1
|
Luo Y, Li M, Luo D, Tang B. Gut Microbiota: An Important Participant in Childhood Obesity. Adv Nutr 2025; 16:100362. [PMID: 39733798 PMCID: PMC11786877 DOI: 10.1016/j.advnut.2024.100362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024] Open
Abstract
Increasing prevalence of childhood obesity has emerged as a critical global public health concern. Recent studies have challenged the previous belief that obesity was solely a result of excessive caloric intake. Alterations in early-life gut microbiota can contribute to childhood obesity through their influence on nutrient absorption and metabolism, initiation of inflammatory responses, and regulation of gut-brain communication. The gut microbiota is increasingly acknowledged to play a crucial role in human health, as certain beneficial bacteria have been scientifically proven to possess the capacity to reduce body fat content and enhance intestinal barrier function and their metabolic products to exhibit anti-inflammatory effect. Examples of such microbes include bifidobacteria, Akkermansia muciniphila, and Lactobacillus reuteri. In contrast, an increase in Enterobacteriaceae and propionate-producing bacteria (Prevotellaceae and Veillonellaceae) has been implicated in the induction of low-grade systemic inflammation and disturbances in lipid metabolism, which can predispose individuals to obesity. Studies have demonstrated that modulating the gut microbiota through diet, lifestyle changes, prebiotics, probiotics, or fecal microbiota transplantation may contribute to gut homeostasis and the management of obesity and its associated comorbidities. This review aimed to elucidate the impact of alterations in gut microbiota composition during early life on childhood obesity and explores the mechanisms by which gut microbiota contributes to the pathogenesis of obesity and specifically focused on recent advances in using short-chain fatty acids for regulating gut microbiota and ameliorating obesity. Additionally, it aimed to discuss the therapeutic strategies for childhood obesity from the perspective of gut microbiota, aiming to provide a theoretical foundation for interventions targeting pediatric obesity based on gut microbiota.
Collapse
Affiliation(s)
- Yu Luo
- Department of Pediatrics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Maojun Li
- Department of Pediatrics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Luo
- Department of Pediatrics, School of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binzhi Tang
- Department of Pediatrics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Pediatrics, School of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Zoghi S, Sadeghpour Heravi F, Nikniaz Z, Shirmohamadi M, Moaddab SY, Ebrahimzadeh Leylabadlo H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng Life Sci 2024; 24:2300070. [PMID: 38708416 PMCID: PMC11065333 DOI: 10.1002/elsc.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 05/07/2024] Open
Abstract
Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host-microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
3
|
Borka Balas R, Meliț LE, Lupu A, Lupu VV, Mărginean CO. Prebiotics, Probiotics, and Synbiotics-A Research Hotspot for Pediatric Obesity. Microorganisms 2023; 11:2651. [PMID: 38004665 PMCID: PMC10672778 DOI: 10.3390/microorganisms11112651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Childhood obesity is a major public health problem worldwide with an increasing prevalence, associated not only with metabolic syndrome, insulin resistance, hypertension, dyslipidemia, and non-alcoholic fatty liver disease (NAFLD), but also with psychosocial problems. Gut microbiota is a new factor in childhood obesity, which can modulate the blood lipopolysaccharide levels, the satiety, and fat distribution, and can ensure additional calories to the host. The aim of this review was to assess the differences and the impact of the gut microbial composition on several obesity-related complications such as metabolic syndrome, NAFLD, or insulin resistance. Early dysbiosis was proven to be associated with an increased predisposition to obesity. Depending on the predominant species, the gut microbiota might have either a positive or negative impact on the development of obesity. Prebiotics, probiotics, and synbiotics were suggested to have a positive effect on improving the gut microbiota and reducing cardio-metabolic risk factors. The results of clinical trials regarding probiotic, prebiotic, and synbiotic administration in children with metabolic syndrome, NAFLD, and insulin resistance are controversial. Some of them (Lactobacillus rhamnosus bv-77, Lactobacillus salivarius, and Bifidobacterium animalis) were proven to reduce the body mass index in obese children, and also improve the blood lipid content; others (Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Enterococcus faecium, and fructo-oligosaccharides) failed in proving any effect on lipid parameters and glucose metabolism. Further studies are necessary for understanding the mechanism of the gut microbiota in childhood obesity and for developing low-cost effective strategies for its management.
Collapse
Affiliation(s)
- Reka Borka Balas
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Ancuța Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Vasile Valeriu Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| |
Collapse
|
4
|
González A, Conceição E, Teixeira JA, Nobre C. In vitro models as a tool to study the role of gut microbiota in obesity. Crit Rev Food Sci Nutr 2023; 64:10912-10923. [PMID: 37403775 DOI: 10.1080/10408398.2023.2232022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Obesity, a highly prevalent condition worldwide that leads to the development of multiple metabolic diseases, has been related to gut microbial dysbiosis. To understand this correlation, in vivo models have been extremely useful. However, its use is limited by associated ethical concerns, high costs, low representativeness, and low reproducibility. Therefore, new and improved in vitro models have been developed in recent years, representing a promising tool in the study of the role of gut microbiota modulation in weight management and metabolic health. This review aims to provide an update on the main findings obtained in vitro regarding gut microbiota modulation with probiotics, and food compounds, and its interaction with the host metabolism, associated with obesity. Available in vitro colon models currently used to study obesity are discussed, including batch and dynamic fermentation systems, and models that allow the study of microbiota-host interactions using cell cultures. In vitro models have demonstrated that homeostatic microbiota may help overcome obesity by producing satiety-related neurotransmitters and metabolites that protect the gut barrier and improve the metabolic activity of adipose tissue. In vitro models may be the key to finding new treatments for obesity-related disorders.
Collapse
Affiliation(s)
- Abigail González
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Eva Conceição
- CIPsi - Psychology Research Centre, University of Minho Campus de Gualtar, Braga, Portugal
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Portugal
| | - Clarisse Nobre
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Portugal
| |
Collapse
|
5
|
Melekoglu E, Yılmaz B, Çevik A, Gökyıldız Sürücü Ş, Avcıbay Vurgeç B, Gözüyeşil E, Sharma H, Boyan N, Ozogul F. The Impact of the Human Milk Microbiota in the Prevention of Disease and Infant Health. Breastfeed Med 2023. [PMID: 37140562 DOI: 10.1089/bfm.2022.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Background: Human milk is recognized as an ideal food for newborns and infants owing to the presence of various nutritive factors, including healthy bacteria. Aim/Objective: This review aimed to understand the effects of human milk microbiota in both the prevention of disease and the health of infants. Methods: Data were obtained from PubMed, Scopus, Web of Science, clinical trial registries, Dergipark, and Türk Atıf Dizini up to February 2023 without language restrictions. Results: It is considered that the first human milk microbiota ingested by the newborn creates the initial microbiome of the gut system, which in turn influences the development and maturation of immunity. Bacteria present in human milk modulate the anti-inflammatory response by releasing certain cytokines, protecting the newborn against certain infections. Therefore, certain bacterial strains isolated from human milk could serve as potential probiotics for various therapeutic applications. Conclusions: In this review, the origin and significance of human milk bacteria have been highlighted along with certain factors influencing the composition of human milk microbiota. In addition, it also summarizes the health benefits of human milk as a protective agent against certain diseases and ailments.
Collapse
Affiliation(s)
- Ebru Melekoglu
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Ayseren Çevik
- Department of Midwifery, Cukurova University, Adana, Turkey
| | | | | | - Ebru Gözüyeşil
- Department of Midwifery, Cukurova University, Adana, Turkey
| | - Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Neslihan Boyan
- Department of Anatomy, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
6
|
Functional Fermented Milk with Fruit Pulp Modulates the In Vitro Intestinal Microbiota. Foods 2022; 11:foods11244113. [PMID: 36553855 PMCID: PMC9778618 DOI: 10.3390/foods11244113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The effect of putative probiotic fermented milk (FM) with buriti pulp (FMB) or passion fruit pulp (FMPF) or without fruit pulp (FMC) on the microbiota of healthy humans was evaluated. FM formulations were administered into a simulator of the human intestinal microbial ecosystem (SHIME®) to evaluate the viability of lactic acid bacteria (LAB), microbiota composition, presence of short-chain fatty acids (SCFA), and ammonium ions. The probiotic LAB viability in FM was affected by the addition of the fruit pulp. Phocaeicola was dominant in the FMPF and FMB samples; Bifidobacterium was related to FM formulations, while Alistipes was associated with FMPF and FMB, and Lactobacillus and Lacticaseibacillus were predominant in FMC. Trabulsiella was the central element in the FMC, while Mediterraneibacter was the central one in the FMPF and FMB networks. The FM formulations increased the acetic acid, and a remarkably high amount of propionic and butyric acids were detected in the FMB treatment. All FM formulations decreased the ammonium ions compared to the control; FMPF samples stood out for having lower amounts of ammonia. The probiotic FM with fruit pulp boosted the beneficial effects on the intestinal microbiota of healthy humans in addition to increasing SCFA in SHIME® and decreasing ammonium ions, which could be related to the presence of bioactive compounds.
Collapse
|
7
|
Man S, Zheng FY, Li SX, Lin LX, Liu FJ, Huang XG, Wang L. Benefit-Risk Assessment of Dietary Patterns by Bioavailable Metals, Gut Microbes, and Their Interaction for Human Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9769-9778. [PMID: 35895310 DOI: 10.1021/acs.jafc.2c02829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The high-carbohydrate, low-fat, low-protein (HC-LFP) and low-carbohydrate, high-fat, high-protein (LC-HFP) diets are the main dietary patterns worldwide. The influence of dietary patterns on bioavailable metals, gut microbes, and their interaction is still unknown. A biomimetic digestive tract with full functions is constructed to transform the diets into chyme, and the gut microbes are cultured with the corresponding chyme. The diet species-specificity in bioavailable metal content and the positive and negative correlations between bioavailable metals and microbial reproductions are disclosed. The safe dosage and maximum consumption are 369.5 and 858.6 g/d and 268.6 and 3119.0 g/d for LC-HFP and HC-LFP, respectively. When replacing HC-LFP with LC-HFP for 21 days, the bioavailability of Fe and Cr is increased 83.2% and 268.4%, respectively; the reproductions of harmful and benefical microbes are significantly increased and decreased. The prevalences of obesity, inflammation, septicemia, and cancer are increased, and then the risk of dietary pattern shift is disclosed.
Collapse
Affiliation(s)
- Shan Man
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China
| | - Feng-Ying Zheng
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control and College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China
| | | | | | | | | | | |
Collapse
|
8
|
Gibbons SM, Gurry T, Lampe JW, Chakrabarti A, Dam V, Everard A, Goas A, Gross G, Kleerebezem M, Lane J, Maukonen J, Penna ALB, Pot B, Valdes AM, Walton G, Weiss A, Zanzer YC, Venlet NV, Miani M. Perspective: Leveraging the Gut Microbiota to Predict Personalized Responses to Dietary, Prebiotic, and Probiotic Interventions. Adv Nutr 2022; 13:1450-1461. [PMID: 35776947 PMCID: PMC9526856 DOI: 10.1093/advances/nmac075] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023] Open
Abstract
Humans often show variable responses to dietary, prebiotic, and probiotic interventions. Emerging evidence indicates that the gut microbiota is a key determinant for this population heterogeneity. Here, we provide an overview of some of the major computational and experimental tools being applied to critical questions of microbiota-mediated personalized nutrition and health. First, we discuss the latest advances in in silico modeling of the microbiota-nutrition-health axis, including the application of statistical, mechanistic, and hybrid artificial intelligence models. Second, we address high-throughput in vitro techniques for assessing interindividual heterogeneity, from ex vivo batch culturing of stool and continuous culturing in anaerobic bioreactors, to more sophisticated organ-on-a-chip models that integrate both host and microbial compartments. Third, we explore in vivo approaches for better understanding of personalized, microbiota-mediated responses to diet, prebiotics, and probiotics, from nonhuman animal models and human observational studies, to human feeding trials and crossover interventions. We highlight examples of existing, consumer-facing precision nutrition platforms that are currently leveraging the gut microbiota. Furthermore, we discuss how the integration of a broader set of the tools and techniques described in this piece can generate the data necessary to support a greater diversity of precision nutrition strategies. Finally, we present a vision of a precision nutrition and healthcare future, which leverages the gut microbiota to design effective, individual-specific interventions.
Collapse
Affiliation(s)
| | - Thomas Gurry
- Pharmaceutical Biochemistry group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (PSI-WS), University of Geneva/University of Lausanne, Geneva, Switzerland
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Veerle Dam
- Sensus BV (Royal Cosun), Roosendaal, The Netherlands
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Almudena Goas
- Department of Food, Nutrition, and Exercise Sciences, University of Surrey, Guildford, United Kingdom
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt| Mead Johnson Nutrition Institute, Nijmegen, The Netherlands
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jonathan Lane
- Health and Happiness Group, H&H Research, Cork, Ireland
| | | | - Ana Lucia Barretto Penna
- Department of Food Engineering and Technology, São Paulo State University, São José do Rio Preto, Brazil
| | - Bruno Pot
- Yakult Europe BV, Almere, The Netherlands
| | - Ana M Valdes
- Nottingham NIHR Biomedical Research Centre at the School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Gemma Walton
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Adrienne Weiss
- Yili Innovation Center Europe, Wageningen, The Netherlands
| | | | - Naomi V Venlet
- International Life Sciences Institute, European Branch, Brussels, Belgium
| | - Michela Miani
- International Life Sciences Institute, European Branch, Brussels, Belgium
| |
Collapse
|
9
|
Notarbartolo V, Giuffrè M, Montante C, Corsello G, Carta M. Composition of Human Breast Milk Microbiota and Its Role in Children's Health. Pediatr Gastroenterol Hepatol Nutr 2022; 25:194-210. [PMID: 35611376 PMCID: PMC9110848 DOI: 10.5223/pghn.2022.25.3.194] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/02/2022] [Indexed: 12/26/2022] Open
Abstract
Human milk contains a number of nutritional and bioactive molecules including microorganisms that constitute the so-called "Human Milk Microbiota (HMM)". Recent studies have shown that not only bacterial but also viral, fungal, and archaeal components are present in the HMM. Previous research has established, a "core" microbiome, consisting of Firmicutes (i.e., Streptococcus, Staphylococcus), Proteobacteria (i.e., Serratia, Pseudomonas, Ralstonia, Sphingomonas, Bradyrhizobium), and Actinobacteria (i.e., Propionibacterium, Corynebacterium). This review aims to summarize the main characteristics of HMM and the role it plays in shaping a child's health. We reviewed the most recent literature on the topic (2019-2021), using the PubMed database. The main sources of HMM origin were identified as the retrograde flow and the entero-mammary pathway. Several factors can influence its composition, such as maternal body mass index and diet, use of antibiotics, time and type of delivery, and mode of breastfeeding. The COVID-19 pandemic, by altering the mother-infant dyad and modifying many of our previous habits, has emerged as a new risk factor for the modification of HMM. HMM is an important contributor to gastrointestinal colonization in children and therefore, it is fundamental to avoid any form of perturbation in the HMM that can alter the microbial equilibrium, especially in the first 100 days of life. Microbial dysbiosis can be a trigger point for the development of necrotizing enterocolitis, especially in preterm infants, and for onset of chronic diseases, such as asthma and obesity, later in life.
Collapse
Affiliation(s)
- Veronica Notarbartolo
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Claudio Montante
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Maurizio Carta
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Wang S, Wei Y, Liu L, Li Z. Association Between Breastmilk Microbiota and Food Allergy in Infants. Front Cell Infect Microbiol 2022; 11:770913. [PMID: 35096637 PMCID: PMC8790183 DOI: 10.3389/fcimb.2021.770913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Regulating the composition of human breastmilk has the potential to prevent allergic diseases early in life. The composition of breastmilk is complex, comprising varying levels of oligosaccharides, immunoactive molecules, vitamins, metabolites, and microbes. Although several studies have examined the relationship between different components of breastmilk and infant food allergies, few have investigated the relationship between microorganisms in breastmilk and infant food allergy. In the present study, we selected 135 healthy pregnant women and their full-term newborns from a cohort of 202 mother-infant pairs. Among them, 69 infants were exclusively breastfed until 6 mo after birth. At follow-up, 11 of the 69 infants developed a food allergy in infancy while 22 showed no signs of allergy. Thirty-three breastmilk samples were collected within 1 mo after delivery, and 123 infant fecal samples were collected at five time points following their birth. These samples were analyzed using microbial 16S rRNA gene sequencing. The abundance and evenness of the milk microbiota and the number of differential bacteria were higher in the breastmilk samples from the non-allergy group than in those from the food allergy group. The non-allergy group showed relatively high abundance of Bifidobacterium, Akkermansia, Clostridium IV, Clostridium XIVa, Veillonella, and butyrate-producing bacteria such as Fusobacterium, Lachnospiraceae incertae sedis, Roseburia, and Ruminococcus. In contrast, the abundance of Proteobacteria, Acinetobacter, and Pseudomonas in breastmilk was higher in the food allergy group. A comparison of the changes in dominant differential breastmilk microbiota in the intestinal flora of the two groups of infants over time revealed that the changes in Bifidobacterium abundance were consistent with those in the breastmilk flora. Functional pathway prediction of breastmilk microflora showed that the enhancement of the metabolic pathways of tyrosine, tryptophan, and fatty acids was significantly different between the groups. We suggest that changes in the breastmilk microbiota can influence the development of food allergies. Breastmilk contains several microbes that have protective effects against food allergies, both by influencing the colonization of intestinal microbiota and by producing butyrate. This study may provide new ideas for improving infant health through early intervention with probiotics.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Luyan Liu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zailing Li
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Song H, Shen X, Deng R, Chu Q, Zheng X. Pomegranate peel anthocyanins prevent diet-induced obesity and insulin resistance in association with modulation of the gut microbiota in mice. Eur J Nutr 2022; 61:1837-1847. [PMID: 35039918 DOI: 10.1007/s00394-021-02771-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Pomegranate peels are rich in anthocyanins. The present study aimed to explore the beneficial effects of pomegranate peel anthocyanins (PPA) on obesity and gut microbiota in mice with high-fat diet (HFD)-induced obesity. METHODS Specific pathogen-free (SPF) male C57BL/6 J mice were randomly divided into three groups and fed with low-fat diet (LFD, 10% fat energy), HFD (45% fat energy), or HFD supplemented with PPA by intragastric administration for 15 weeks. Body weight and food intake were monitored weekly. The obesity-related biochemical indexes and hepatic gene expression levels were determined. The compositions of the gut microbiota were analyzed by 16S rRNA sequencing, and the association between the gut microbiota and obesity-related indicators was investigated by Spearman correlation analysis. RESULTS The results showed that the body weight gain, steatosis scores and insulin resistance index in the PPA group decreased by 27.46%, 56.25%, and 46.07%, respectively, compared to the HFD group. Gene expression analysis indicated that PPA supplement improved the genes expression profiles involved in glucose and lipid metabolism compared with the mice fed HFD alone. Meanwhile, PPA significantly changed the composition of the gut microbiota, which were closely correlated with the obesity-related biomarkers. CONCLUSION This study suggested that PPA could be a beneficial treatment option for alleviating HFD-induced obesity and related metabolic disorders by targeting microbiota and lipid metabolism.
Collapse
Affiliation(s)
- Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Rou Deng
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Qiang Chu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaodong Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Sánchez C, Franco L, Regal P, Lamas A, Cepeda A, Fente C. Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy. Nutrients 2021; 13:1026. [PMID: 33810073 PMCID: PMC8005182 DOI: 10.3390/nu13031026] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Breast milk is an unbeatable food that covers all the nutritional requirements of an infant in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both maternal and child health. Increasing knowledge has been acquired regarding the composition of breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong effects of breastfeeding. In this review we have compiled some of the components with clear functional activity that are present in human milk and the processes through which they promote infant development and maturation as well as modulate immunity. Milk fat globule membrane, proteins, oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for the development of new clinical therapies. The clinical evaluation of these compounds and their commercial exploitation are limited by the difficulty of isolating and producing them on an adequate scale. In this work we focus on the compounds produced using milk components from other species such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial culture engineering.
Collapse
Affiliation(s)
- Cristina Sánchez
- Pharmacy Faculty, San Pablo-CEU University, 28003 Madrid, Spain;
| | - Luis Franco
- Medicine Faculty, Santiago de Compostela University, 15782 Santiago de Compostela, Spain;
| | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alberto Cepeda
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Cristina Fente
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| |
Collapse
|