crucial role in the quality of pure green tea beverage. However, there are limited methods to improve their aroma. In this study, green tea produced using shaking and piling process (SPGT) demonstrated a notable improvement in aromatic intensity, particularly in floral, fruity, and sweet notes. A total of 58 volatile compounds were detected, with SPGT exhibiting the highest concentration of aroma compounds among the tested green teas. Eight key aroma compounds were selected based on a relative odor activity value (ROAV) greater than 1 in SPGT: dimethyl sulfide (71.14, cooked corn-like), 2-methylbutanal (3.17, cereal), octanal (1.31, fruity), linalool (5.25, floral), nonanal (5.00, floral), (E)-2-nonenal (2.81, cucumber), decanal (22.90, fruity), and β-ionone (60.51, floral). The concentration of aroma compounds, especially for floral and fruity key volatile compounds significantly increased during the shaking and piling process (p < 0.05), and their formation pathways help explained these changes. Our results provided a new theoretical foundation and practical guidelines for producing the high-aroma green tea.
Collapse
Affiliation(s)
- Zheng Tu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Sixu Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China; The College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Weizhong He
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang 323400, China
| | - Zaifa Shu
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang 323400, China
| | - Shanshan Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
2
|
Guo X, Wang L, Huang X, Zhou Q. Characterization of the volatile compounds in tea ( Camellia sinensis L.) flowers during blooming. Front Nutr 2025; 11:1531185. [PMID: 39877541 PMCID: PMC11772201 DOI: 10.3389/fnut.2024.1531185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Tea flower, with characteristic flavor formed during blooming, are a significant tea resource. However, studies on the volatile compounds of tea flower and their aroma characteristics during flowering are scarce. In this study, the odor characteristics of tea flower during blooming were comprehensively investigated by GC-MS, PCA, ACI determination and sensory evaluation. The tea flower of unopened buds (TF-S1) contained the highest alcohol amounts, while fully opened tea flowers (TF-S3) had the highest heterocyclic compounds. Half-opened tea flowers (TF-S2) had the most volatile compounds, including high levels of linalool and its oxides, and low levels of (Z)-3-hexen-1-ol. Acetoin and cosmene were first identified in TF-S1 and TF-S2, respectively. The major ACI components differed, with linalool being prominent exhibiting ACI above 27 in all samples. Acetophenone, unique to TF-S2 with ACI of 57.35, contributed to sweet odor. Furthermore, PCA analysis and sensory evaluation revealed distinct aroma characteristics among the samples. Overall, TF-S2 and TF-S3 had higher volatile amounts and better aroma properties with floral, powdery or almond-like odors. These results advance the understanding of aroma properties of tea flower during blooming, and provide a reference for resource utilization and promotion of the application in food or cosmetics industries.
Collapse
Affiliation(s)
- Xiangyang Guo
- College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Dabie Mountain Laboratory, Xinyang, China
| | - Lulu Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Xiuting Huang
- College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Qiying Zhou
- College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- Dabie Mountain Laboratory, Xinyang, China
| |
Collapse
|
3
|
Anand J, Agarwal S, Thapa P, Gupta M, Bachheti RK, Rai N. Potential of tea-derived phytoconstituents against Candida albicans and C. glabrata infection. TEA IN HEALTH AND DISEASE PREVENTION 2025:621-633. [DOI: 10.1016/b978-0-443-14158-4.00024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Cai Y, Liu S, Ge X, Cheng L, Zhang X. Inhibitory effect of tea flower polysaccharides on oxidative stress and microglial oxidative damage in aging mice by regulating gut microbiota. Food Funct 2024; 15:11444-11457. [PMID: 39479919 DOI: 10.1039/d4fo03484h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Tea flower polysaccharides (TFPS) have prominent anti-aging effect. In this study, we used an animal model of aging induced by D-galactose in mice to investigate the effect of TFPS on reducing inflammatory factors, lowering oxidative stress levels, and inhibiting oxidative damage to microglia from the perspective of regulating gut microbiota. The results showed that TFPS could improve the homeostasis of gut microbiota in aging mice, reduce the ratio of Firmicutes to Bacteroidota, and significantly increase the abundance of Lactobacillus. At the same time, TFPS reduced the excessive activation of hippocampal microglia in aging mice, significantly down-regulated the levels of pro-inflammatory factors IL-6, IL-1β, TNF-α, and nuclear transcription factor NF-κB, increased the activity of antioxidant enzymes SOD, CAT, and POD, and reduced the content of MDA. Our research results indicate that TFPS can improve the disorder of gut microbiota, alleviate oxidative damage to glial cells, alleviate neuroinflammation, and play a role in delaying aging.
Collapse
Affiliation(s)
- Yidan Cai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Siyu Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Xing Ge
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China.
| |
Collapse
|
5
|
Tang Q, Xiang Y, Gao W, Zhu L, Xu Z, Li Y, Yue Z. TeaTFactor: A Prediction Tool for Tea Plant Transcription Factors Based on BERT. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2123-2132. [PMID: 39150804 DOI: 10.1109/tcbb.2024.3444466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
A transcription factor (TF) is a sequence-specific DNA-binding protein, which plays key roles in cell-fate decision by regulating gene expression. Predicting TFs is key for tea plant research community, as they regulate gene expression, influencing plant growth, development, and stress responses. It is a challenging task through wet lab experimental validation, due to their rarity, as well as the high cost and time requirements. As a result, computational methods are increasingly popular to be chosen. The pre-training strategy has been applied to many tasks in natural language processing (NLP) and has achieved impressive performance. In this paper, we present a novel recognition algorithm named TeaTFactor that utilizes pre-training for the model training of TFs prediction. The model is built upon the BERT architecture, initially pre-trained using protein data from UniProt. Subsequently, the model was fine-tuned using the collected TFs data of tea plants. We evaluated four different word segmentation methods and the existing state-of-the-art prediction tools. According to the comprehensive experimental results and a case study, our model is superior to existing models and achieves the goal of accurate identification. In addition, we have developed a web server at http://teatfactor.tlds.cc, which we believe will facilitate future studies on tea transcription factors and advance the field of crop synthetic biology.
Collapse
|
6
|
Chen D, Wang A, Lv J, Peng Y, Zheng Y, Zuo J, Kan J, Zong S, Zeng X, Liu J. Tea (Camellia sinensis L.) flower polysaccharide attenuates metabolic syndrome in high-fat diet induced mice in association with modulation of gut microbiota. Int J Biol Macromol 2024; 279:135340. [PMID: 39255891 DOI: 10.1016/j.ijbiomac.2024.135340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
There is a growing body of evidence suggesting that dietary polysaccharides play a crucial role in preventing metabolic syndrome (MetS) through their interaction with gut microbes. Tea (Camellia sinensis L.) flower polysacchride (TFPS) is a novel functional compound known for its diverse beneficial effects in both vivo and vitro. To further investigate the effects of TFPS on MetS and gut microbiota, and the possible association between gut microbiota and their activities, this study was carried out on mice that were fed a high-fat diet (HFD) and given oral TFPS at a dose of 400 and 800 mg/kg·body weight (BW)/d, respectively. TFPS treatment significantly mitigated HFD-induced MetS, evidenced by reductions in body weight, fat accumulation, plasma levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and IL-1β, along with an increase in plasma IL-10 levels. Furthermore, TFPS induced alterations in the diversity and composition of HFD-induced gut microbiota. Specifically, TFPS influenced the relative abundance of 11 genera, including Lactobacillus and Lactococcus, which showed strong correlations with metabolic improvements and likely contributed to the amelioration of MetS. In conclusion, TFPS exhibits promising prebiotic properties in preventing MetS and regulating gut microbiota.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ao Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jialiang Lv
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yiling Peng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yunqing Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jiayu Zuo
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
7
|
Yang W, Liu F, Wu G, Liang S, Bai X, Liu B, Zhang B, Chen H, Yang J. Widely Targeted Metabolomics Analysis of the Roots, Stems, Leaves, Flowers, and Fruits of Camellia luteoflora, a Species with an Extremely Small Population. Molecules 2024; 29:4754. [PMID: 39407682 PMCID: PMC11477736 DOI: 10.3390/molecules29194754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Camellia luteoflora is a rare and endangered plant endemic to China. It has high ornamental and potential economic and medicinal value, and is an important germplasm resource of Camellia. To understand the distributions and differences in metabolites from different parts of C. luteoflora, in this study, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to examine the types and contents of chemical constituents in five organs of C. luteoflora: roots, stems, leaves, flowers, and fruits. The results showed that a total of 815 metabolites were identified in the five organs and were classified into 18 main categories, including terpenoids (17.1%), amino acids (10.4%), flavonoids (10.3%), sugars and alcohols (9.8%), organic acids (9.0%), lipids (7.1%), polyphenols (4.8%), alkaloids (4.8%), etc. A total of 684 differentially expressed metabolites (DEMs) in five organs were obtained and annotated into 217 KEGG metabolic pathways, among which metabolic pathways, ABC transporters, the biosynthesis of cofactors, and the biosynthesis of amino acids were significantly enriched. In DEMs, flowers are rich in flavonoids, polyphenols, organic acids, and steroids; fruits are rich in amino acids, alkaloids, vitamins, and xanthones; stems are rich in lignans; and leaves have the highest relative content of phenylpropanoids, ketoaldehydic acids, quinones, sugars and alcohols, terpenoids, coumarins, lipids, and others; meanwhile, the metabolite content is lower in roots. Among the dominant DEMs, 58 were in roots, including arachidonic acid, lucidone, isoliquiritigenin, etc.; 75 were in flowers, including mannose, shikimic acid, d-gluconic acid, kaempferol, etc.; 45 were in the fruit, including pterostilbene, l-ascorbic acid, riboflavin, etc.; 27 were in the stems, including salicylic acid, d-(-)-quinic acid, mannitol, (-)-catechin gallate, etc.; there was a maximum number of 119 dominant metabolites in the leaves, including oleanolic acid, l-glucose, d-arabitol, eugenol, etc. In sum, the rich chemical composition of C. luteoflora and the significant differences in the relative contents of metabolites in different organs will provide theoretical references for the study of tea, flower tea, edible oil, nutraceuticals, and the medicinal components of C. luteoflora.
Collapse
Affiliation(s)
- Weicheng Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.Y.); (F.L.); (B.Z.); (H.C.); (J.Y.)
| | - Fen Liu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.Y.); (F.L.); (B.Z.); (H.C.); (J.Y.)
| | - Gaoyin Wu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.Y.); (F.L.); (B.Z.); (H.C.); (J.Y.)
| | - Sheng Liang
- Chishui Alsophila National Nature Reserve Management Bureau, Chishui 646259, China; (S.L.); (X.B.); (B.L.)
| | - Xiaojie Bai
- Chishui Alsophila National Nature Reserve Management Bureau, Chishui 646259, China; (S.L.); (X.B.); (B.L.)
| | - Bangyou Liu
- Chishui Alsophila National Nature Reserve Management Bureau, Chishui 646259, China; (S.L.); (X.B.); (B.L.)
| | - Bingcheng Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.Y.); (F.L.); (B.Z.); (H.C.); (J.Y.)
| | - Hangdan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.Y.); (F.L.); (B.Z.); (H.C.); (J.Y.)
| | - Jiao Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.Y.); (F.L.); (B.Z.); (H.C.); (J.Y.)
| |
Collapse
|
8
|
Song X, Wu Z, Liang Q, Ma C, Cai P. Prediction of storage years of Wuyi rock tea Shuixian by metabolites analysis. Food Sci Nutr 2024; 12:7166-7176. [PMID: 39479628 PMCID: PMC11521635 DOI: 10.1002/fsn3.4327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 11/02/2024] Open
Abstract
Wuyi rock teas of different storage duration have different flavor, bioactivity, and market value, Shuixian is a main variety of Wuyi rock tea. In this study, metabolites composition of Shuixian with different storage years were analyzed using Ultrahigh Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF-MS). A total of 1201 compounds were identified, and 104 differential compounds (VIP > 1.5) were determined. Furthermore, the results showed that five compounds exhibited a positive correlation with storage time, such as alpha-terpineol formate, carnosol, 2-phenethyl-D-glucopyranoside, Ellagic acid, and D-ribosyl nicotinic acid, while 24 compounds showed a negative correlation, such as Ethyl linoleate, leucocyanidin, cis-3-hexenyl acetate. In total, 29 signature compounds significantly correlated with storage time. These findings shed light on the patterns and mechanisms of changes in the composition of Wuyi rock tea during storage and provide a theoretical foundation for distinguishing the storage years.
Collapse
Affiliation(s)
- Xiaoyue Song
- College of Food Science, Fujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Zhifeng Wu
- College of Food Science, Fujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Quanming Liang
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Chunhua Ma
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Pumo Cai
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| |
Collapse
|
9
|
Chu K, Liu J, Zhang X, Wang M, Yu W, Chen Y, Xu L, Yang G, Zhang N, Zhao T. Herbal Medicine-Derived Exosome-Like Nanovesicles: A Rising Star in Cancer Therapy. Int J Nanomedicine 2024; 19:7585-7603. [PMID: 39081899 PMCID: PMC11287466 DOI: 10.2147/ijn.s477270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Plant-derived exosome-like nanovesicles (PDNVs) are small nanoscale vesicles containing lipids, RNAs, proteins and some plant natural products secreted by plant cells. Over the last decade, PDNVs have garnered significant interest due to its exceptional therapeutic benefits in the treatment of various diseases. Herbal medicine, as a medicinal plant, plays an important role in the treatment of diseases including cancer. Especially in recent years, the function of herbal medicine derived exosome-like nanovesicles (HMDNVs) in the treatment of cancer has been widely concerned, and has become a research hotspot of nanomedicine. In this review, the biological characteristics, functions and the therapeutic advantages of PDNVs are reviewed, as well as the recent achievements and research progress of HMDNVs in cancer treatment, demonstrating its enormous promise as a cancer therapy, and new insights are provided for future research and development of anti-tumor drugs.
Collapse
Affiliation(s)
- Kaifei Chu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Jie Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Xu Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Minran Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Wanping Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Yuyue Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Lingling Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Geng Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Naru Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| |
Collapse
|
10
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
11
|
Chen D, Wang A, Lv J, Tang C, Jin CH, Liu J, Zeng X, Wang L. Structural and digestive characters of a heteropolysaccharide fraction from tea ( Camellia sinensis L.) flower. Food Chem X 2024; 21:101058. [PMID: 38178927 PMCID: PMC10765012 DOI: 10.1016/j.fochx.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Tea (Camellia sinensis L.) flower polysaccharides (TFPS) have various health-promoting functions. In the present work, the structure of a purified TFPS fraction, namely TFPS-1-3p, and its in vitro digestive properties were investigated. The results demonstrated that TFPS-1-3p was a typical heteropolysaccharide consisting of rhamnose (Rha), arabinose (Ara), galactose (Gal) and galacturonic acid (GalA) with a molecular weight of 47.77 kDa. The backbone of TFPS-1-3p contained → 4)-α-d-GalpA(-6-OMe)-(1 → 4)-α-GalpA-(1 → and → 4)-α-d-GalpA(-6-OMe)-(1 → 2,4)-α-l-Rhap-(1 → linkages. The branch linkages in TFPS-1-3p contained → 6)-β-d-Galp-(1→, →3,6)-β-d-Galp-(1→, →5)-α-l-Araf-(1 → and → 3,5)-α-l-Araf-(1 →. Subsequently, TFPS-1-3p could not be degraded under simulated human gastrointestinal conditions but could be of use to human fecal microbes, thereby lowering the pH and increasing the production of short-chain fatty acids (SCFAs) of the gut microenvironment and altering the composition of the gut microbiota. The relative abundance of Fusobacterium_mortiferum Megasphaera_elsdenii_DSM_20460, Bacteroides thetaiotaomicron, Bacteroides plebeius and Collinsella aerofaciens increased significantly, potentially contributing to the degradation of TFPS-1-3p.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ao Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jialiang Lv
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chang-hai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Li Wang
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
12
|
Liana D, Eurtivong C, Phanumartwiwath A. Boesenbergia rotunda and Its Pinostrobin for Atopic Dermatitis: Dual 5-Lipoxygenase and Cyclooxygenase-2 Inhibitor and Its Mechanistic Study through Steady-State Kinetics and Molecular Modeling. Antioxidants (Basel) 2024; 13:74. [PMID: 38247498 PMCID: PMC10812521 DOI: 10.3390/antiox13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Human 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) are potential targets for suppressing pruritic skin inflammation in atopic dermatitis (AD). In addition, Staphylococcus aureus colonization and oxidative stress worsen AD skin conditions. We aimed to investigate anti-inflammatory activity, using 5-LOX and COX-2 inhibitions, and the anti-staphylococcal, and antioxidant potentials of several medicinal plants bio-prospected from traditional medicine related to AD pathogenesis. Essential oils and hexane fractions were prepared and analyzed using gas chromatography-mass spectrometry. Boesenbergia rotunda hexane extract displayed anti-Staphylococcus aureus (MIC = 10 µg/mL) and antioxidant activities (IC50 = 557.97 and 2651.67 µg/mL against DPPH and NO radicals, respectively). A major flavonoid, pinostrobin, was further nonchromatographically isolated. Pinostrobin was shown to be a potent 5-LOX inhibitor (IC50 = 0.499 µM) compared to nordihydroguaiaretic acid (NDGA; IC50 = 5.020 µM) and betamethasone dipropionate (BD; IC50 = 2.077 µM) as the first-line of AD treatment. Additionally, pinostrobin inhibited COX-2 (IC50 = 285.67 µM), which was as effective as diclofenac sodium (IC50 = 290.35 µM) and BD (IC50 = 240.09 µM). This kinetic study and molecular modeling showed the mixed-type inhibition of NDGA and pinostrobin against 5-LOX. This study suggests that B. rotunda and its bioactive pinostrobin have promising properties for AD therapy.
Collapse
Affiliation(s)
- Desy Liana
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand;
| | | |
Collapse
|
13
|
Gauttam VK, Munjal K, Chopra H, Ahmad A, Rana MK, Kamal MA. A Mechanistic Review on Therapeutic Potential of Medicinal Plants and their Pharmacologically Active Molecules for Targeting Metabolic Syndrome. Curr Pharm Des 2024; 30:10-30. [PMID: 38155468 DOI: 10.2174/0113816128274446231220113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Metabolic syndrome (MetS) therapy with phytochemicals is an emerging field of study with therapeutic potential. Obesity, insulin resistance, high blood pressure, and abnormal lipid profiles are all components of metabolic syndrome, which is a major public health concern across the world. New research highlights the promise of phytochemicals found in foods, including fruits, vegetables, herbs, and spices, as a sustainable and innovative method of treating this illness. Anti-inflammatory, antioxidant, and insulin-sensitizing qualities are just a few of the many positive impacts shown by bioactive substances. Collectively, they alleviate the hallmark symptoms of metabolic syndrome by modulating critical metabolic pathways, boosting insulin sensitivity, decreasing oxidative stress, and calming chronic low-grade inflammation. In addition, phytochemicals provide a multimodal strategy by targeting not only adipose tissue but also the liver, skeletal muscle, and vascular endothelium, all of which have a role in the pathogenesis of MetS. Increasing evidence suggests that these natural chemicals may be useful in controlling metabolic syndrome as a complementary treatment to standard medication or lifestyle changes. This review article emphasizes the therapeutic potential of phytochemicals, illuminating their varied modes of action and their ability to alleviate the interconnected causes of metabolic syndrome. Phytochemical-based interventions show promise as a novel and sustainable approach to combating the rising global burden of metabolic syndrome, with the ultimate goal of bettering public health and quality of life.
Collapse
Affiliation(s)
- Vinod Kumar Gauttam
- Department of Pharmacognosy, Shiva Institute of Pharmacy, Bilaspur, Hmachal Pradesh, India
| | - Kavita Munjal
- Department of Pharmacognosy, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Aftab Ahmad
- Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahesh Kumar Rana
- Department of Agriculture, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
14
|
Nenni M, Karahuseyin S. Medicinal Plants, Secondary Metabolites, and Their Antiallergic Activities. BIOTECHNOLOGY OF MEDICINAL PLANTS WITH ANTIALLERGY PROPERTIES 2024:37-126. [DOI: 10.1007/978-981-97-1467-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Chen F, Chen YP, Wu H, Li Y, Zhang S, Ke J, Yao JY. Characterization of tea (Camellia sinensis L.) flower extract and insights into its antifungal susceptibilities of Aspergillus flavus. BMC Complement Med Ther 2023; 23:286. [PMID: 37580785 PMCID: PMC10424394 DOI: 10.1186/s12906-023-04122-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis L.) flowers will compete with tea leaves in nutrition and are abandoned as an undesirable by-product. In this study, the biological efficacy of tea flowers was investigated. Further exploration of its antifungal activity was explained. METHODS Tea flowers harvested from China were characterized in term of component, antioxidant ability, tyrosinase inhibition, and antifungal ability. Chemical compounds of tea flowers were analyzed by LC-MS. Disinfectant compounds were identified in tea flowers, and 2-ketobutyric acid exhibited antifungal activity against Aspergillus flavusCCTCC AF 2023038. The antifungal mechanism of 2-ketobutyric acid was further investigated by RNA-seq. RESULTS Water-soluble tea flower extracts (TFEs) exhibited free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS) as well as a high ferric-reducing ability. However, no inhibition of tyrosinase activity was observed. In the antifungal test, 6.4 mg/mL TFE reached 71.5% antifungal rate and the electrical conductivity of the culture broth increased with increasing concentration of TFE, implying that it damaged the fungal cell membrane by the TFE. Several disinfectants were identified in TFE by LC-MS, and 2-ketobutyric acid was also confirmed to be capable of fungal inhibition. Propidium iodide (PI) staining indicated that 2-ketobutyric acid caused damage to the cell membrane. RNA-seq analysis revealed that 3,808 differentially expressed genes (DEGs) were found in A. flavus CCTCC AF 2023038 treated by 2-ketobutyric acid, and more than 1,000 DEGs involved in the integral and intrinsic component of membrane were affected. Moreover, 2-ketobutyric acid downregulated aflatoxin biosynthesis genes and decreased the aflatoxin production. CONCLUSIONS Overall, TFE exhibited excellent antioxidant ability and fungal inhibition against A. flavus CCTCC AF 2023038 due to its abundant disinfectant compounds. As a recognized food additive, 2-ketobutyric acid is safe to use in the food industry and can be utilized as the basis for the research and development of strong fungicides.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Yu-Pei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China.
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Hongtan Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Ya Li
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Shudi Zhang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Jincheng Ke
- Department of Dermatology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, 361000, China
| | - Jeng-Yuan Yao
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China
| |
Collapse
|
16
|
Yaowiwat N, Poomanee W, Leelapornpisid P, Chaiwut P. Utilization of Emulsion Inversion to Fabricate Tea ( Camellia sinensis L.) Flower Extract Obtained by Supercritical Fluid Extraction-Loaded Nanoemulsions. ACS OMEGA 2023; 8:28090-28097. [PMID: 37576676 PMCID: PMC10413370 DOI: 10.1021/acsomega.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
This study aimed to obtain tea flower extract (TFE) using supercritical fluid extraction, to determine the compounds present in the TFE and to establish its antioxidant activity. The fabrication of TFE nanoemulsions was also investigated using response surface methodology (RSM). UHPLC-ESI-QTOF-MS/MS and UHPLC-ESI-QqQ-MS/MS analysis showed that the TFE was composed of catechin and its derivatives, flavonols and anthocyanins, suggesting its potential as a free radical scavenger with strong reducing powers. A central composite design was applied to optimize the independent factors of the nanoemulsions. The factors had a significant (p < 0.05) effect on all response variables. The optimum level of factors for the fabrication was a surfactant-to-oil ratio of 2:1, a high hydrophilic-lipophilic balance (HLB) surfactant to low HLB surfactant ratio (HLR) of 1.6:1, and a PEG-40/PEG-60 hydrogenated castor oil ratio of 2:1. The responses obtained from the optimum levels were a 34.01 nm droplet size, a polydispersity index of 0.15, and 75.85% entrapment efficiency. In conclusion, TFE could be an antioxidant active ingredient and has been successfully loaded into nanoemulsions using RSM.
Collapse
Affiliation(s)
- Nara Yaowiwat
- School
of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Green
Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Worrapan Poomanee
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Pimporn Leelapornpisid
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Phanuphong Chaiwut
- School
of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Green
Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
17
|
Pereira AG, Cassani L, Liu C, Li N, Chamorro F, Barreira JCM, Simal-Gandara J, Prieto MA. Camellia japonica Flowers as a Source of Nutritional and Bioactive Compounds. Foods 2023; 12:2825. [PMID: 37569093 PMCID: PMC10417519 DOI: 10.3390/foods12152825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023] Open
Abstract
In recent decades, plants have strengthened their relevance as sources of molecules potentially beneficial for health. This underpinning effect also arises from the extensive research that has been conducted on plants that are typically undervalued, besides being scarcely used. This is the case with Camellia japonica in Galicia (NW Spain), where, despite its abundance, it is exclusively used for ornamental purposes and has been studied only for its proximate composition. Thus, the present study was conducted on several additional parameters in the flowers of eight C. japonica varieties. Our results show that camellia has a high nutritional value, with carbohydrates as the most abundant macronutrients followed by a moderate protein content (4.4-6.3 g/100 g dry weight) and high levels of polyunsaturated fatty acids (especially ω-3 fatty acids, which represent 12.9-22.7% of the total fatty acids), raising its potential for use for nutritional purposes. According to the thermochemical characterization and elemental composition of camellia, the raw material has poor mineralization and low nitrogen content, but high percentages of volatile matter and high carbon-fixation rates, making it a promising alternative for biofuel production. Furthermore, preliminary analysis reveals a high concentration of different bioactive compounds. As a result of these findings, camellias can be used as food or functional ingredients to improve the nutritional quality of food formulations.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250000, China;
| | - Ningyang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China;
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| |
Collapse
|
18
|
Qi D, Lu M, Li J, Ma C. Metabolomics Reveals Distinctive Metabolic Profiles and Marker Compounds of Camellia ( Camellia sinensis L.) Bee Pollen. Foods 2023; 12:2661. [PMID: 37509753 PMCID: PMC10378613 DOI: 10.3390/foods12142661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Camellia bee pollen (CBP) is a major kind of bee product which is collected by honeybees from tea tree (Camellia sinensis L.) flowers and agglutinated into pellets via oral secretion. Due to its special healthcare value, the authenticity of its botanical origin is of great interest. This study aimed at distinguishing CBP from other bee pollen, including rose, apricot, lotus, rape, and wuweizi bee pollen, based on a non-targeted metabolomics approach using ultra-high performance liquid chromatography-mass spectrometry. Among the bee pollen groups, 54 differential compounds were identified, including flavonol glycosides and flavone glycosides, catechins, amino acids, and organic acids. A clear separation between CBP and all other samples was observed in the score plots of the principal component analysis, indicating distinctive metabolic profiles of CBP. Notably, L-theanine (864.83-2204.26 mg/kg) and epicatechin gallate (94.08-401.82 mg/kg) were identified exclusively in all CBP and were proposed as marker compounds of CBP. Our study unravels the distinctive metabolic profiles of CBP and provides specific and quantified metabolite indicators for the assessment of authentic CBP.
Collapse
Affiliation(s)
- Dandan Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- Tea Research Institute, Shangdong Academy of Agricultural Sciences, Jinan 250000, China
| | - Meiling Lu
- Agilent Technologies (China) Co., Ltd., Beijing 100102, China
| | - Jianke Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
19
|
Liu X, Wang S, Cui L, Zhou H, Liu Y, Meng L, Chen S, Xi X, Zhang Y, Kang W. Flowers: precious food and medicine resources. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Zhang T, Ma X, Zhou Y, Yang H, Wang Y, Chen T, Chen Q, Deng Y. Metabolite Profiling of External and Internal Petals in Three Different Colors of Tea Flowers ( Camellia sinensis) Using Widely Targeted Metabolomics. Metabolites 2023; 13:784. [PMID: 37512491 PMCID: PMC10386189 DOI: 10.3390/metabo13070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The flower is the reproductive organ of the tea plant, while it is also processed into different kinds of products and thus of great significance to be utilized. In this study, the non-volatile secondary metabolites in the internal and external petals of white, white and pink, and pink tea flowers were studied using a widely targeted metabolomics method with ultra-high liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A total of 429 metabolites were identified, including 195 flavonoids, 121 phenolic acids, 40 alkaloids, 29 lignans and coumarins, 19 tannins, 17 terpenoids, and 8 other metabolites. The metabolites in the internal and external petals of different colored flowers showed great changes in flavonoids. Most flavonoids and all tannins in the internal petals were higher compared with the external petals. Some phenolic acids were more accumulated in the external petals, while others showed opposite trends. The pink tea flower contained more flavonoids, alkaloids, lignans, coumarins, terpenoids, and tannins compared with white tea flowers. In addition, cyanidin-3-O-glucoside was more accumulated in the external petals of the pink flower, indicating that anthocyanin may be the main reason for the color difference between the pink and white tea flower. The enriched metabolic pathways of different colored flowers were involved in flavonoid biosynthesis, glycine, serine and threonine metabolism, glycerophospholipid metabolism, and phenylpropanoid biosynthesis. The findings of this study broaden the current understanding of non-volatile compound changes in tea plants. It is also helpful to lay a theoretical foundation for integrated applications of tea flowers.
Collapse
Affiliation(s)
- Tao Zhang
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang 550025, China; (T.Z.); (H.Y.); (Y.W.); (T.C.)
| | - Xue Ma
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Qingshan Lake District, Nanchang 330045, China; (X.M.); (Y.Z.)
| | - Yuanyuan Zhou
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Qingshan Lake District, Nanchang 330045, China; (X.M.); (Y.Z.)
| | - Hui Yang
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang 550025, China; (T.Z.); (H.Y.); (Y.W.); (T.C.)
| | - Yuxin Wang
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang 550025, China; (T.Z.); (H.Y.); (Y.W.); (T.C.)
| | - Taolin Chen
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang 550025, China; (T.Z.); (H.Y.); (Y.W.); (T.C.)
| | - Qincao Chen
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Qingshan Lake District, Nanchang 330045, China; (X.M.); (Y.Z.)
| | - Yanli Deng
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang 550025, China; (T.Z.); (H.Y.); (Y.W.); (T.C.)
| |
Collapse
|
21
|
Mueed A, Shibli S, Al-Quwaie DA, Ashkan MF, Alharbi M, Alanazi H, Binothman N, Aljadani M, Majrashi KA, Huwaikem M, Abourehab MAS, Korma SA, El-Saadony MT. Extraction, characterization of polyphenols from certain medicinal plants and evaluation of their antioxidant, antitumor, antidiabetic, antimicrobial properties, and potential use in human nutrition. Front Nutr 2023; 10:1125106. [PMID: 37415912 PMCID: PMC10320526 DOI: 10.3389/fnut.2023.1125106] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Dietary medicinal plants are among the most sought-after topics in alternative medicine today due to their preventive and healing properties against many diseases. Aim This study aimed to extract and determine the polyphenols from indigenous plants extracts, i.e., Mentha longifolia, M. arvensis, Tinospora cordifolia, Cymbopogon citratus, Foeniculum vulgare, Cassia absus, Camellia sinensis, Trachyspermum ammi, C. sinensis and M. arvensis, then evaluate the antioxidant, cytotoxicity, and antimicrobial properties, besides enzyme inhibition of isolated polyphenols. Methods The antioxidant activity was evaluated by DPPH, Superoxide radical, Hydroxyl radical (OH.), and Nitric oxide (NO.) scavenging activity; the antidiabetic activity was evaluated by enzymatic methods, and anticancer activity using MTT assay, while the antibacterial activity. Results The results showed that tested medicinal plants' polyphenolic extracts (MPPE) exhibited the most significant antioxidant activity in DPPH, hydroxyl, nitric oxide, and superoxide radical scavenging methods because of the considerable amounts of total polyphenol and flavonoid contents. UHPLC profile showed twenty-five polyphenol complexes in eight medicinal plant extracts, categorized into phenolic acids, flavonoids, and alkaloids. The main polyphenol was 3-Feroylquinic acid (1,302 mg/L), also found in M. longifolia, C. absus, and C. sinensis, has a higher phenolic content, i.e., rosmarinic acid, vanillic acid, chlorogenic acid, p-coumaric acid, ferulic acid, gallic acid, catechin, luteolin, 7-O-neohesperideside, quercetin 3,7-O-glucoside, hesperidin, rutin, quercetin, and caffeine in the range of (560-780 mg/L). At the same time, other compounds are of medium content (99-312 mg/L). The phenolics in C. sinensis were 20-116% more abundant than those in M. longifolia, C. absus, and other medicinal plants. While T. cordifolia is rich in alkaloids, T. ammi has a lower content. The MTT assay against Caco-2 cells showed that polyphenolic extracts of T. ammi and C. citratus had maximum cytotoxicity. While M. arvensis, C. sinensis, and F. vulgare extracts showed significant enzyme inhibition activity, C. sinensis showed minor inhibition activity against α-amylase. Furthermore, F. vulgare and C. sinensis polyphenolic extracts showed considerable antibacterial activity against S. aureus, B. cereus, E. coli, and S. enterica. Discussion The principal component analysis demonstrated clear separation among medicinal plants' extracts based on their functional properties. These findings prove the therapeutic effectiveness of indigenous plants and highlight their importance as natural reserves of phytogenic compounds with untapped potential that needs to be discovered through advanced analytical methods.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Department of Food Technology, Institute of Food and Nutrition, Arid Agriculture University, Rawalpindi, Pakistan
| | - Sahar Shibli
- Food Science Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Diana A Al-Quwaie
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mada F Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mona Alharbi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Humidah Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mashael Huwaikem
- Cinical Nutrition Department, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
22
|
Gao Y, Han Z, Xu YQ, Yin JF. Chemical composition and anti-cholesterol activity of tea (Camellia sinensis) flowers from albino cultivars. Front Nutr 2023; 10:1142971. [PMID: 37051128 PMCID: PMC10083420 DOI: 10.3389/fnut.2023.1142971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Albino tea cultivars are mutant tea plants with altered metabolisms. Current studies focus on the leaves while little is known about the flowers. To evaluate tea flowers from different albino cultivars, the chemical composition and anti-cholesterol activity of tea flowers from three albino cultivars (i.e., Baiye No.1, Huangjinya, and Yujinxiang) were compared. According to the results, tea flowers from Yujinxiang had more amino acids but less polyphenols than tea flowers from the other two albino cultivars. A reduced content of procyanidins and a high chakasaponins/floratheasaponins ratio were characteristics of tea flowers from Yujinxiang. In vitro anti-cholesterol activity assays revealed that tea flowers from Yujinxiang exhibited stronger activity in decreasing the micellar cholesterol solubility, but not in cholesterol esterase inhibition and bile salt binding. It was noteworthy that there were no specific differences on the chemical composition and anti-cholesterol activity between tea flowers from albino cultivars and from Jiukeng (a non-albino cultivar). These results increase our knowledges on tea flowers from different albino cultivars and help food manufacturers in the cultivar selection of tea flowers for use.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
| | - Zhen Han
- Agro-Technical Extension Station of Ningbo City, Ningbo, China
| | - Yong-Quan Xu
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
- *Correspondence: Yong-Quan Xu,
| | - Jun-Feng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
- Jun-Feng Yin,
| |
Collapse
|
23
|
Myo H, Yaowiwat N, Pongkorpsakol P, Aonbangkhen C, Khat-udomkiri N. Butylene Glycol Used as a Sustainable Solvent for Extracting Bioactive Compounds from Camellia sinensis Flowers with Ultrasound-Assisted Extraction. ACS OMEGA 2023; 8:4976-4987. [PMID: 36777602 PMCID: PMC9909804 DOI: 10.1021/acsomega.2c07481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The research aims to assess the yield of bioactive compounds and their antioxidant activities obtained from tea flowers using an ultrasound-assisted extraction method with butylene glycol (BG-UAE) through Box-Behnken design. It investigates the bioactive compounds including the total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC) and analyzes their antioxidant activities, bioactive compound composition by liquid chromatography triple quadrupole tandem mass spectrometry, and their cellular activities via UAE and maceration using BG or ethanol as the solvent. Under optimal conditions, the values of the TPC, TFC, TTC, 1,1-diphenyl-2-picrylhydrazil radical scavenging assay, 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid radical scavenging assay, and ferric reducing antioxidant power assay (FRAP) of the BG-UAE extract were 54.00 ± 1.19 mg GAE/g sample, 291.47 ± 3.34 mg QE/g sample, 65.37 ± 1.78 mg TAE/g sample, 106.45 ± 1.21 mg TEAC/g sample, 163.58 ± 2.76 mg TEAC/g sample, and 121.31 ± 4.75 mg FeSO4/g sample, respectively. Except for FRAP, BG-UAE exhibited the highest values in all parameters compared to the other extraction methods. Catechins and caffeine were predominantly detected in tea flower extracts through UAE with BG and ethanol (EtOH-UAE). BG-UAE exhibited greater cell viability and cellular antioxidant activity than EtOH-UAE. The researcher expects that this research will contribute to the emergence of a green extraction technique that will offer larger functional components with economic and environmental benefits and minimal chemicals and energy use.
Collapse
Affiliation(s)
- Hla Myo
- School
of Cosmetic Science, Mae Fah Laung University, Chiang Rai57100, Thailand
| | - Nara Yaowiwat
- School
of Cosmetic Science, Mae Fah Laung University, Chiang Rai57100, Thailand
| | - Pawin Pongkorpsakol
- Princess
Srisavangavadhana College of Medicine, Chulabhorn
Royal Academy, Bangkok10210, Thailand
| | - Chanat Aonbangkhen
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok10330, Thailand
- Center
of Excellence in Natural Products Chemistry (CENP), Department of
Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok10330, Thailand
| | | |
Collapse
|
24
|
Research progress on the lipid-lowering and weight loss effects of tea and the mechanism of its functional components. J Nutr Biochem 2023; 112:109210. [PMID: 36395969 DOI: 10.1016/j.jnutbio.2022.109210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Obesity caused by poor eating habits has become a great challenge faced by public health organizations worldwide. Optimizing dietary intake and ingesting special foods containing biologically active substances (such as polyphenols, alkaloids, and terpenes) is a safe and effective dietary intervention to prevent the occurrence and development of obesity. Tea contains several active dietary factors, and daily tea consumption has been shown to have various health benefits, especially in regulating human metabolic diseases. Here, we reviewed recent advances in research on tea and its functional components in improving obesity-related metabolic dysfunction, and gut microbiota homeostasis and related clinical research. Furthermore, the potential mechanisms by which the functional components of tea could promote lipid-lowering and weight-loss effects by regulating fat synthesis/metabolism, glucose metabolism, gut microbial homeostasis, and liver function were summarized. The research results showing a "positive effect" or "no effect" objectively evaluates the lipid-lowering and weight-loss effects of the functional components of tea. This review provides a new scientific basis for further research on the functional ingredients of tea for lipid lowering and weight loss and the development of lipid-lowering and weight-loss functional foods and beverages derived from tea.
Collapse
|
25
|
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J, Deng B. The modulation effects of plant‐derived bioactive ingredients on chronic kidney disease: Focus on the gut–kidney axis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Zhongquan Xin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
26
|
Adenuga AA, Ore OT, Amos OD, Onibudo AO, Ayinuola O, Oyekunle JAO. Organochlorine pesticides in therapeutic teas and human health risk assessment. FOOD ADDITIVES & CONTAMINANTS: PART B 2022; 15:301-309. [DOI: 10.1080/19393210.2022.2127157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Olawole Ayinuola
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
- W. M. Keck Centre for Transgene Research, University of Notre Dame, South Bend, IN, USA
| | | |
Collapse
|
27
|
Tang D, Shen Y, Li F, Yue R, Duan J, Ye Z, Lin Y, Zhou W, Yang Y, Chen L, Wang H, Zhao J, Li P. Integrating metabolite and transcriptome analysis revealed the different mechanisms of characteristic compound biosynthesis and transcriptional regulation in tea flowers. FRONTIERS IN PLANT SCIENCE 2022; 13:1016692. [PMID: 36247612 PMCID: PMC9557745 DOI: 10.3389/fpls.2022.1016692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The flowers of tea plants (Camellia sinensis), as well as tea leaves, contain abundant secondary metabolites and are big potential resources for the extraction of bioactive compounds or preparation of functional foods. However, little is known about the biosynthesis and transcriptional regulation mechanisms of those metabolites in tea flowers, such as terpenoid, flavonol, catechins, caffeine, and theanine. This study finely integrated target and nontarget metabolism analyses to explore the metabolic feature of developing tea flowers. Tea flowers accumulated more abundant terpenoid compounds than young leaves. The transcriptome data of developing flowers and leaves showed that a higher expression level of later genes of terpenoid biosynthesis pathway, such as Terpene synthases gene family, in tea flowers was the candidate reason of the more abundant terpenoid compounds than in tea leaves. Differently, even though flavonol and catechin profiling between tea flowers and leaves was similar, the gene family members of flavonoid biosynthesis were selectively expressed by tea flowers and tea leaves. Transcriptome and phylogenetic analyses indicated that the regulatory mechanism of flavonol biosynthesis was perhaps different between tea flowers and leaves. However, the regulatory mechanism of catechin biosynthesis was perhaps similar between tea flowers and leaves. This study not only provides a global vision of metabolism and transcriptome in tea flowers but also uncovered the different mechanisms of biosynthesis and transcriptional regulation of those important compounds.
Collapse
Affiliation(s)
- Dingkun Tang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yihua Shen
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Fangdong Li
- College of Science, Anhui Agricultural University, Hefei, China
| | - Rui Yue
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianwei Duan
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhili Ye
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ying Lin
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yilin Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lixiao Chen
- Municipal Research Institute for Processing of Agricultural and Featured Products, Shiyan Academy of Agricultural Science, Shiyan, China
| | - Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
28
|
Cui Y, Lai G, Wen M, Han Z, Zhang L. Identification of low-molecular-weight color contributors of black tea infusion by metabolomics analysis based on UV-visible spectroscopy and mass spectrometry. Food Chem 2022; 386:132788. [PMID: 35344723 DOI: 10.1016/j.foodchem.2022.132788] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
Nine black tea samples with different color intensity were firstly determined by chromatic difference analyzer. The color characteristics were secondly quantitatively described by UV-visible spectroscopy. Thirdly, liquid chromatography tandem mass spectrometry (LC-MS) based metabolomics analysis was applied in low-molecular-weight compounds. Finally, the color contributors were identified by the correlation analysis of color, spectrometry and mass data. UV-visible based metabolomics analysis revealed that the wavelength at 380-520 nm (VIP > 1.50) was the critical absorbance band for distinguishing different color of BT infusions, while LC-MS based metabolomics analysis indicated that there were 48 main marker compounds responsible for the classification of different BT infusions. Correlation analysis results showed that the coefficients of theaflavins, thearubigins, theabrownins, flavonoid glycosides, and some hydroxycinnamoyl acids were > 0.7, which suggested they were main color contributors of BT infusion. The present study expanded a new vision on the color analysis of BT infusion.
Collapse
Affiliation(s)
- Yuqing Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Guoping Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
29
|
Feng H, Xiang Y, Wang X, Xue W, Yue Z. MTAGCN: predicting miRNA-target associations in Camellia sinensis var. assamica through graph convolution neural network. BMC Bioinformatics 2022; 23:271. [PMID: 35820798 PMCID: PMC9275082 DOI: 10.1186/s12859-022-04819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background MircoRNAs (miRNAs) play a central role in diverse biological processes of Camellia sinensis var.assamica (CSA) through their associations with target mRNAs, including CSA growth, development and stress response. However, although the experiment methods of CSA miRNA-target identifications are costly and time-consuming, few computational methods have been developed to tackle the CSA miRNA-target association prediction problem. Results In this paper, we constructed a heterogeneous network for CSA miRNA and targets by integrating rich biological information, including a miRNA similarity network, a target similarity network, and a miRNA-target association network. We then proposed a deep learning framework of graph convolution networks with layer attention mechanism, named MTAGCN. In particular, MTAGCN uses the attention mechanism to combine embeddings of multiple graph convolution layers, employing the integrated embedding to score the unobserved CSA miRNA-target associations. Discussion Comprehensive experiment results on two tasks (balanced task and unbalanced task) demonstrated that our proposed model achieved better performance than the classic machine learning and existing graph convolution network-based methods. The analysis of these results could offer valuable information for understanding complex CSA miRNA-target association mechanisms and would make a contribution to precision plant breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04819-3.
Collapse
Affiliation(s)
- Haisong Feng
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Ying Xiang
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaosong Wang
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Wei Xue
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhenyu Yue
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
30
|
Genotoxic Assessment of Nutraceuticals Obtained from Agricultural Biowaste: Where Do We " AMES"? Antioxidants (Basel) 2022; 11:antiox11061197. [PMID: 35740094 PMCID: PMC9230180 DOI: 10.3390/antiox11061197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
Several pharmaceutical companies are nowadays considering the use of agri-food waste as alternative raw material for the extraction of bioactive compounds to include in nutraceuticals and food supplements. This recycling activity is encountering the support of authorities, which are alarmed by air, soil and water pollution generated by agricultural waste disposal. Waste reuse has several economic advantages: (i) its low cost; (ii) its abundance; (iii) the high content of bioactive molecule (antioxidants, minerals, fibers, fatty acids); as well as (iv) the financial support received by governments eager to promote eco-compatible and pollution-reducing practices. While nutraceuticals produced from biowaste are becoming popular, products that have been risk-assessed in terms of safety are quite rare. This despite waste biomass, in virtue of its chemical complexity, could, in many cases, mine the overall safety of the final nutraceutical product. In this review, we summarize the scientific results published on genotoxicity risk-assessment of bioactive compounds extracted from agricultural waste. The review depicts a scenario where the risk-assessment of biowaste derived products is still scarcely diffuse, but when available, it confirms the safety of these products, and lets us envisage their future inclusion in the list of botanicals allowed for formulation intended for human consumption.
Collapse
|
31
|
Determination of the chemical compounds of Shuchazao tea flowers at different developmental stages and in young shoots using 1H NMR-based metabolomics. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe chemical compounds in tea leaves have been extensively explored in recent decades. However, the compounds in tea flowers have not been fully investigated. In present study, the main chemical compounds in tea flowers were identified at four developmental stages using non-targeted metabonomics based on proton nuclear magnetic resonance (1H NMR) and an automatic amino acid analyzer, and compared with those in young tea shoots. The results showed significant differences in catechins, sugars, organic acids and amino acids between tea flowers and young shoots. The concentrations of epigallocatechin gallate, epigallocatechin, epicatechin, and caffeine were significantly lower (p < 0.01) and sugar content significantly higher (p < 0.01) in flowers than in young shoots. Caffeine and β-glucose gradually decreased and sucrose constantly increased during flower development; α-glucose and fructose were most concentrated in the white bud and then decreased with flower development. Tea flowers contained more succinic acid, citric acid, and chlorogenic acid but less quinic acid and malic acid than young shoots. Both tea flowers and young tea shoots contained 20 common amino acids, including 7 essential ones. The concentration of amino acids was highest in the white bud (27.66 mg/g); young tea shoots contained significantly more L-theanine than tea flowers (p < 0.01). Our data indicate that the different stages of tea flowers have a set of characteristic chemical compounds and are potentially useful for functional foods.
Graphical abstract
Collapse
|
32
|
Huang W, Ma D, Hao X, Li J, Xia L, Zhang E, Wang P, Wang M, Guo F, Wang Y, Ni D, Zhao H. CsATG101 Delays Growth and Accelerates Senescence Response to Low Nitrogen Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:880095. [PMID: 35620698 PMCID: PMC9127664 DOI: 10.3389/fpls.2022.880095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
For tea plants, nitrogen (N) is a foundational element and large quantities of N are required during periods of roundly vigorous growth. However, the fluctuation of N in the tea garden could not always meet the dynamic demand of the tea plants. Autophagy, an intracellular degradation process for materials recycling in eukaryotes, plays an important role in nutrient remobilization upon stressful conditions and leaf senescence. Studies have proven that numerous autophagy-related genes (ATGs) are involved in N utilization efficiency in Arabidopsis thaliana and other species. Here, we identified an ATG gene, CsATG101, and characterized the potential functions in response to N in A. thaliana. The expression patterns of CsATG101 in four categories of aging gradient leaves among 24 tea cultivars indicated that autophagy mainly occurred in mature leaves at a relatively high level. Further, the in planta heterologous expression of CsATG101 in A. thaliana was employed to investigate the response of CsATG101 to low N stress. The results illustrated a delayed transition from vegetative to reproductive growth under normal N conditions, while premature senescence under N deficient conditions in transgenic plants vs. the wild type. The expression profiles of 12 AtATGs confirmed the autophagy process, especially in mature leaves of transgenic plants. Also, the relatively high expression levels for AtAAP1, AtLHT1, AtGLN1;1, and AtNIA1 in mature leaves illustrated that the mature leaves act as the source leaves in transgenic plants. Altogether, the findings demonstrated that CsATG101 is a candidate gene for improving annual fresh tea leaves yield under both deficient and sufficient N conditions via the autophagy process.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Danni Ma
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xulei Hao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jia Li
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Li Xia
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - E. Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Pu Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Mingle Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Fei Guo
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yu Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hua Zhao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Duan R, Qi M. Separation performance of pentiptycene-functionalized triblock copolymers towards the isomers of xylenes, phenols and anilines and the complex components in essential oil. J Chromatogr A 2022; 1669:462927. [DOI: 10.1016/j.chroma.2022.462927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 10/19/2022]
|
34
|
Khongkarat P, Traiyasut P, Phuwapraisirisan P, Chanchao C. First report of fatty acids in Mimosadiplotricha bee pollen with in vitro lipase inhibitory activity. PeerJ 2022; 10:e12722. [PMID: 35036098 PMCID: PMC8734463 DOI: 10.7717/peerj.12722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023] Open
Abstract
Bee pollen (BP) is full of nutrients and phytochemicals, and so it is widely used as a health food and alternative medicine. Its composition and bioactivity mainly depend on the floral pollens. In this work, BP collected by Apis mellifera with different monoculture flowering crops (BP1-6) were used. The types of floral pollen in each BP were initially identified by morphology, and subsequently confirmed using molecular phylogenetic analysis. Data from both approaches were consistent and revealed each BP to be monofloral and derived from the flowers of Camellia sinensis L., Helianthus annuus L., Mimosa diplotricha, Nelumbo nucifera, Xyris complanata, and Ageratum conyzoides for BP1 to BP6, respectively. The crude extracts of all six BPs were prepared by sequential partition with methanol, dichloromethane (DCM), and hexane. The crude extracts were then tested for the in vitro (i) α-amylase inhibitory, (ii) acetylcholinesterase inhibitory (AChEI), and (iii) porcine pancreatic lipase inhibitory (PPLI) activities in terms of the percentage enzyme inhibition and half maximum inhibitory concentration (IC50). The DCM partitioned extract of X. complanata BP (DCMXBP) had the highest active α-amylase inhibitory activity with an IC50 value of 1,792.48 ± 50.56 µg/mL. The DCM partitioned extracts of C. sinensis L. BP (DCMCBP) and M. diplotricha BP (DCMMBP) had the highest PPLI activities with an IC50 value of 458.5 ± 13.4 and 500.8 ± 24.8 µg/mL, respectively), while no crude extract showed any marked AChEI activity. Here, the in vitro PPLI activity was focused on. Unlike C. sinensis L. BP, there has been no previous report of M. diplotricha BP having PPLI activity. Hence, DCMMBP was further fractionated by silica gel 60 column chromatography, pooling fractions with the same thin layer chromatography profile. The pooled fraction of DCMMBP2-1 was found to be the most active (IC50 of 52.6 ± 3.5 µg/mL), while nuclear magnetic resonance analysis revealed the presence of unsaturated free fatty acids. Gas chromatography with flame-ionization detection analysis revealed the major fatty acids included one saturated acid (palmitic acid) and two polyunsaturated acids (linoleic and linolenic acids). In contrast, the pooled fraction of DCMMBP2-2 was inactive but pure, and was identified as naringenin, which has previously been reported to be present in M. pigra L. Thus, it can be concluded that naringenin was compound marker for Mimosa BP. The fatty acids in BP are nutritional and pose potent PPLI activity.
Collapse
Affiliation(s)
- Phanthiwa Khongkarat
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Prapun Traiyasut
- Program in Biology, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Thailand
| | | | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
35
|
Transforming Tea Catechins into Potent Anticancer Compound: Analysis of Three Boronated-PEG Delivery System. MICROMACHINES 2021; 13:mi13010045. [PMID: 35056210 PMCID: PMC8780676 DOI: 10.3390/mi13010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
Chemotherapy has led to many undesirable side effects, as these are toxic drugs that are unable to differentiate between cancer and normal cells. Polyphenols (tea catechins) are an ideal option as alternative chemotherapeutics owing to their inherent anticancer properties, antioxidant properties and being naturally occurring compounds, are deemed safe for consumption. However, without proper administration, the bioavailability of these compounds is low and inefficient. Therefore, proper delivery of these phenolic compounds is vital for cancer therapy. Herein, we analyzed three potential solutions to creating nanoparticle drugs using naturally occurring phenolic compounds (piceatannol (PIC), epigallocatechin gallate hydrophilic (EGCG) and l-epicatechin (EPI)). By using a simple pi-pi stacking mechanism, we utilized boronated PEG (PEG-Br) as an anchor to efficiently load EPI, PIC and EGCG, respectively, to produce three effective phenolic compound-based nanoparticles, which could be delivered safely in systemic circulation, yet detach from its cargo intracellularly to exert its anticancer effect for effective cancer therapy.
Collapse
|
36
|
Identification of Co-Expressed Genes Related to Theacrine Synthesis in Tea Flowers at Different Developmental Stages. Int J Mol Sci 2021; 22:ijms222413394. [PMID: 34948193 PMCID: PMC8704887 DOI: 10.3390/ijms222413394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Jiaocheng kucha is the first reported tea germplasm resource which contains theacrine founded in Fujian Province. Currently, the anabolic mechanism of theacrine within tea leaves is clear, but there are few studies focused on its flowers. In order to further explore the mechanism of theacrine synthesis and related genes in flowers, current study applied Jiaocheng kucha flowers (JC) as test materials and Fuding Dabaicha flowers (FD) as control materials to make transcriptome sequencing, and determination of purine alkaloid content in three different developmental periods (flower bud stage, whitening stage and full opening stage). The results showed that the flower in all stages of JC contained theacrine. The theacrine in the flower bud stage was significantly higher than in the other stages. The differentially expressed genes (DEGs) at three different developmental stages were screened from the transcriptome data, and were in a total of 5642, 8640 and 8465. These DEGs related to the synthesis of theacrine were primarily annotated to the pathways of purine alkaloids. Among them, the number of DEGs in xanthine synthesis pathway was the largest and upregulated in JC, while it was the smallest in caffeine synthesis pathway and downregulated in JC. Further weighted gene co-expression network (WGCNA) indicated that ADSL (CsTGY03G0002327), ADSL (CsTGY09G0001824) and UAZ (CsTGY06G0002694) may be a hub gene for the regulation of theacrine metabolism in JC. Our results will contribute to the identification of candidate genes related to the synthesis of theacrine in tea flowers, and explore the molecular mechanism of theacrine synthesis in JC at different developmental stages.
Collapse
|
37
|
Liu H, Xu Y, Wu J, Wen J, Yu Y, An K, Zou B. GC-IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons. Food Res Int 2021; 150:110784. [PMID: 34865799 DOI: 10.1016/j.foodres.2021.110784] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 01/24/2023]
Abstract
This study aims to investigate the influence of different harvesting seasons on the aroma of black tea and the trend in the tea aroma variation. A total of 68 volatile substances was identified by gas chromatography coupled with ion-mobility spectrometry (GC-IMS), and 20 characteristic aroma-active compounds were quantitatively analyzed by gas chromatography-olfactometry coupled with aroma extract dilution analysis (GC-O AEDA) and odor activity value (OAV) analysis. These aroma-active compounds are mainly linalool, β-damascenone, and benzeneacetaldehyde. Both methods confirmed that the aroma of tea changes with the harvesting seasons, showing a downward trend followed by an upward trend. Besides, black teas harvested in different seasons have their characteristic volatile compounds and metabolism precursors. The degradation of glycosides, carotenes, and amino acids are the most important degradation pathways for the formation of tea aroma. The PLSR results of GC-O-AEDA, OAV, and DSA data agree with each other, showing that five aroma attributes of the autumn tea have strong correlations. The autumn tea has the richest aroma, followed by the spring tea and the summer tea.
Collapse
Affiliation(s)
- Haocheng Liu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jijun Wu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jing Wen
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Kejing An
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Bo Zou
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| |
Collapse
|
38
|
MalligArjuna Rao S, Kotteeswaran S, Visagamani AM. Green synthesis of zinc oxide nanoparticles from camellia sinensis: Organic dye degradation and antibacterial activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Pang D, Liu Y, Sun Y, Tian Y, Chen L. Menghai Huangye, a novel albino tea germplasm with high theanine content and a high catechin index. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:110997. [PMID: 34482909 DOI: 10.1016/j.plantsci.2021.110997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Yunnan Province has a very wide diversity of tea germplasm resources. A variety of special tea germplasms with outstanding traits have been discovered, including tea germplasms with high anthocyanin content and low caffeine content. Albino tea cultivars generally have higher contents of theanine that contribute to the umami taste, and the quality of tea brewed from it is higher. The catechin index (CI), the ratio of dihydroxylated catechins (DIC) to trihydroxylated catechins (TRIC), is a crucial index of suitability for processing tea. In this study, the albino tea plant Menghai Huangye (MHHY) with yellow leaves was identified. Analysis of the biochemical components revealed that MHHY was enriched in theanine and the total catechins (TC) were lower than Yunkang 10 (YK10). In addition, the CI value of MHHY was extremely significantly higher than that of YK10. Metabolic profile of catechins and the related gene expression profile analysis found that the coordinated expression of the key branch genes F3'H and F3'5'Ha for the synthesis of DIC and TRIC in tea plant was closely related to the high CI and low TC of MHHY. Further analysis of the F3'H promoter showed that a 284-bp deletion mutation was present in the F3'H promoter of MHHY, containing the binding sites of the transcriptional repressor MYB4 involved in flavonoid metabolism, which might be an important reason for the up-regulated expression of F3'H in MHHY. Overall, this study provides a theoretical basis for understanding the characteristics of albino tea germplasm resources and efficiently utilizing high-CI tea germplasm resources.
Collapse
Affiliation(s)
- Dandan Pang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, 2 Jingnan Road, Menghai, Yunnan, 666201, China.
| | - Yufei Liu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, 2 Jingnan Road, Menghai, Yunnan, 666201, China.
| | - Yunnan Sun
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, 2 Jingnan Road, Menghai, Yunnan, 666201, China.
| | - Yiping Tian
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, 2 Jingnan Road, Menghai, Yunnan, 666201, China.
| | - Linbo Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, 2 Jingnan Road, Menghai, Yunnan, 666201, China.
| |
Collapse
|
40
|
Diniz LRL, Elshabrawy HA, Souza MTDS, Duarte ABS, Datta S, de Sousa DP. Catechins: Therapeutic Perspectives in COVID-19-Associated Acute Kidney Injury. Molecules 2021; 26:5951. [PMID: 34641495 PMCID: PMC8512361 DOI: 10.3390/molecules26195951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Data obtained from several intensive care units around the world have provided substantial evidence of the strong association between impairment of the renal function and in-hospital deaths of critically ill COVID-19 patients, especially those with comorbidities and requiring renal replacement therapy (RRT). Acute kidney injury (AKI) is a common renal disorder of various etiologies characterized by a sudden and sustained decrease of renal function. Studies have shown that 5-46% of COVID-19 patients develop AKI during hospital stay, and the mortality of those patients may reach up to 100% depending on various factors, such as organ failures and RRT requirement. Catechins are natural products that have multiple pharmacological activities, including anti-coronavirus and reno-protective activities against kidney injury induced by nephrotoxic agents, obstructive nephropathies and AKI accompanying metabolic and cardiovascular disorders. Therefore, in this review, we discuss the anti-SARS-CoV-2 and reno-protective effects of catechins from a mechanistic perspective. We believe that catechins may serve as promising therapeutics in COVID-19-associated AKI due to their well-recognized anti-SARS-CoV-2, and antioxidant and anti-inflammatory properties that mediate their reno-protective activities.
Collapse
Affiliation(s)
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | | | | | - Sabarno Datta
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil;
| |
Collapse
|
41
|
Sun R, Yang W, Li Y, Sun C. Multi-residue analytical methods for pesticides in teas: a review. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03765-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Tedeschi LO, Muir JP, Naumann HD, Norris AB, Ramírez-Restrepo CA, Mertens-Talcott SU. Nutritional Aspects of Ecologically Relevant Phytochemicals in Ruminant Production. Front Vet Sci 2021; 8:628445. [PMID: 33748210 PMCID: PMC7973208 DOI: 10.3389/fvets.2021.628445] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
This review provides an update of ecologically relevant phytochemicals for ruminant production, focusing on their contribution to advancing nutrition. Phytochemicals embody a broad spectrum of chemical components that influence resource competence and biological advantage in determining plant species' distribution and density in different ecosystems. These natural compounds also often act as plant defensive chemicals against predatorial microbes, insects, and herbivores. They may modulate or exacerbate microbial transactions in the gastrointestinal tract and physiological responses in ruminant microbiomes. To harness their production-enhancing characteristics, phytochemicals have been actively researched as feed additives to manipulate ruminal fermentation and establish other phytochemoprophylactic (prevent animal diseases) and phytochemotherapeutic (treat animal diseases) roles. However, phytochemical-host interactions, the exact mechanism of action, and their effects require more profound elucidation to provide definitive recommendations for ruminant production. The majority of phytochemicals of nutritional and pharmacological interest are typically classified as flavonoids (9%), terpenoids (55%), and alkaloids (36%). Within flavonoids, polyphenolics (e.g., hydrolyzable and condensed tannins) have many benefits to ruminants, including reducing methane (CH4) emission, gastrointestinal nematode parasitism, and ruminal proteolysis. Within terpenoids, saponins and essential oils also mitigate CH4 emission, but triterpenoid saponins have rich biochemical structures with many clinical benefits in humans. The anti-methanogenic property in ruminants is variable because of the simultaneous targeting of several physiological pathways. This may explain saponin-containing forages' relative safety for long-term use and describe associated molecular interactions on all ruminant metabolism phases. Alkaloids are N-containing compounds with vast pharmacological properties currently used to treat humans, but their phytochemical usage as feed additives in ruminants has yet to be exploited as they may act as ghost compounds alongside other phytochemicals of known importance. We discussed strategic recommendations for phytochemicals to support sustainable ruminant production, such as replacements for antibiotics and anthelmintics. Topics that merit further examination are discussed and include the role of fresh forages vis-à-vis processed feeds in confined ruminant operations. Applications and benefits of phytochemicals to humankind are yet to be fully understood or utilized. Scientific explorations have provided promising results, pending thorough vetting before primetime use, such that academic and commercial interests in the technology are fully adopted.
Collapse
Affiliation(s)
- Luis O. Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - James P. Muir
- Texas A&M AgriLife Research, Stephenville, TX, United States
| | - Harley D. Naumann
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Aaron B. Norris
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX, United States
| | | | | |
Collapse
|
43
|
Mu Y, Ma H. NaOH-modified mesoporous biochar derived from tea residue for methylene Blue and Orange II removal. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Paiva L, Rego C, Lima E, Marcone M, Baptista J. Comparative Analysis of the Polyphenols, Caffeine, and Antioxidant Activities of Green Tea, White Tea, and Flowers from Azorean Camellia sinensis Varieties Affected by Different Harvested and Processing Conditions. Antioxidants (Basel) 2021; 10:antiox10020183. [PMID: 33514043 PMCID: PMC7912137 DOI: 10.3390/antiox10020183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022] Open
Abstract
This study evaluates the polyphenol profiles as well as caffeine (dry weight basis), and antioxidant activities of green tea (GTs), white tea (WTs), and flowers (Fl) samples from Azorean Camellia sinensis varieties affected by different harvested and processing conditions. Epicatechins derivatives, determined by RP-HPLC/PDAD, presented higher values in GTs with respect to WTs, decreasing as follows: epigallocatechin-3-gallate > epicatechin-3-gallate ≫ epicatechin ≫ epigallocatechin, and higher values in summer and early autumn than in spring. This was also accompanied by an in consistent withering time pattern. Esterified catechins were higher in all samples (100.8-312.3 mg/g) with respect to non-esterified catechins (15.1-37.7 mg/g). Caffeine (6.2-27.7 mg/g) decreased as follows: WTs > GTs ≫ Fl, and inconsistent seasonal and withering patterns were observed among the WTs. Total phenolics (125.9-295.4 mg gallic acid equivalents/g dried extract) and total flavonoids (35.2-69.7 mg rutin equivalents/g dried extract), determined by Folin-Ciocalteu and colorimetric methodologies, were higher in GTs than in WTs and Fl. Concerning the antioxidant patterns, the free radical scavenging activity (FRSA) and ferric reducing antioxidant power (FRAP) presented EC50 values ranges from 3.6 to 17.3 µg/mL and 4.8 to 16.5 µg/mL, respectively, and ferrous ion-chelating (FIC) activity ranged from 47.1 to 82.8%, highlighting that FRSA was better than butylated hydroxytoluene (BHT). Tea leaves exhibited, in general, higher activities with respect to tea Fl, and the WT sample plucked in summer and withered for 23 h showed the highest FRAP and FIC activity. In conclusion, this study shows the characteristic variation of GTs, WTs, and Fl of two tea varieties and may support crop quality improvement and promote the valorization of tea Fl.
Collapse
Affiliation(s)
- Lisete Paiva
- Chemistry and Engineering (DPCE) and Biotechology Centre of Azores (CBA), Department of Physics, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal; (L.P.); (J.B.)
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - Clara Rego
- São Miguel Agrarian Development Service (SDASM), 9500-340 Ponta Delgada, São Miguel, Azores, Portugal;
| | - Elisabete Lima
- Chemistry and Engineering (DPCE) and Biotechology Centre of Azores (CBA), Department of Physics, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal; (L.P.); (J.B.)
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
- Correspondence:
| | - Massimo Marcone
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - José Baptista
- Chemistry and Engineering (DPCE) and Biotechology Centre of Azores (CBA), Department of Physics, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal; (L.P.); (J.B.)
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| |
Collapse
|
45
|
Mei X, Wan S, Lin C, Zhou C, Hu L, Deng C, Zhang L. Integration of Metabolome and Transcriptome Reveals the Relationship of Benzenoid-Phenylpropanoid Pigment and Aroma in Purple Tea Flowers. FRONTIERS IN PLANT SCIENCE 2021; 12:762330. [PMID: 34887890 PMCID: PMC8649654 DOI: 10.3389/fpls.2021.762330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/22/2021] [Indexed: 05/10/2023]
Abstract
Tea (Camellia sinensis) flowers are normally white, even though the leaves could be purple. We previously discovered a specific variety with purple leaves and flowers. In the face of such a phenomenon, researchers usually focus on the mechanism of color formation but ignore the change of aroma. The purple tea flowers contain more anthocyanins, which belong to flavonoids. Meanwhile, phenylalanine (Phe), derived from the shikimate pathway, is a precursor for both flavonoids and volatile benzenoid-phenylpropanoids (BPs). Thus, it is not clear whether the BP aroma was attenuated for the appearance of purple color. In this study, we integrated metabolome and transcriptome of petals of two tea varieties, namely, Zijuan (ZJ) with white flowers and Baitang (BT) with purple flowers, to reveal the relationship between color (anthocyanins) and aroma (volatile BPs). The results indicated that in purple petals, the upstream shikimate pathway promoted for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) was elevated. Among the increased anthocyanins, delphinidin-3-O-glucoside (DpG) was extremely higher; volatile BPs, including benzyl aldehyde, benzyl alcohol, acetophenone (AP), 1-phenylethanol, and 2-phenylethanol, were also enhanced, and AP was largely elevated. The structural genes related to the biosynthesis of volatile BPs were induced, while the whole flavonoid biosynthesis pathway was downregulated, except for the genes flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H), which were highly expressed to shift the carbon flux to delphinidin, which was then conjugated to glucoside by increased bronze-1 (BZ1) (UDP-glucose: flavonoid 3-O-glucosyltransferase) to form DpG. Transcription factors (TFs) highly related to AP and DpG were selected to investigate their correlation with the differentially expressed structural genes. TFs, such as MYB, AP2/ERF, bZIP, TCP, and GATA, were dramatically expressed and focused on the regulation of genes in the upstream synthesis of Phe (DAHPS; arogenate dehydratase/prephenate dehydratase) and the synthesis of AP (phenylacetaldehyde reductase; short-chain dehydrogenase/reductase), Dp (F3'H; F3'5'H), and DpG (BZ1), but inhibited the formation of flavones (flavonol synthase) and catechins (leucoanthocyanidin reductase). These results discovered an unexpected promotion of volatile BPs in purple tea flowers and extended our understanding of the relationship between the BP-type color and aroma in the tea plant.
Collapse
Affiliation(s)
- Xin Mei
- College of Horticulture, South China Agricultural University, Guangzhou, China
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Shihua Wan
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chuyuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Caibi Zhou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Liuhong Hu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Chan Deng
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Lingyun Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- *Correspondence: Lingyun Zhang,
| |
Collapse
|
46
|
Afonso S, Oliveira IV, Meyer AS, Aires A, Saavedra MJ, Gonçalves B. Phenolic Profile and Bioactive Potential of Stems and Seed Kernels of Sweet Cherry Fruit. Antioxidants (Basel) 2020; 9:antiox9121295. [PMID: 33348687 PMCID: PMC7766571 DOI: 10.3390/antiox9121295] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Every year, large quantities of stems and pits are generated during sweet cherry processing, without any substantial use. Although stems are widely recognized by traditional medicine, detailed and feasible information about their bioactive composition or biological value is still scarce, as well as the characterization of kernels. Therefore, we conducted a study in which bioactivity potential of extracts from stems and kernels of four sweet cherry cultivars (Early Bigi (grown under net cover (C) and without net cover (NC)), Burlat, Lapins, and Van) were examined. The assays included antioxidant (by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene-linoleic acid bleaching assays), and antibacterial activities against important Gram negative and Gram positive bacterial human isolates. Profile and individual phenolic composition of each extract were determined by High-performance liquid chromatography (HPLC) analysis. Extracts from stems of cv. Lapins and kernels of Early Bigi NC presented high levels of total phenolics, flavonoids, ortho-diphenols and saponins. Excepting for cv. Early Bigi NC, major phenolic compounds identified in stems and kernels were sakuranetin and catechin, respectively. In cv. Early Bigi NC the most abundant compounds were ellagic acid for stems and protocatechuic acid for kernels. In all extracts, antioxidant activities showed a positive correlation with the increments in phenolic compounds. Antimicrobial activity assays showed that only stem’s extracts were capable of inhibiting the growth of Gram positive isolates. This new data is intended to provide new possibilities of valorization of these by-products and their valuable properties.
Collapse
Affiliation(s)
- Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
- Correspondence:
| | - Ivo Vaz Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DTU Building 221, DK-2800 Kgs. Lyngby, Denmark;
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
| | - Maria José Saavedra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
| |
Collapse
|