1
|
Arghavan B, Kordkatuli K, Mardani H, Jafari A. A Comprehensive Systematic Review and Meta-Analysis on the Prevalence of Aflatoxin M1 in Dairy Products in Selected Middle East Countries. Vet Med Sci 2025; 11:e70204. [PMID: 39840829 PMCID: PMC11752159 DOI: 10.1002/vms3.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Human consumption of dairy products contaminated with aflatoxin (AF) M1 can lead to severe health issues. This AF's significance and impact on health necessitate a thorough investigation of its prevalence in dairy products. OBJECTIVES This study aims to determine the prevalence of AFM1 in dairy products through a systematic review and meta-analysis, focusing on data from Middle Eastern countries. METHODS We identified relevant studies through electronic database searches (PubMed, Scopus and Web of Science) up to August 2023. We employed a random-effects model to derive an overall estimate and used 95% confidence intervals to determine pooled prevalence rates. RESULTS The meta-analysis included 193 studies encompassing 297,530 samples of dairy products. The results showed that AFM1 contaminated 87% of dairy products. The following is a ranking of countries based on the prevalence of AFM1 in their dairy products: Iran > Jordan > Turkey > Kuwait > Lebanon > Syria > Egypt > Cyprus > the United Arab Emirates. The current meta-analysis indicated that Middle Eastern countries exhibited a high prevalence of AFM1 in dairy products. The prevalence rates for AFM1 in various dairy products were as follows: milk (87%), yogurt (68.9%), cheese (63.6%), kashk (62.9%), doogh (55.6%) and ice cream (54%). Pasteurized milk (99.5%), ultra-high temperature (91.3%), raw milk (73%) and traditional milk (51%), among other milk types, had the highest contamination rates. CONCLUSION The study reveals a high prevalence of AFM1 in dairy products, particularly in Middle Eastern countries. Given the critical importance of milk and dairy products in the diet, special measures are needed to safeguard their quality and protect consumers from AF contamination.
Collapse
Affiliation(s)
- Bahareh Arghavan
- Department of Basic Medical SciencesSchool of MedicineAbadan University of Medical SciencesAbadanIran
| | - Kosar Kordkatuli
- Student Research CommitteeDepartment of Surgical TechnologySchool of Paramedical SciencesGolestan University of Medical SciencesGorganIran
| | - Helia Mardani
- Student Research CommitteeDepartment of NutritionSchool of Nutritional Sciences and DieteticsTehran University of Medical Sciences (TUMS)TehranIran
| | - Ali Jafari
- Student Research CommitteeDepartment of Community NutritionFaculty of Nutrition Sciences and Food TechnologyNational Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
- Systematic Review and Meta‐analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran
| |
Collapse
|
2
|
Pires RC, da Costa Calumby J, Rosim RE, Pires RD, Borowsky AM, Ali S, de Paiva EL, Silva R, Pimentel TC, da Cruz AG, de Oliveira CAF, Corassin CH. Evaluation of Ability of Inactivated Biomasses of Lacticaseibacillus rhamnosus and Saccharomyces cerevisiae to Adsorb Aflatoxin B 1 In Vitro. Foods 2024; 13:3299. [PMID: 39456361 PMCID: PMC11506918 DOI: 10.3390/foods13203299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Biological decontamination strategies using microorganisms to adsorb aflatoxins have shown promising results for reducing the dietary exposure to these contaminants. In this study, the ability of inactivated biomasses of Lacticaseibacillus rhamnosus (LRB) and Saccharomyces cerevisiae (SCB) incorporated alone or in combination into functional yogurts (FY) at 0.5-4.0% (w/w) to adsorb aflatoxin B1 (AFB1) was evaluated in vitro. Higher adsorption percentages (86.9-91.2%) were observed in FY containing 1.0% LR + SC or 2.0% SC (w/w). The survival of mouse embryonic fibroblasts increased after exposure to yogurts containing LC + SC at 1.0-4.0% (w/w). No significant differences were noted in the physicochemical and sensory characteristics between aflatoxin-free FY and control yogurts (no biomass) after 30 days of storage. The incorporation of combined LRB and SCB into yogurts as vehicles for these inactivated biomasses is a promising alternative for reducing the exposure to dietary AFB1. The results of this trial support further studies to develop practical applications aiming at the scalability of using the biomasses evaluated in functional foods to mitigate aflatoxin exposure.
Collapse
Affiliation(s)
- Rogério Cury Pires
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil; (R.C.P.); (R.D.P.); (A.M.B.)
| | - Julia da Costa Calumby
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Roice Eliana Rosim
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Rogério D’Antonio Pires
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil; (R.C.P.); (R.D.P.); (A.M.B.)
| | - Aline Moreira Borowsky
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil; (R.C.P.); (R.D.P.); (A.M.B.)
| | - Sher Ali
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Esther Lima de Paiva
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Ramon Silva
- Instituto Federal do Paraná, R. Felipe Tequinha Street, 1400, Paranavaí 87703-536, PR, Brazil; (R.S.); (T.C.P.)
| | - Tatiana Colombo Pimentel
- Instituto Federal do Paraná, R. Felipe Tequinha Street, 1400, Paranavaí 87703-536, PR, Brazil; (R.S.); (T.C.P.)
| | - Adriano Gomes da Cruz
- Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, R. Sen. Furtado, 121/125, Rio de Janeiro 20270-021, RJ, Brazil;
| | - Carlos Augusto Fernandes de Oliveira
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Carlos Humberto Corassin
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| |
Collapse
|
3
|
Khani N, Noorkhajavi G, Soleiman RA, Raziabad RH, Rad AH, Akhlaghi AP. Aflatoxin Biodetoxification Strategies Based on Postbiotics. Probiotics Antimicrob Proteins 2024; 16:1673-1686. [PMID: 38478298 DOI: 10.1007/s12602-024-10242-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 10/02/2024]
Abstract
Aflatoxins (AFs) are secondary metabolites produced by fungi, and they are deemed the most perilous mycotoxin and food safety predicament. The exposure of humans to mycotoxins transpires either directly through the consumption of contaminated agricultural commodities or indirectly through the ingestion of items derived from animals that have been nourished with tainted substances of animal origin. To ensure the detoxification of AFs in animal and plant food products and to mitigate the risks they pose to public health and the economy, diverse techniques (physical, chemical, and biological) have been subject to scrutiny. By altering and eradicating the molecular structure of the toxin, all of these approaches impede its transmission to the digestive system and potentially diminish the accessibility of toxins to the target tissue, ultimately eliminating them. Given the pervasive predicaments attributed to the contamination of foods and feeds by AFs, it is of utmost importance to urgently devise cost-effective and appropriate strategies to combat this hazard. This review highlights the concept of AFs, definitions, and benefits of postbiotics and their biological role in the detoxification of AFs, as well as their benefits in the food-pharmaceutical industry.
Collapse
Affiliation(s)
- Nader Khani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Noorkhajavi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Abedi Soleiman
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Hazrati Raziabad
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Pouya Akhlaghi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Zhang X, Jiao R, Ren Y, Wang Y, Li H, Ou D, Ling N, Ye Y. Adsorptive removal of aflatoxin B1 via spore protein from Aspergillus luchuensis YZ-1. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135148. [PMID: 38986415 DOI: 10.1016/j.jhazmat.2024.135148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin commonly found in the environment. Finding efficient and environmentally friendly ways to remove AFB1 is critical. In this study, Aspergillus luchuensis YZ-1 demonstrated a potent ability to adsorb AFB1 for the first time, and the binding of AFB1 to YZ-1 is highly stable. Spores exhibited higher adsorption efficiency than mycelia, adsorbing approximately 95 % of AFB1 within 15 min. The spores were comprehensively characterized using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy. Various adsorption kinetic models (pseudo-first and pseudo-second order), adsorption isotherm models (Freundlich and Langmuir), Fourier transform infrared, and X-ray photoelectron spectroscopy were used to investigate the adsorption properties and mechanisms. The adsorption capacity of spores decreased with heating, urea, and SDS treatments, indicating that spore proteins may be the primary substance for AFB1 adsorption. Subsequent experiments showed that proteins with molecular weights greater than 50 kDa played a key role in the adsorption. Additionally, the spores possess excellent storage properties and are valuable for adsorbing AFB1 from vegetable oils. Therefore, the YZ-1 spores hold promise for development into a novel biosorbent for AFB1 removal.
Collapse
Affiliation(s)
- Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Jiao
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuwei Ren
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dexin Ou
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
5
|
Lahmamsi H, Ananou S, Lahlali R, Tahiri A. Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects. Folia Microbiol (Praha) 2024; 69:465-489. [PMID: 38393576 DOI: 10.1007/s12223-024-01146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Since the late nineteenth century, the agricultural sector has experienced a tremendous increase in chemical use in response to the growing population. Consequently, the intensive and indiscriminate use of these substances caused serious damage on several levels, including threatening human health, disrupting soil microbiota, affecting wildlife ecosystems, and causing groundwater pollution. As a solution, the application of microbial-based products presents an interesting and ecological restoration tool. The use of Plant Growth-Promoting Microbes (PGPM) affected positive production, by increasing its efficiency, reducing production costs, environmental pollution, and chemical use. Among these microbial communities, lactic acid bacteria (LAB) are considered an interesting candidate to be formulated and applied as effective microbes. Indeed, these bacteria are approved by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) as Qualified Presumption of Safety statute and Generally Recognized as Safe for various applications. To do so, this review comes as a road map for future research, which addresses the different steps included in LAB formulation as biocontrol, bioremediation, or plant growth promoting agents from the isolation process to their field application passing by the different identification methods and their various uses. The plant application methods as well as challenges limiting their use in agriculture are also discussed.
Collapse
Affiliation(s)
- Haitam Lahmamsi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Route Immouzer BP 2202, Fez, Morocco
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - Samir Ananou
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Route Immouzer BP 2202, Fez, Morocco
| | - Rachid Lahlali
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| | - Abdessalem Tahiri
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| |
Collapse
|
6
|
Hassanen EI, Ahmed LI, Fahim KM, Shehata MG, Badr AN. Chitosan nanoparticle encapsulation increased the prophylactic efficacy of Lactobacillus plantarum RM1 against AFM 1-induced hepatorenal toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123925-123938. [PMID: 37995030 PMCID: PMC10746602 DOI: 10.1007/s11356-023-31016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Aflatoxin M1 (AFM1) is a significant contaminant of food, particularly dairy products and can resist various industrial processes. Several probiotic strains like Lactobacillus plantarum are known to reduce aflatoxin availability in synthetic media and some food products. The current work investigated the possible chitosan coating prophylactic efficacy of Lactobacillus plantarum RM1 nanoemulsion (CS-RM1) against AFM1-induced hepatorenal toxicity in rats. Twenty-eight male Wistar rats were divided into four groups (n = 7) as follows: group 1 received normal saline, group 2 received CS-RM1 (1mL contains 6.7 × 1010 CFU), group 3 received AFM1 (60 µg/kg bwt), and group 4 received both CS-RM1(1 mL contains 6.7 × 1010 CFU) and AFM1 (60 µg/kg bwt). All receiving materials were given to rats daily via oral gavage for 28 days. AFM1 caused a significant elevation in serum levels of ALT, AST, ALP, uric acid, urea, and creatinine with marked alterations in protein and lipid profiles. Additionally, AFM1 caused marked pathological changes in the liver and kidneys, such as cellular necrosis, vascular congestion, and interstitial inflammation. AFM1 also increased the MDA levels and decreased several enzymatic and non-enzymatic antioxidants. Liver and kidney sections of the AFM1 group displayed strong caspase-3, TNF-α, and iNOS immunopositivity. Co-treatment of CS-RM1 with AFM1 significantly lowered the investigated toxicological parameter changes and markedly improved the microscopic appearance of liver and kidneys. In conclusion, AFM1 induces hepatorenal oxidative stress damage via ROS overgeneration, which induces mitochondrial caspase-3-dependent apoptosis and inflammation. Furthermore, CS-RM1 can reduce AFM1 toxicity in both the liver and kidneys. The study recommends adding CS-RM1 to milk and milk products for AFM1-elimination.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Lamiaa I Ahmed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Karima M Fahim
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed G Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Application, Alexandria, Egypt
| | - Ahmed N Badr
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, 12622, Cairo, Egypt
| |
Collapse
|
7
|
Marins-Gonçalves L, Martins Ferreira M, Rocha Guidi L, De Souza D. Is chemical analysis suitable for detecting mycotoxins in agricultural commodities and foodstuffs? Talanta 2023; 265:124782. [PMID: 37339540 DOI: 10.1016/j.talanta.2023.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
The assessment of the risks of mycotoxins to humans through consuming contaminated foods resulted in specific legislation that evaluates the presence, quantities, and type of mycotoxins in agricultural commodities and foodstuffs. Thus, to ensure compliance with legislation, food safety and consumer health, the development of suitable analytical procedures for identifying and quantifying mycotoxins in the free or modified form, in low-concentration and in complex samples is necessary. This review reports the application of the modern chemical methods of analysis employed in mycotoxin detection in agricultural commodities and foodstuffs. It is reported extraction methods with reasonable accuracy and those present characteristics according to guidelines of Green Analytical Chemistry. Recent trends in mycotoxins detection using analytical techniques are presented and discussed, evaluating the robustness, precision, accuracy, sensitivity, and selectivity in the detection of different classes of mycotoxins. Sensitivity coming from modern chromatographic techniques allows the detection of very low concentrations of mycotoxins in complex samples. However, it is essential the development of more green, fast and more suitable accuracy extraction methods for mycotoxins, which agricultural commodities producers could use. Despite the high number of research reporting the use of chemically modified voltammetric sensors, mycotoxins detection still has limitations due to the low selectivity from similar chemical structures of mycotoxins. Furthermore, spectroscopic techniques are rarely employed due to the limited number of reference standards for calibration procedures.
Collapse
Affiliation(s)
- Lorranne Marins-Gonçalves
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil; Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Mariana Martins Ferreira
- Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Letícia Rocha Guidi
- Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil; Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil.
| |
Collapse
|
8
|
Nguyen QD, La QD, Nguyen NN, Nguyen TNL. Green removal of unpleasant volatiles from soapberry ( Sapindus mukorossi) extracts by two-phase microbial fermentation fortified with pomelo peel waste. RSC Adv 2023; 13:13282-13291. [PMID: 37124002 PMCID: PMC10142458 DOI: 10.1039/d3ra01858j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Soapberry (Sapindus mukorossi Gaertn) is a popular woody plant in Vietnam, often used as a cleaning product due to its ability to wash, foam and emulsify due to high saponin content. In this study, the performance of fermentation by two microbial strains, namely Saccharomyces cerevisiae active dry yeast (ADY) and Levilactobacillus brevis lactic acid bacteria (LB) along with the addition of pomelo peel (flavedo) was evaluated during 15 days in terms of sugar removal, antioxidant and antibacterial activities, foaming power, volatile composition, and sensory acceptability. The results showed that the soluble solid content of original extracts experienced a significant decrease from 14.5% to a stable range of 9.4-11.0% until day 15 for all fermented samples, which correlated with a reduction by approximately 60% in reducing sugars (from 12.52 g L-1 to 4.77-6.56 g L-1). In addition, the saponin content of fermented extracts was in the range of 118.2-145.0 mg L-1 while antioxidant activities were extremely reduced after 15 days of fermentation. Increases in pomelo peel imparted fermented extracts with greater antibacterial activity against Staphylococcus aureus ATCC 6538, Proteus mirabilis ATCC 25933, and Candida albicans ATCC 10231, and LB had higher activity than ADY overall. Regarding the volatile profiles, two main compounds in the original extracts, including trilaurin (75.02%) and 1-dodecanoyl-3-myristoyl glycerol (24.85%), were completely removed and replaced by new alkanes, alkenes, alcohols, esters, and organic acids, and particularly d-limonene (86.34-95.31%) upon pomelo addition. Additionally, the foaming ability and stability of fermented extracts were also enhanced and there was clear distinction between fermented and unfermented samples using principal component analysis based on sensory liking data which showed consumers' preference towards fermented samples with a high percentage of pomelo peel.
Collapse
Affiliation(s)
- Quoc-Duy Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Quoc-Duy La
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Nhu-Ngoc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Thi-Ngoc-Lan Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| |
Collapse
|
9
|
Kireeva N, Galkina K, Sokolov S, Knorre D. Role of Dead Cells in Collective Stress Tolerance in Microbial Communities: Evidence from Yeast. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1528-1534. [PMID: 36717444 DOI: 10.1134/s0006297922120100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A substantial part of yeast life cycle takes place in the communities where the cells are surrounded by their own clones. Meanwhile, yeast cell fitness depends not only on its own adaptations but also on the processes in the neighboring cells. Moreover, even if a cell loses its clonogenic ability, it is still capable of protecting surrounding cells that are still alive. Dead cells can absorb lipophilic antibiotics and provide nutrients to their kin neighbors. Some enzymes can be released into the environment and detoxify exogenous toxins. For example, cytosolic catalase, which degrades hydrogen peroxide, can stay active outside of the cell. Inviable cells of pathogenic yeast species can suppress host immune responses and, in this way, boost spread of the pathogen. In this review, we speculate that biochemical processes in dying cells can facilitate increase of stress resistance in the alive kin cells and therefore be a subject of natural selection. We considered possible scenarios of how dead microbial cells can increase survival of their kin using unicellular fungi - baker's yeast Saccharomyces cerevisiae - as an example. We conclude that the evolutionary conserved mechanisms of programmed cell death in yeast are likely to include a module of early permeabilization of the cell plasma membrane rather than preserve its integrity.
Collapse
Affiliation(s)
- Nataliia Kireeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Kseniia Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Sviatoslav Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Dmitry Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
10
|
Mohammadi S, Behmaram K, Keshavarzi M, Saboori S, Jafari A, Ghaffarian-Bahraman A. Aflatoxin M1 contamination in different Iranian cheese types: A systematic review and meta-analysis. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
GONÇALVES BL, ULIANA RD, LEE SH, COPPA CF, OLIVEIRA CAFD, KAMIMURA ES, CORASSIN CH. Use of scanning electron microscopy and high-performance liquid chromatography to assess the ability of microorganisms to bind aflatoxin M1 in Minas Frescal cheese. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.47220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Mousavi Khaneghah A. Application of new emerging techniques in combination with conventional methods in decontamination of food products: Current state, challenges, and perspectives. Food Res Int 2021; 150:110799. [PMID: 34865814 DOI: 10.1016/j.foodres.2021.110799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Caixa Postal: 6121, 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
13
|
Bangar SP, Sharma N, Kumar M, Ozogul F, Purewal SS, Trif M. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Einolghozati M, Heshmati A, Mehri F. The behavior of aflatoxin M1 during lactic cheese production and storage. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1979044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mahtab Einolghozati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Freshteh Mehri
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Impacts of unit operation of cheese manufacturing on the aflatoxin M1 level: A global systematic review and meta-analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Średnicka P, Juszczuk-Kubiak E, Wójcicki M, Akimowicz M, Roszko MŁ. Probiotics as a biological detoxification tool of food chemical contamination: A review. Food Chem Toxicol 2021; 153:112306. [PMID: 34058235 DOI: 10.1016/j.fct.2021.112306] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Nowadays, people are exposed to diverse environmental and chemical pollutants produced by industry and agriculture. Food contaminations such as persistent organic pollutants (POPs), heavy metals, and mycotoxins are a serious concern for global food safety with economic and public health implications especially in the newly industrialized countries (NIC). Mounting evidence indicates that chronic exposure to food contaminants referred to as xenobiotics exert a negative effect on human health such as inflammation, oxidative stress, and intestinal disorders linked with perturbation of the composition and metabolic profile of the gut microflora. Although the physicochemical technologies for food decontamination are utilized in many cases but require adequate conditions which are often not feasible to be met in many industrial sectors. At present, one promising approach to reduce the risk related to the presence of xenobiotics in foodstuffs is a biological detoxification done by probiotic strains and their enzymes. Many studies confirmed that probiotics are an effective, feasible, and inexpensive tool for preventing xenobiotic-induced dysbiosis and alleviating their toxicity. This review aims to summarize the current knowledge of the direct mechanisms by which probiotics can influence the detoxification of xenobiotics. Moreover, probiotic-xenobiotic interactions with the gut microbiota and the host response were also discussed.
Collapse
Affiliation(s)
- Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, Warsaw, Poland.
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Marek Ł Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland.
| |
Collapse
|
17
|
Møller CODA, Freire L, Rosim RE, Margalho LP, Balthazar CF, Franco LT, Sant’Ana ADS, Corassin CH, Rattray FP, de Oliveira CAF. Effect of Lactic Acid Bacteria Strains on the Growth and Aflatoxin Production Potential of Aspergillus parasiticus, and Their Ability to Bind Aflatoxin B 1, Ochratoxin A, and Zearalenone in vitro. Front Microbiol 2021; 12:655386. [PMID: 33967993 PMCID: PMC8100588 DOI: 10.3389/fmicb.2021.655386] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The increased consumption of plant-based foods has intensified the concern related to mycotoxin intoxication. This study aimed to investigate the effect of selected lactic acid bacteria (LAB) strains on the growth of Aspergillus parasiticus NRRL 2999 and its production of aflatoxin (AF). The ability of the heat-killed (100°C for 1 h) LAB strains to bind aflatoxin M1 (AFM1) in milk and aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) in potassium phosphate buffer (PPB) was also evaluated in vitro. Ten LAB strains were tested individually, by inoculating them simultaneously with the fungus or after incubation of the fungus for 24 or 48 h at 25°C. Double layer yeast extract sucrose (YES) agar, de Man Rogosa and Sharpe (MRS) agar, and YES broth were incubated for 7 days at 25°C to follow the development of the fungus. Levilactobacillus spp. 3QB398 and Levilactobacillus brevis 2QB422 strains were able to delay the growth of A. parasiticus in YES broth, even when these strains were inoculated 24 h after the fungus. The inhibitory effect of these LAB strains was confirmed by the reduction of fungus colony size, suggesting dominance of LAB by competition (a Lotka-Voltera effect). The production of AFB1 by A. parasiticus was inhibited when the fungus was inoculated simultaneously with Lactiplantibacillus plantarum 3QB361 or L. plantarum 3QB350. No AFB1 was found when Levilactobacillus spp. 2QB383 was present, even when the LAB was inoculated 48 h after the fungus. In binding studies, seven inactivated LAB strains were able to promote a reduction of at least 50% the level of AFB1, OTA, and ZEN. This reduction varied depending on the pH of the PPB. In milk, however, only two inactivated LAB strains were able to reduce AFM1, with a reduction of 33 and 45% for Levilactobacillus spp. 3QB398 (Levilactobacillus spp.) and L. brevis 2QB422, respectively. Nevertheless, these results clearly indicate the potential of using LAB for mycotoxin reduction.
Collapse
Affiliation(s)
| | - Luisa Freire
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Roice Eliana Rosim
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Larissa Pereira Margalho
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Celso Fasura Balthazar
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Larissa Tuanny Franco
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Anderson de Souza Sant’Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Carlos Humberto Corassin
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fergal Patrick Rattray
- Division of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
18
|
|
19
|
Muaz K, Riaz M, Oliveira CAFD, Akhtar S, Ali SW, Nadeem H, Park S, Balasubramanian B. Aflatoxin M1 in milk and dairy products: global occurrence and potential decontamination strategies. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1873387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Khurram Muaz
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Riaz
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | | |
Collapse
|
20
|
Noroozi R, Sadeghi E, Rouhi M, Safajoo S, Razmjoo F, Paimard G, Moradi L. Fates of aflatoxin B 1 from wheat flour to Iranian traditional cookies: Managing procedures to aflatoxin B 1 reduction during traditional processing. Food Sci Nutr 2020; 8:6014-6022. [PMID: 33282253 PMCID: PMC7684617 DOI: 10.1002/fsn3.1888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Aflatoxin B1 (AFB1) incidence in cereal, especially in wheat products, is a serious worldwide challenge for human health. The objective of the current study was to survey the effect of various factors, including fermentation times, yeast levels, ingredients, and time/temperature combinations of the baking process on aflatoxin B1 (AFB1) reduction in order to modify parameters of the traditional cookie-making process. AFB1 levels were analyzed by an HPLC-fluorescence detector. The results revealed AFB1 levels significantly decreased during fermentation (%23.7), depending on an increase in the yeast level (2%) and fermentation time (90 min). Furthermore, there was a significant correlation between pH reduction and AFB1 decomposition. However, the formulation of the recipe did not show a significant effect on the detoxification of AFB1. The baking temperature increase in an admissible technological range (280°C for 15 min) more effectively reduced AFB1 content (%53.9). As a result, the exact control of the traditional process was able to significantly decreased AFB1 content as a serious health-threatening toxin in the final product (%75.9). However, AFB1 toxicity reduction should be considered seriously in the raw materials and such products.
Collapse
Affiliation(s)
- Razieh Noroozi
- Student Research CommitteeDepartment of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyKermanshah University of Medical ScienceKermanshahIran
| | - Ehsan Sadeghi
- Department of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyResearch Center for Environmental Determinants of Health (RCEDH)Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Milad Rouhi
- Department of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyResearch Center for Environmental Determinants of Health (RCEDH)Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Saeede Safajoo
- Student Research CommitteeDepartment of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyKermanshah University of Medical ScienceKermanshahIran
| | - Fatemeh Razmjoo
- Student Research CommitteeDepartment of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyKermanshah University of Medical ScienceKermanshahIran
| | - Giti Paimard
- Department of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyResearch Center for Environmental Determinants of Health (RCEDH)Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Leila Moradi
- Student Research CommitteeDepartment of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyKermanshah University of Medical ScienceKermanshahIran
| |
Collapse
|