1
|
Zhang Z, Li J, Yang Y, Gong Q, Li H, Rao S, Zheng X, Yang Z. Degradation of patulin by a yeast strain Kluyveromyces marxianus XZ1 and its mechanism. Food Microbiol 2025; 129:104758. [PMID: 40086987 DOI: 10.1016/j.fm.2025.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Patulin (PAT) produced by genus of Penicillium spp attracted more and more concern in view of its widespread contamination in food and toxic effects, which has also promoted the research on the reduction of PAT contamination in food. The use of yeast to remove PAT in food is innovative and promising. In this study, we used the yeast Kluyveromyces marxianus XZ1 to degrade PAT, which can remove 90% of PAT (10 μg/mL) within 48 h. XZ1 exhibits high degradation effect on PAT under the conditions of pH range of 3-6, temperatures of 28-37 °C, and initial PAT concentrations below 50 μg/mL. PAT removing by XZ1 was carried out by intracellular enzymes. XZ1 or intracellular enzyme was able to remove 100% of 10 μg/mL PAT in raw apple juice or commercial apple juice within 60 h. Patulin oxidoreductase (KmPAO) was identified as a potential PTA-degrading enzymes, which degrade PAT to form ascladiol. The degradation products of PAT by XZ1 were identified as ascladiol and desoxypatulinic acid, which was then complete degraded to form unknown final degradation products. Toxic analyses on Caco-2 cells showed that the ascladiol, desoxypatulinic acid and the final degradation products were significantly less toxic compared to PAT, which was mainly manifested in less influence on cell vitality, cell integrity and reactive oxygen species accumulation compared to PAT. Finally, the results revealed the PAT degradation enzyme, as well as the safety of the degradation products, which provide basis for the future application of this yeast to decontamination of PAT in food.
Collapse
Affiliation(s)
- Zihan Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yiran Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qinghua Gong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
2
|
Yang C, Huang L, Hu C, Yao J, Zhou T, Li XZ, Seah SYK, Peng B. Identification and characterization of aldo-keto reductase responsible for patulin degradation in Saccharomyces cerevisiae. Food Chem 2025; 478:143706. [PMID: 40147281 DOI: 10.1016/j.foodchem.2025.143706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/13/2025] [Accepted: 03/01/2025] [Indexed: 03/29/2025]
Abstract
Patulin (PAT) is a hazardous mycotoxin that contaminates fruits and their products, causing significant economic losses. An aldo-keto reductase from Saccharomyces cerevisiae (ScAKR) was expressed in Escherichia coli in this study. The purified ScAKR converted PAT to E-ascladiol with NADPH as a cofactor. The ScAKR exhibited a strong degradation activity on PAT and the optimal degradation conditions were pH 7 and 37 °C. Molecular docking and site-specific mutagenesis indicated that the amino acids in ScAKR interacting with PAT aldehyde affected the degradation effect, and the mutation of Trp298 showed the most significant effect on the degradation rate. Furthermore, ScAKR also showed a strong degradation effect on 3-keto-deoxynivalenol, a metabolite of another mycotoxin, deoxynivalenol (DON). The findings offer new insights on the detoxification mechanism of PAT by S. cerevisiae and for the development and application of bioenzymes with broad-spectrum mycotoxin degradation properties.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lingxuan Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jieqiong Yao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Xiu-Zhen Li
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Stephen Y K Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Bangzhu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
3
|
Sun S, Ku M, Yang J, Zhang W, Xie Y. Degradation of patulin in aqueous solution and apple juice by titanium dioxide/graphitic carbon nitride: efficiency, quality and safety. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:679-692. [PMID: 40293966 DOI: 10.1080/19440049.2025.2494725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
A titanium dioxide/graphitic carbon nitride composite (TiO2/g-C3N4; TOCN) was utilized for the degradation of patulin (PAT). The introduction of carbon nitride into TOCN narrowed the band gap of titanium dioxide (TiO2), thereby enhancing the utilization of the composite with visible light. Patulin at a concentration of 250 μg/kg in aqueous solution and apple juice was degraded respectively by 100% and 85.4% under visible light. The superoxide ion (·O2-) and hydroxyl radical (·OH) play significant roles in the photocatalytic degradation of PAT, and a new degradation product was identified by ultra-high performance liquid chromatography tandem quadrupole orbitrap mass spectrometry (UPLC-Q-Orbitrap MS). In addition, photocatalytic degradation has a minor impact on the quality and nutrition of apple juice. The results of Ames and zebrafish experiments demonstrated that the toxicities of the degradation products were significantly reduced. These results indicate the TOCN photocatalyst can effectively eliminate patulin from aqueous solutions and apple juice, offering a new strategy for removing patulin from food samples.
Collapse
Affiliation(s)
- Shumin Sun
- Centre laboratory of Academy of National Food and Strategic Reserves Administration, Beijing, China
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Mengdan Ku
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jiayi Yang
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Wenhao Zhang
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yanli Xie
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Zhang Y, Zhao Q, Godana EA, Lu Y, Zhang X, Yang Q, Castoria R, Zhang H. Mechanism of patulin detoxification by Meyerozyma guilliermondii: Integrating physiological analysis with a short-chain dehydrogenase/reductase study. Int J Biol Macromol 2025; 310:143290. [PMID: 40253034 DOI: 10.1016/j.ijbiomac.2025.143290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/27/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Patulin (PAT) is a harmful polyketide mycotoxin that contaminates fruits and vegetables, posing significant food safety risks and severe health hazards to humans. This study revealed that the growth and morphology of Meyerozyma guilliermondii were affected by PAT stress. Exposure to PAT led to accelerated oxidative stress and apoptosis of M. guilliermondii. However, despite these adverse effects, M. guilliermondii retained the ability to completely degrade PAT within 72 h. Under PAT stress, the activities of antioxidant-related and glutathione metabolism-related enzymes in M. guilliermondii significantly increased, thereby mitigating reactive oxygen species (ROS) accumulation and maintaining cellular viability to support PAT degradation. Furthermore, a key enzyme in M. guilliermondii, short-chain dehydrogenase/reductase (MgSDR), was found to degrade PAT into ascladiol. The results demonstrated that M. guilliermondii activated a self-protection mechanism while simultaneously degrading PAT, which provided a theoretical basis for developing biological control agents that combine mycotoxin detoxification with stress tolerance. The study promotes the future application of biological resources in juice detoxification.
Collapse
Affiliation(s)
- Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qianhua Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuchun Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Francesco de Sanctis, 86100, Campobasso, Italy
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
5
|
Gao H, Xie Z, Xu S, Jiang C. MUA-modified Au nanocluster-driven fluorescence sensor for chromatographic test strips-based visual detection of patulin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125736. [PMID: 39826168 DOI: 10.1016/j.saa.2025.125736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
The relationship between human health and patulin (PAT) in the diet is a complex and intertwined one. The development of a sensing approach for the field detection of patulin is crucial, as the current approach lacks real-time detection capabilities and is costly in terms of material and technology. This paper presents a portable ratiometric fluorescence sensor that can be used to rapidly, accurately, and efficiently detect patulin in food items at the point of origin. The sensor employs a combination of sulfhydryl functionalized gold nanoclusters (MUA-AuNCs) and blue emission carbon dots (B-CDs), which have been engineered to serve as highly effective "on-off" nanoprobes. The modified sulfhydryl (SH) groups present on the gold clusters serve as specific recognition sites for patulin binding. The probes exhibit a discernible shift in hue, from orange-red to blue. The sensitivity detection limit (LOD) for patulin was found to be 0.019 μM, with a substantial linear correlation observed in the range of 0-2.2 μM. The objective of the combined chromatographic test strip and color recognition platform was to facilitate the sensitive, accurate, and real-time detection of patulin in foodstuffs, which is of paramount importance for the prevention of early disease. To facilitate rapid and straightforward preliminary testing of food security, it is anticipated that the integrated chromatographic strip ratiometric fluorescence sensing platform will be developed into portable home detection equipment.
Collapse
Affiliation(s)
- Hongcheng Gao
- Materials and Chemical Engineering, Hefei University, Hefei 230069, China; Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenzhen Xie
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
6
|
Shirazi S, Ramezan Y, Moslehishad M, Marzdashti HG, Mirsaeedghazi H. Effects of cold atmospheric plasma on patulin degradation, polyphenol oxidase inactivation and other physicochemical properties of fresh-cut apple slices during storage. Food Chem 2025; 465:142017. [PMID: 39581082 DOI: 10.1016/j.foodchem.2024.142017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/15/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
Mycotoxin elimination is one of the significant concerns in the food industry. Cold atmospheric plasma (CAP) is a novel non-thermal method with high potential in this regard. This study aimed to evaluate the dielectric-barrier discharge (DBD) cold plasma effect on fresh-cut apple slices contaminated with patulin. The contaminated slices were subjected to a 17-23 kV range of DBD for 2.5-10 min and stored for 14 days in the refrigerator. This treatment eliminated the patulin and total viable count (TVC) by 23 kV power and 2.5- and 8.5-min exposure. The polyphenol oxidase (PPO) activity also decreased by 12 %, 47 %, and 28.5 % in the 1st, 7th, and 14th days of storage, respectively. Along with the moisture and vitamin C increment, the phenolics and browning index (BI) declined, which shows the overall acceptance increment. This study demonstrated the potential of CAP in improving the quality and shelf-life of ready-to-eat products.
Collapse
Affiliation(s)
- Somayeh Shirazi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition & Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maryam Moslehishad
- Department of Food Science and Technology, Safadasht Branch, Islamic Azad University, Tehran, Iran
| | | | - Hossein Mirsaeedghazi
- Department of Food Technology, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Pan C, Wei C, Wang X, Jin Y, Tian F. Patulin-degrading enzymes sources, structures, and mechanisms: A review. Int J Biol Macromol 2025; 291:139148. [PMID: 39725106 DOI: 10.1016/j.ijbiomac.2024.139148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Patulin (PAT), a fungal secondary metabolite with multiple toxicities, is an unavoidable contaminant in fruit and vegetable processing, posing potential health risks to consumers and causing significant economic losses to the global food industry. Traditional control strategies, such as physical and chemical methods, face several challenges, including low efficiency, high costs, and unverified safety. In contrast, microbial degradation of patulin is considered a more efficient and environmentally friendly approach, which has become a popular research focus. However, there is still insufficient research on the key degradation enzymes involved in microorganisms. Therefore, this review comprehensively summarizes recent research progress on the biological degradation of patulin, with a focus on microbial species capable of degrading patulin, the degradation enzymes they express, potential degradation mechanisms, and the toxicity of degradation products, while providing prospects for future research. It offers valuable insights for controlling patulin in food and stimulates further investigation. Ultimately, this review aims to promote the development of efficient and eco-friendly methods to mitigate patulin contamination in fruits and vegetables.
Collapse
Affiliation(s)
- Chunqiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Chaozhi Wei
- Xianghu Laboratory, Hangzhou 311231, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiao Wang
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Jiang Y, Wu Y, Zheng X, Yu T, Yan F. Current insights into yeast application for reduction of patulin contamination in foods: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e70044. [PMID: 39437191 DOI: 10.1111/1541-4337.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Patulin, a fungal secondary metabolite with multiple toxicities, is widely existed in a variety of fruits and their products. This not only causes significant economic losses to the agricultural and food industries but also poses a serious threat to human health. Conventional techniques mainly involved physical and chemical methods present several challenges include incomplete patulin degradation, high technical cost, and fruit quality decline. In comparison, removal of mycotoxin through biodegradation is regarded as a greener and safer strategy which has become popular research. Among them, yeast has a unique advantage in detoxification effect and application, which has attracted our attention. Therefore, this review provides a comprehensive account of the yeast species that can degrade patulin, degradation mechanism, current application status, and future challenges. Yeasts can efficiently convert patulin into nontoxic or low-toxic substances through biodegradation. Alternatively, it can use physical adsorption, which has the advantages of safety, high efficiency, and environmental friendliness. Nevertheless, due to the inherent complexity of the production environment, the sole utilization of yeast as a control agent remains inherently unstable and challenging to implement on a large scale in a practical manner. Integration control, enhancement of yeast resilience, improvement of yeast cell wall adsorption capacity, and research on additional patulin-degrading enzymes will facilitate the practical application of this approach. Furthermore, we analyzed the feasibility of the yeast commercial application in patulin reduction and provided suggestions on how to enhance its commercial value, which is of great significance for the control of mycotoxins in food products.
Collapse
Affiliation(s)
- Yiwei Jiang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yalan Wu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
El Filali Z, El Idrissi Boutaher A, Oumato J, Abdelmoumen H, Bourais I. Validation and screening of patulin in apple beverages marketed in Morocco. Food Chem 2024; 456:139994. [PMID: 38914035 DOI: 10.1016/j.foodchem.2024.139994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
Patulin is one of the mycotoxins frequently detected in apples and derivatives, representing a major food safety risk. This study aimed to validate a high-performance liquid chromatography (HPLC) method with an ultraviolet (UV) detector for patulin quantification and assess its occurrence in apple beverages marketed in Morocco. The validation parameters showed satisfactory results with adequate linearity (R > 0.997), a relative standard deviation below 2.5%, repeatability between 3.6 and 7.1%, reproducibility between 3.9 and 11.5%, a limit of quantification (LOQ) of 4 μg/L, and recoveries close to 100% for three levels. Analysis of 30 samples revealed patulin levels ranging from 0 to 16.36 μg/L, with 50% of samples showing negative levels. All positive results remained below the regulatory maximum limit of 50 μg/L. These findings affirm the efficacy of the HPLC proposed method in ensuring compliance with patulin regulations in apple beverages, underlining its importance in safeguarding food safety.
Collapse
Affiliation(s)
- Zainab El Filali
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco; Regional Laboratory of Analysis and Research, Casablanca, Morocco
| | | | - Jihane Oumato
- Food Science Department, Agronomy and Veterinary Institute, Rabat, Morocco
| | - Hanaa Abdelmoumen
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Ilhame Bourais
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco; Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco; Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco.
| |
Collapse
|
10
|
Khan R. Mycotoxins in food: Occurrence, health implications, and control strategies-A comprehensive review. Toxicon 2024; 248:108038. [PMID: 39047955 DOI: 10.1016/j.toxicon.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Mycotoxins are secondary metabolites produced by various filamentous fungi, including Aspergillus, Fusarium, Penicillium, Alternaria, Claviceps, Mucor, Trichoderma, Trichothecium, Myrothecium, Pyrenophora, and Stachybotrys. They can contaminate various plants or animal foods, resulting in a significant loss of nutritional and commercial value. Several factors contribute to mycotoxin production, such as humidity, temperature, oxygen levels, fungal species, and substrate. When contaminated food is consumed by animals and humans, mycotoxins are rapidly absorbed, affecting the liver, and causing metabolic disorders. The detrimental effects on humans and animals include reduced food intake and milk production, reduced fertility, increased risk of abortion, impaired immune response, and increased occurrence of diseases. Therefore, it is imperative to implement strategies for mycotoxin control, broadly classified as preventing fungal contamination and detoxifying their toxic compounds. This review aims to discuss various aspects of mycotoxins, including their occurrence, and risk potential. Additionally, it provides an overview of mycotoxin detoxification strategies, including the use of mycotoxin absorbents, as potential techniques to eliminate or mitigate the harmful effects of mycotoxins and masked mycotoxins on human and animal health while preserving the nutritional and commercial value of affected food products.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43300, Malaysia.
| |
Collapse
|
11
|
Liu M, Zhang X, Luan H, Zhang Y, Xu W, Feng W, Song P. Bioenzymatic detoxification of mycotoxins. Front Microbiol 2024; 15:1434987. [PMID: 39091297 PMCID: PMC11291262 DOI: 10.3389/fmicb.2024.1434987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins. Although physical methods, such as heat treatment, irradiation, and adsorption, are fast and simple, they have associated problems including incomplete detoxification, limited applicability, and cause changes in food characteristics (e.g., nutritive value, organoleptic properties, and palatability). Chemical detoxification methods, such as ammonification, ozonation, and peroxidation, pollute the environment and produce food safety risks. In contrast, bioenzymatic methods are advantageous as they achieve selective detoxification and are environmentally friendly and reusable; thus, these methods are the most promising options for the detoxification of mycotoxins. This paper reviews recent research progress on common mycotoxins and the enzymatic principles and mechanisms for their detoxification, analyzes the toxicity of the degradation products and describes the challenges faced by researchers in carrying out enzymatic detoxification. In addition, the application of enzymatic detoxification in food and feed is discussed and future directions for the development of enzymatic detoxification methods are proposed for future in-depth study of enzymatic detoxification methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
12
|
Zhao W, Hong SY, Kim JY, Om AS. Effects of temperature, pH, and relative humidity on the growth of Penicillium paneum OM1 isolated from pears and its patulin production. Fungal Biol 2024; 128:1885-1897. [PMID: 38876541 DOI: 10.1016/j.funbio.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Patulin is a mycotoxin produced by several species of Penicillium sp., Aspergillus sp., and Byssochlamys sp. on apples and pears. Most studies have been focused on Penicillium expansum, a common postharvest pathogen, but little is known about the characteristics of Penicillium paneum. In the present study, we evaluated the effects of temperature, pH, and relative humidity (RH) on the growth of P. paneum OM1, which was isolated from pears, and its patulin production. The fungal strain showed the highest growth rate at 25 °C and pH 4.5 on pear puree agar medium (PPAM) under 97 % RH, while it produced the highest amount of patulin at 20 °C and pH 4.5 on PPAM under 97 % RH. Moreover, RT-qPCR analysis of relative expression levels of 5 patulin biosynthetic genes (patA, patE, patK, patL, and patN) in P. paneum OM1 exhibited that the expression of the 4 patulin biosynthetic genes except patL was up-regulated in YES medium (patulin conducive), while it was not in PDB medium (patulin non-conducive). Our data demonstrated that the 3 major environmental parameters had significant impact on the growth of P. paneum OM1 and its patulin production. These results could be exploited to prevent patulin contamination by P. paneum OM1 during pear storage.
Collapse
Affiliation(s)
- Wencai Zhao
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Sung-Yong Hong
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ju-Yeon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ae-Son Om
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
13
|
Zhang X, Zong Y, Zhang F, Liu Q, Gong D, Bi Y, Sionov E, Prusky D. The small GTPase Ypt7 of Penicillium expansum is required for growth, patulin biosynthesis and virulence. Food Microbiol 2024; 119:104434. [PMID: 38225046 DOI: 10.1016/j.fm.2023.104434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Ypt GTPases are the largest subfamily of small GTPases involved in membrane transport. Here, a PeYpt7 gene deletion mutant of P. expansum was constructed. The ΔPeYpt7 mutant showed reduced colony growth with abnormal mycelial growth, reduced conidiation, and insufficient spore development. The mutation rendered the pathogen susceptible to osmotic stress and cell wall stressors. In addition, the absence of PeYpt7 reduced patulin production in P. expansum and significantly limited gene expression (PatG, PatH, PatI, PatD, PatF, and PatL). In addition, the mutant showed attenuated virulence in infected fruit and reduced expression of pathogenic factors was (PMG, PG, PL, and GH1). Thus, PeYpt7 modulates the growth, morphology, patulin accumulation, and pathogenicity of P. expansum by limiting the expression of related genes.
Collapse
Affiliation(s)
- Xuemei Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Feng Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Di Gong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Edward Sionov
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, 7528809, Israel
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, 7528809, Israel
| |
Collapse
|
14
|
Xi H, Wang Y, Ni X, Zhang M, Luo Y. Patulin Biodegradation Mechanism Study in Pichia guilliermondii S15-8 Based on PgSDR-A5D9S1. Toxins (Basel) 2024; 16:177. [PMID: 38668602 PMCID: PMC11053455 DOI: 10.3390/toxins16040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Patulin contamination has become a bottleneck problem in the safe production of fruit products, although biodegradation technology shows potential application value in patulin control. In the present study, the patulin biodegradation mechanism in a probiotic yeast, Pichia guilliermondii S15-8, was investigated. Firstly, the short-chain dehydrogenase PgSDR encoded by gene A5D9S1 was identified as a patulin degradation enzyme, through RNA sequencing and verification by qRT-PCR. Subsequently, the exogenous expression system of the degradation protein PgSDR-A5D9S1 in E. coli was successfully constructed and demonstrated a more significant patulin tolerance and degradation ability. Furthermore, the structure of PgSDR-A5D9S1 and its active binding sites with patulin were predicted via molecular docking analysis. In addition, the heat-excited protein HSF1 was predicted as the transcription factor regulating the patulin degradation protein PgSDR-A5D9S1, which may provide clues for the further analysis of the molecular regulation mechanism of patulin degradation. This study provides a theoretical basis and technical support for the industrial application of biodegradable functional strains.
Collapse
Affiliation(s)
- Huijuan Xi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.X.); (Y.W.); (X.N.); (M.Z.)
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yebo Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.X.); (Y.W.); (X.N.); (M.Z.)
| | - Xulei Ni
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.X.); (Y.W.); (X.N.); (M.Z.)
| | - Minjie Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.X.); (Y.W.); (X.N.); (M.Z.)
| | - Ying Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.X.); (Y.W.); (X.N.); (M.Z.)
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| |
Collapse
|
15
|
Zhang Y, Zhao Q, Ngolong Ngea GL, Godana EA, Yang Q, Zhang H. Biodegradation of patulin in fresh pear juice by an aldo-keto reductase from Meyerozyma guilliermondii. Food Chem 2024; 436:137696. [PMID: 37862990 DOI: 10.1016/j.foodchem.2023.137696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
Bio-enzymes have shown broad application prospects in controlling mycotoxins due to their strong specificity, fast reaction rate and mild reaction conditions. However, the number of enzymes isolated, purified and characterized to degrade patulin (PAT) is limited. We expressed an aldo-keto reductase (MgAKR) from Meyerozyma guilliermondii in Escherichia coli. The results demonstrated that the purified MgAKR could convert PAT into ascladiol in vitro with NADPH serving as a coenzyme. Adding 300 μg/mL MgAKR resulted in an 88 % reduction of PAT in fresh pear juice without affecting its quality in the biodegradation process. The site-directed mutagenesis suggested that the interaction between MgAKR and PAT occurred through the active sites of Lys242 and Leu240. This study serves as a valuable theoretical reference for the development of enzymes aimed at detoxifying PAT in fruit and their derivatives.
Collapse
Affiliation(s)
- Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qianhua Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | | | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
16
|
Li Y, Cui Z, Shi L, Shan J, Zhang W, Wang Y, Ji Y, Zhang D, Wang J. Perovskite Nanocrystals: Superior Luminogens for Food Quality Detection Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4493-4517. [PMID: 38382051 DOI: 10.1021/acs.jafc.3c06660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
With the global limited food resources receiving grievous damage from frequent climate changes and ascending global food demand resulting from increasing population growth, perovskite nanocrystals with distinctive photoelectric properties have emerged as attractive and prospective luminogens for the exploitation of rapid, easy operation, low cost, highly accurate, excellently sensitive, and good selective biosensors to detect foodborne hazards in food practices. Perovskite nanocrystals have demonstrated supreme advantages in luminescent biosensing for food products due to their high photoluminescence (PL) quantum yield, narrow full width at half-maximum PL, tunable PL in the entire visible spectrum, easy preparation, and various modification strategies compared with conventional semiconductors. Herein, we have carried out a comprehensive discussion concerning perovskite nanocrystals as luminogens in the application of high-performance biosensing of foodborne hazards for food products, including a brief introduction of perovskite nanocrystals, perovskite nanocrystal-based biosensors, and their application in different categories of food products. Finally, the challenges and opportunities faced by perovskite nanocrystals as superior luminogens were proposed to promote their practicality in the future food supply.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jinrui Shan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
17
|
Yang C, Zhang Z, Peng B. New insights into searching patulin degrading enzymes in Saccharomyces cerevisiae through proteomic and molecular docking analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132806. [PMID: 37922585 DOI: 10.1016/j.jhazmat.2023.132806] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Global warming has increased the contamination of mycotoxins. Patulin (PAT) is a harmful contaminant that poses a serious threat to food safety and human health. Saccharomyces cerevisiae biodegrades PAT by its enzymes during fermentation, which is a safe and efficient method of detoxification. However, the key degradation enzymes remain unclear. In this study, the proteomic differences of Saccharomyces cerevisiae under PAT stress were investigated. The results showed that the proteins involved in redox reactions and defense mechanisms were significantly up-regulated to resist PAT stress. Subsequently, molecular docking was used to virtual screen for degrading enzymes. Among 18 proteins, YKL069W showed the highest binding affinity to PAT and was then expressed in Escherichia coli, where the purified YKL069W completely degraded 10 μg/mL PAT at 48 h. YKL069W was demonstrated to be able to degrade PAT into E-ascladiol. Molecular dynamics simulations confirmed that YKL069W was stable in catalyzing PAT degradation with a binding free energy of - 7.5 kcal/mol. Furthermore, it was hypothesized that CYS125 and CYS101 were the key amino acid residues for degradation. This study offers new insights for the rapid screening and development of PAT degrading enzymes and provides a theoretical basis for the detoxification of mycotoxins.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bangzhu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural GenomicsInstitute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
18
|
Wang Y, Shang J, Cai M, Liu Y, Yang K. Detoxification of mycotoxins in agricultural products by non-thermal physical technologies: a review of the past five years. Crit Rev Food Sci Nutr 2023; 63:11668-11678. [PMID: 35791798 DOI: 10.1080/10408398.2022.2095554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins produced by Aspergillus spp., Penicillium spp. and Fusarium spp. with small molecular weight and thermal stability, are highly toxic and carcinogenic secondary metabolites. Mycotoxins have caused widespread concern regarding food safety internationally because of their adverse effects on the health of humans and animals, and the major economic losses they cause. There is an urgent need to find ways to reduce or eliminate the impact of mycotoxins in food and feed without introducing new safety issues, or reducing nutritional quality. Non-thermal physical technology is the basis for new techniques to degrade mycotoxins, with great potential for practical detoxification applications in the food industry. Compared with conventional thermal treatments, non-thermal physical detoxification technologies are easier to apply and effective, with less adverse impact on the nutritional value of agricultural products. The advantages, limitations and development prospects of these new detoxification technologies are discussed. Further studies are recommended to standardize the treatment conditions for each detoxification technology, evaluate the safety of the degradation products, and to combine different detoxification technologies to achieve synergistic effects. This will facilitate realization of the great potential of the new technologies and the development of practical applications.
Collapse
Affiliation(s)
- Yan Wang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Jie Shang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Ming Cai
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/South China Food Safety Research Center, Foshan, Guangdong, P. R. China
| | - Kai Yang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
19
|
Xing M, Chen Y, Dai W, He X, Li B, Tian S. Immobilized short-chain dehydrogenase/reductase on Fe 3O 4 particles acts as a magnetically recoverable biocatalyst component in patulin bio-detoxification system. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130986. [PMID: 36860057 DOI: 10.1016/j.jhazmat.2023.130986] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Patulin is one of the most important mycotoxins that contaminates fruit-derived products and causes acute or chronic toxicity in humans. In the present study, a novel patulin-degrading enzyme preparation was developed by taking a short-chain dehydrogenase/reductase and covalently linking it to dopamine/polyethyleneimine co-deposited magnetic Fe3O4 particles. Optimum immobilization provided 63% immobilization efficiency and 62% activity recovery. Moreover, the immobilization protocol substantially improved thermal and storage stabilities, proteolysis resistance, and reusability. Using reduced nicotinamide adenine dinucleotide phosphate as a cofactor, the immobilized enzyme exhibited a detoxification rate of 100% in phosphate-buffered saline and a detoxification rate of more than 80% in apple juice. The immobilized enzyme did not cause adverse effects on juice quality and could be magnetically separated quickly after detoxification to ensure convenient recycling. Moreover, it did not exhibit cytotoxicity against a human gastric mucosal epithelial cell line at a concentration of 100 mg/L. Consequently, the immobilized enzyme as a biocatalyst had the characteristics of high efficiency, stability, safety, and easy separation, establishing the first step in building a bio-detoxification system to control patulin contamination in juice and beverage products.
Collapse
Affiliation(s)
- Mengyang Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wanqin Dai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Bhattacharjee A, Sarma S, Sen T, Devi MV, Deka B, Singh AK. Genome mining to identify valuable secondary metabolites and their regulation in Actinobacteria from different niches. Arch Microbiol 2023; 205:127. [PMID: 36944761 DOI: 10.1007/s00203-023-03482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
Actinobacteria are the largest bacteria group with 18 significant lineages, which are ubiquitously distributed in all the possible terrains. They are known to produce more than 10,000 medically relevant compounds. Despite their ability to make critical secondary metabolites and genome sequences' availability, these two have not been linked with certainty. With this intent, our study aims at understanding the biosynthetic capacity in terms of secondary metabolite production in 528 Actinobacteria species from five different habitats, viz., soil, water, plants, animals, and humans. In our analysis of 9,646 clusters of 59 different classes, we have documented 64,000 SMs, of which more than 74% were of unique type, while 19% were partially conserved and 7% were conserved compounds. In the case of conserved compounds, we found the highest distribution in soil, 79.12%. We found alternate sources of antibiotics, such as viomycin, vancomycin, teicoplanin, fosfomycin, ficellomycin and patulin, and antitumour compounds, such as doxorubicin and tacrolimus in the soil. Also our study reported alternate sources for the toxin cyanobactin in water and plant isolates. We further analysed the clusters to determine their regulatory pathways and reported the prominent presence of the two component system of TetR/AcrR family, as well as other partial domains like CitB superfamily and HTH superfamily, and discussed their role in secondary metabolite production. This information will be helpful in exploring Actinobacteria from other environments and in discovering new chemical moieties of clinical significance.
Collapse
Affiliation(s)
- Abhilash Bhattacharjee
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
- Department of Botany, Dibrugarh Hanumanbax Surajmall Kanoi College, Dibrugarh, 786001, Assam, India
| | - Sangita Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Tejosmita Sen
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Moirangthem Veigyabati Devi
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Banani Deka
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Anil Kumar Singh
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India.
| |
Collapse
|
21
|
Efremenko E, Senko O, Maslova O, Lyagin I, Aslanli A, Stepanov N. Destruction of Mycotoxins in Poultry Waste under Anaerobic Conditions within Methanogenesis Catalyzed by Artificial Microbial Consortia. Toxins (Basel) 2023; 15:205. [PMID: 36977096 PMCID: PMC10058804 DOI: 10.3390/toxins15030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
22
|
Implementation of the HACCP System for Apple Juice Concentrate Based on Patulin Prevention and Control. Foods 2023; 12:foods12040786. [PMID: 36832860 PMCID: PMC9956176 DOI: 10.3390/foods12040786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Patulin (PAT) is a toxic secondary metabolite produced by Aspergillus sp. and Penicillium sp., which acts as a contaminant of most apples and their products. The internationally recognized HACCP system is selected as the theoretical basis to more effectively reduce the PAT in apple juice concentrate (AJC). Through field investigation of apple juice concentrate (AJC) production enterprises, we collected 117 samples from 13 steps of AJC production, including whole apple, apple pulp, and apple juice. PAT contents were analyzed via high-performance liquid chromatography (HPLC) and compared with samples from the different production processes. The result demonstrated that the PAT content was significantly (p < 0.05) influenced by five processes, receipt of raw apples, sorting of raw apples, adsorption step, pasteurization, and aseptic filling. These processes were determined as the CCPs. Monitoring systems for maintaining CCPs within acceptable limits were established, and corrective actions were proposed in case a CCP was surpassed. Based on the above-identified CCPs, critical limits, and control methods (corrective actions), a HACCP plan related to the production process of AJC was established. This study provided important guidance for juice manufacturers wishing to effectively control the PAT content in their products.
Collapse
|
23
|
Guo Z, Gao L, Jiang S, El-Seedi HR, El-Garawani IM, Zou X. Sensitive determination of Patulin by aptamer functionalized magnetic surface enhanced Raman spectroscopy (SERS) sensor. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Mycotoxins and Essential Oils-From a Meat Industry Hazard to a Possible Solution: A Brief Review. Foods 2022; 11:foods11223666. [PMID: 36429263 PMCID: PMC9688991 DOI: 10.3390/foods11223666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The preservation of food supplies has been humankind's priority since ancient times, and it is arguably more relevant today than ever before. Food sustainability and safety have been heavily prioritized by consumers, producers, and government entities alike. In this regard, filamentous fungi have always been a health hazard due to their contamination of the food substrate with mycotoxins. Additionally, mycotoxins are proven resilient to technological processing. This study aims to identify the main mycotoxins that may occur in the meat and meat products "Farm to Fork" chain, along with their effect on the consumers' health, and also to identify effective methods of prevention through the use of essential oils (EO). At the same time, the antifungal and antimycotoxigenic potential of essential oils was considered in order to provide an overview of the subject. Targeting the main ways of meat products' contamination, the use of essential oils with proven in vitro or in situ efficacy against certain fungal species can be an effective alternative if all the associated challenges are addressed (e.g., application methods, suitability for certain products, toxicity).
Collapse
|
25
|
Liu X, Wang L, Wang S, Cai R, Yue T, Yuan Y, Gao Z, Wang Z. Detoxification of patulin in apple juice by enzymes and evaluation of its degradation products. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Diao E, Ma K, Li M, Zhang H, Xie P, Qian S, Song H, Mao R, Zhang L. Possible Reaction Mechanisms Involved in Degradation of Patulin by Heat-Assisted Cysteine under Highly Acidic Conditions. Toxins (Basel) 2022; 14:695. [PMID: 36287964 PMCID: PMC9610101 DOI: 10.3390/toxins14100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/12/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Patulin (PAT) is one of mycotoxins that usually contaminates apple juice, and it is not easily detoxified by cysteine (CYS) at room temperature due to the highly acidic conditions based on the Michael addition reaction. However, it could be effectively degraded by a heating treatment at 120 °C for 30 min in the presence of cysteine. In our study, a total of eight degradation products (DP A-H) were characterized and identified via liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) in a negative ion mode, and their structures and formulas were proposed based on their accurate mass data. The fragmentation patterns of PAT and its degradation products were obtained from the MS/MS analysis. Meanwhile, the possible reaction mechanisms involved in the degradation of PAT were established and explained for the first time. According to the relation between the structure and toxicity of PAT, it could be deduced that the toxic effects of PAT degradation products were potentially much less than those of PAT-self.
Collapse
Affiliation(s)
- Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an 223300, China
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai’an 223300, China
| | - Kun Ma
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an 223300, China
- College of Food Science & Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Minghua Li
- School of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an 223003, China
| | - Hui Zhang
- College of Food Science & Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an 223300, China
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai’an 223300, China
| | - Shiquan Qian
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an 223300, China
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai’an 223300, China
| | - Huwei Song
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an 223300, China
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai’an 223300, China
| | - Ruifeng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an 223300, China
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai’an 223300, China
| | - Liming Zhang
- Research & Development Center of National Vegetable Processing Technology, Jiangsu Liming Food Group Co., Ltd., Pizhou 221354, China
| |
Collapse
|
27
|
Insights into the Metabolic Response of Lactiplantibacillus plantarum CCFM1287 upon Patulin Exposure. Int J Mol Sci 2022; 23:ijms231911652. [PMID: 36232948 PMCID: PMC9570479 DOI: 10.3390/ijms231911652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Patulin (PAT) is a common mycotoxin in the food industry, and is found in apple products in particular. Consumption of food or feed contaminated with PAT can cause acute or chronic toxicity in humans and animals. Lactiplantibacillus plantarum CCFM1287 is a probiotic strain that effectively degrades PAT in PBS and food systems. In this study, it was found that the concentration of PAT (50 mg/L) in MRS medium decreased by 85.09% during the first stages of CCFM1287 growth, and this change was consistent with the first-order degradation kinetic model. Meanwhile, the regulation of oxidative stress by L. plantarum CCFM1287 in response to PAT exposure and metabolic changes that occur during PAT degradation were investigated. The degree of intracellular damage was attenuated after 16 h of exposure compared to 8 h. Meanwhile, metabolomic data showed that 30 and 29 significantly different metabolites were screened intracellularly in the strain after 8 h and 16 h of PAT stress at 50 mg/L, respectively. The results of pathway enrichment analysis suggested that the purine metabolic pathway was significantly enriched at both 8 h and 16 h. However, as is consistent with the performance of the antioxidant system, the changes in Lactiplantibacillus diminished with increasing time of PAT exposure. Therefore, this study helps to further explain the mechanism of PAT degradation by L. plantarum CCFM1287.
Collapse
|
28
|
Bayraç C, Yılmaz B, Bayrakcı M. Adsorption behavior of carboxy- and amine-terminated magnetic beads for patulin: Batch experiments in aqueous solution and apple juice. Food Res Int 2022; 162:112077. [DOI: 10.1016/j.foodres.2022.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
|
29
|
Zhang B, Xu D, Shao L, Liang H, Li J, Huang C. Toxicity mechanism of patulin on 293 T cells and correlation analysis of Caspase family. Toxicol Res (Camb) 2022; 11:758-764. [PMID: 36337240 PMCID: PMC9618098 DOI: 10.1093/toxres/tfac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 08/27/2023] Open
Abstract
Patulin (PAT), a kind of mycotoxin, is a widely disseminated mycotoxin found in agricultural products. Although the existing research results show that PAT can cause nerve, immune, and skin toxicities, resulting in heart, liver, and kidney damages. However, evidence on the underlying mechanisms of PAT is still lacking. Present study aims to investigate the renal toxicity and related mechanisms of PAT on 293 T cells. Cell Counting Kit-8 method was used to reveal the dose-effect relationship and the time-effect relationship of PAT toxicity. Trypan blue staining and Hoechst 33342 staining were used to analyze PAT, which induced apoptosis on 293 T cells. Superoxide-dismutase (SOD), GSH, and malondialdehyde (MDA) were used to measure the changes of oxidative stress status of 293 T cells induced by PAT. The changes of reactive oxygen species (ROS) and ATP in mitochondria indicate the role of mitochondria when PAT induced cell damage and apoptosis. Through Cyt-C release assay analysis, caspase activity change, and correlation analysis, the potential mechanism of mitochondrial apoptosis pathway was proved. Results demonstrated that PAT significantly induced cell injury, and with the increase of time and concentration, the cell survival rate decreased significantly. Hoechst 33342 staining and Trypan blue staining showed that apoptosis rate was elevated by PAT. As PAT concentration increased, intracellular SOD, glutathion peroxidase activities were decreased and the MDA content was increased. The decrease of intracellular ATP level and accumulation of ROS content indicated an increased permeability of the mitochondrial membrane. Overexpression of Cyt-C activated the cascade reaction of caspase enzyme, leading to apoptosis. The results of enzyme activity assay and correlation analysis indicated that caspase 3 was the most critical caspase in the cascade system and that it was most correlated with caspase 8 and caspase 9.
Collapse
Affiliation(s)
- Baigang Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Dongmei Xu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Lin Shao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Hairong Liang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Jinliang Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Chenghui Huang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| |
Collapse
|
30
|
Wang M, Du Y, Jiao W, Fu M. Effects of fruit tissue pH value on the
Penicillium expansum
growth, patulin accumulation and distribution. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Min Wang
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Yamin Du
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Wenxiao Jiao
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Maorun Fu
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| |
Collapse
|
31
|
Xing M, Chen Y, Li B, Tian S. Highly efficient removal of patulin using immobilized enzymes of Pseudomonas aeruginosa TF-06 entrapped in calcium alginate beads. Food Chem 2022; 377:131973. [PMID: 34990945 DOI: 10.1016/j.foodchem.2021.131973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 11/04/2022]
Abstract
Patulin is a toxic secondary metabolite produced by several moulds, which contaminates fruits and their products posing serious threats to human health. Though several microorganisms and enzymes have been reported to effectively degrade patulin, separation of them from fruit juice challenges the commercial applications. Here, a Pseudomonas aeruginosa strain TF-06 was isolated, its patulin degradation mechanism and optimum conditions for enzyme immobilization were investigated. The results indicated that TF-06 could degrade patulin into non-cytotoxic E/Z-ascladiol mainly by the activity of intracellular enzymes. For easy separation of enzymes, calcium alginate was selected for immobilization of intracellular enzymes from TF-06. The immobilized enzyme beads were effective in detoxification of patulin in apple juice. The mitigation rate was reached 95%, while there was no negative effect on juice quality. The study provides a promising way to resolve the issue of enzyme separation during mycotoxin biological detoxification in fruit juice.
Collapse
Affiliation(s)
- Mengyang Xing
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China.
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
Ergosterol depletion under bifonazole treatment induces cell membrane damage and triggers a ROS-mediated mitochondrial apoptosis in Penicillium expansum. Fungal Biol 2021; 126:1-10. [PMID: 34930554 DOI: 10.1016/j.funbio.2021.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023]
Abstract
Penicillium expansum is the causal agent of blue mold in harvested fruits and vegetables during storage and distribution, causing serious economic loss. In this study we seek the action modes of bifonazole against this pathogen. Bifonazole exhibited strong antifungal activity against P. expansum by inhibiting ergosterol synthesis. The ergosterol depletion caused damage to the cell structure and especially cell membrane integrity as observed by SEM and TEM. With increased unsaturated fatty acids contents, the cell membrane viscosity decreases and can no longer effectively maintain the cytoplasm, which ultimately decreases extracellular conductivity, changes intracellular pH and ion homeostasis. Exposure of hyphal cells to bifonazole shows that mitochondrial respiration is inhibited and reactive oxygen species (ROS) levels-including H2O2 and malondialdehyde (MDA) - are significantly increased. The functional impairment of mitochondria and cell membrane eventually cause cell death through intrinsic apoptosis and necroptosis.
Collapse
|
33
|
Adsorption Mechanism of Patulin from Apple Juice by Inactivated Lactic Acid Bacteria Isolated from Kefir Grains. Toxins (Basel) 2021; 13:toxins13070434. [PMID: 34206488 PMCID: PMC8309945 DOI: 10.3390/toxins13070434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
In the food industry, microbiological safety is a major concern. Mycotoxin patulin represents a potential health hazard, as it is heat-resistant and may develop at any stage during the food chain, especially in apple-based products, leading to severe effects on human health, poor quality products, and profit reductions. The target of the study was to identify and characterize an excellent adsorbent to remove patulin from apple juice efficiently and to assess its adsorption mechanism. To prevent juice fermentation and/or contamination, autoclaving was involved to inactivate bacteria before the adsorption process. The HPLC (high-performance liquid chromatography) outcome proved that all isolated strains from kefir grains could reduce patulin from apple juice. A high removal of 93% was found for juice having a 4.6 pH, 15° Brix, and patulin concentration of 100 μg/L by Lactobacillus kefiranofacien, named JKSP109, which was morphologically the smoothest and biggest of all isolates in terms of cell wall volume and surface area characterized by SEM (Scanning electron microscopy) and TEM (transmission electron microscopy). C=O, OH, C–H, and N–O were the main functional groups engaged in patulin adsorption indicated by FTIR (Fourier transform–infrared). E-nose (electronic nose) was performed to evaluate the aroma quality of the juices. PCA (Principal component analysis) results showed that no significant changes occurred between control and treated juice.
Collapse
|