1
|
Liu S, Xiang Y, Xu C, Sun J, Pi Y, Shao JH. Systematic preparation of animal-derived glycosaminoglycans: Research progress and industrial significance. Food Chem 2025; 464:141565. [PMID: 39406132 DOI: 10.1016/j.foodchem.2024.141565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 11/21/2024]
Abstract
Impurities and isomerized polysaccharides affect the analytical accuracy of glycosaminoglycans (GAGs) structure and bioactivity, hindering their application in food and medicine. Preparing homogeneous GAGs components is essential for exploring structure-potency relationships and facilitating industrial production. This review primarily summarizes research on animal-derived GAGs preparation over the past five years, standardizing the preparation process into four operational units: pre-extraction treatment, extraction of crude polysaccharides, refinement of crude polysaccharides, and separation of GAGs components. Analyzed for scientific research and industrial production, the principles and application conditions of traditional means and novel techniques to preparing GAGs are comprehensively emphasized, exploring the effects of different treatments on biological activity and structure. Current challenges and development trends are illuminated. This review aims to lay a foundation for the in-depth study of GAGs structure, bioactivity, and function, providing theoretical references for the comprehensive utilization of animal raw materials and the development of animal polysaccharide deep-processing industries.
Collapse
Affiliation(s)
- Sinong Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yanpeng Xiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chang Xu
- Foreign Languages Teaching Department, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yuzhen Pi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
2
|
Carrasqueira J, Bernardino S, Bernardino R, Afonso C. Marine-Derived Polysaccharides and Their Potential Health Benefits in Nutraceutical Applications. Mar Drugs 2025; 23:60. [PMID: 39997184 PMCID: PMC11857343 DOI: 10.3390/md23020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Marine-derived polysaccharides have sparked immense interest in the nutraceutical industry as they possess a wide range of bioactivities which are highlighted in this review. These include antioxidants, anti-inflammatory, anti-cancer, gut microbiota regulator, anti-diabetic, and anti-obesity. Algae, marine invertebrates, vertebrates, and microorganisms are the main sources of marine polysaccharides, such as alginate, fucoidan, laminarin, carrageenan, chitosan, glycosaminoglycans, and exopolysaccharides. The structure and functional groups of these compounds influence their bioactive properties. Moreover, the functional properties of polysaccharides, such as gelling, thickening, and stabilising capabilities, are also crucial in product development, where they can serve as gluten substitutes in bakery goods and stabilisers in icings, sauces, and yoghurts. The potential of commercial products under development, such as marine polysaccharide supplements, is discussed, along with already commercialised products in the nutraceutical market. This review emphasises the enormous potential of marine-derived polysaccharides as bioactive compounds with health benefits and commercial value.
Collapse
Affiliation(s)
- Joana Carrasqueira
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
| | - Susana Bernardino
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
| | - Raul Bernardino
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Clélia Afonso
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
| |
Collapse
|
3
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
4
|
Yang B, Yang C, Liu R, Sui W, Zhu Q, Jin Y, Wu T, Zhang M. The Relationship between Preparation and Biological Activities of Animal-Derived Polysaccharides: A Comprehensive Review. Foods 2024; 13:173. [PMID: 38201201 PMCID: PMC10779202 DOI: 10.3390/foods13010173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Polysaccharides are biomolecules found in microorganisms, plants, and animals that constitute living organisms. Glycosaminoglycans, unique acidic polysaccharides in animal connective tissue, are often combined with proteins in the form of covalent bonds due to their potent biological activity, low toxicity, and minimal side effects, which have the potential to be utilized as nutrition healthcare and dietary supplements. Existing studies have demonstrated that the bioactivity of polysaccharides is closely dependent on their structure and chain conformation. The characteristic functional groups and primary structure directly determine the strength of activity. However, the relationship between structure and function is still unclear, and the target and mechanism of action are not fully understood, resulting in limited clinical applications. As a result, the clinical applications of these polysaccharides are currently limited. This review provides a comprehensive summary of the extraction methods, structures, and biological activities of animal-derived polysaccharides that have been discovered so far. The aim is to promote developments in animal active polysaccharide science and provide theoretical support for exploring other unknown natural products.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (B.Y.); (C.Y.); (R.L.); (W.S.); (Y.J.); (M.Z.)
| | | |
Collapse
|
5
|
Krishnamoorthi R, Anbazhagan R, Thankachan D, Thuy Dinh VT, Tsai HC, Lai JY, Wang CF. Antiblood Cell Adhesion of Mussel-Inspired Chondroitin Sulfate- and Caffeic Acid-Modified Polycarbonate Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:717-727. [PMID: 36584671 DOI: 10.1021/acs.langmuir.2c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We fabricated a mussel-inspired hemocompatible polycarbonate membrane (PC) modified by the cross-linking of chondroitin sulfate and caffeic acid polymer using CA-CS via a Schiff base and Michael addition reaction and named it CA-CS-PC. The as-fabricated CA-CS-PC membrane shows excellent hydrophilicity with a water contact angle of 0° and a negative surface charge with a zeta potential of -32 mV. The antiadhesion property of the CA-CS-modified PC membrane was investigated by enzyme-linked immunosorbent assay (ELISA), using human plasma protein fibrinogen adsorption studies, and proved to have excellent antiadhesion properties, because of the lower fibrinogen adsorption. In addition, the CA-CS-PC membrane also shows enhanced hemocompatibility. Finally, blood cell attachment tests of the CA-CS-PC membrane were observed by CLSM and SEM, and the obtained results proved that CA-CS-PC effectively resisted cell adhesion, such as platelets and leucocytes. Therefore, this work disclosed a new way to design a simple and versatile modification of the membrane surface by caffeic acid and chondroitin sulfate and apply it for cell adhesion.
Collapse
Affiliation(s)
- Rajakumari Krishnamoorthi
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
| | - Rajeshkumar Anbazhagan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
| | - Darieo Thankachan
- Department of materials science and engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Van Thi Thuy Dinh
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 320, Taiwan
| | - Chih-Feng Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
6
|
Yang M, Ren W, Li G, Yang P, Chen R, He H. The effect of structure and preparation method on the bioactivity of polysaccharides from plants and fungi. Food Funct 2022; 13:12541-12560. [PMID: 36421015 DOI: 10.1039/d2fo02029g] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polysaccharides are not only the main components in the cell walls of plants and fungi, but also a structure that supports and protects cells. In the process of obtaining polysaccharides from raw materials containing cell walls, the polysaccharides on the cell walls are the products and also a factor that affects the extraction rate. Polysaccharides derived from plants and fungi have mild characteristics and exhibit various biological activities. The biological activity of polysaccharides is related to their chemical structure. This review summarizes the effects of the physicochemical properties and structure of polysaccharides, from cell walls in raw materials, that have an impact on their biological activities, including molecular weight, monosaccharide composition, chain structure, and uronic acid content. Also, the structure of certain natural polysaccharides limits their biological activity. Chemical modification and degradation of these structures can enhance the pharmacological properties of natural polysaccharides to a certain extent. At the same time, the processing method affects the structure and yield of polysaccharides on the cell wall and in the cell. The extraction and purification methods are summarized, and the effects of preparation methods on the structure and physiological effects of polysaccharides from plants and fungi are discussed.
Collapse
Affiliation(s)
- Manli Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Wenjing Ren
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Geyuan Li
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Rong Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Urbi Z, Azmi NS, Ming LC, Hossain MS. A Concise Review of Extraction and Characterization of Chondroitin Sulphate from Fish and Fish Wastes for Pharmacological Application. Curr Issues Mol Biol 2022; 44:3905-3922. [PMID: 36135180 PMCID: PMC9497668 DOI: 10.3390/cimb44090268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Chondroitin sulphate (CS) is one of the most predominant glycosaminoglycans (GAGs) available in the extracellular matrix of tissues. It has many health benefits, including relief from osteoarthritis, antiviral properties, tissue engineering applications, and use in skin care, which have increased its commercial demand in recent years. The quest for CS sources exponentially increased due to several shortcomings of porcine, bovine, and other animal sources. Fish and fish wastes (i.e., fins, scales, skeleton, bone, and cartilage) are suitable sources of CS as they are low cost, easy to handle, and readily available. However, the lack of a standard isolation and characterization technique makes CS production challenging, particularly concerning the yield of pure GAGs. Many studies imply that enzyme-based extraction is more effective than chemical extraction. Critical evaluation of the existing extraction, isolation, and characterization techniques is crucial for establishing an optimized protocol of CS production from fish sources. The current techniques depend on tissue hydrolysis, protein removal, and purification. Therefore, this study critically evaluated and discussed the extraction, isolation, and characterization methods of CS from fish or fish wastes. Biosynthesis and pharmacological applications of CS were also critically reviewed and discussed. Our assessment suggests that CS could be a potential drug candidate; however, clinical studies should be conducted to warrant its effectiveness.
Collapse
Affiliation(s)
- Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Nina Suhaity Azmi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
- Correspondence: (N.S.A.); (M.S.H.); Tel.: +60-12798-0497 (N.S.A.); +60-116960-9649 (M.S.H.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Md. Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Malaysia
- Faculty of Science, Sristy College of Tangail, Tangail 1900, Bangladesh
- Correspondence: (N.S.A.); (M.S.H.); Tel.: +60-12798-0497 (N.S.A.); +60-116960-9649 (M.S.H.)
| |
Collapse
|
8
|
Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Mar Drugs 2022; 20:md20060372. [PMID: 35736175 PMCID: PMC9228671 DOI: 10.3390/md20060372] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oceans have vast potential to develop high-value bioactive substances and biomaterials. In the past decades, many biomaterials have come from marine organisms, but due to the wide variety of organisms living in the oceans, the great diversity of marine-derived materials remains explored. The marine biomaterials that have been found and studied have excellent biological activity, unique chemical structure, good biocompatibility, low toxicity, and suitable degradation, and can be used as attractive tissue material engineering and regenerative medicine applications. In this review, we give an overview of the extraction and processing methods and chemical and biological characteristics of common marine polysaccharides and proteins. This review also briefly explains their important applications in anticancer, antiviral, drug delivery, tissue engineering, and other fields.
Collapse
|
9
|
Sharma R, Kataria A, Sharma S, Singh B. Structural characterisation, biological activities and pharmacological potential of glycosaminoglycans and oligosaccharides: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rajan Sharma
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| | - Ankita Kataria
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| | - Savita Sharma
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| | - Baljit Singh
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| |
Collapse
|