1
|
Gu Y, Li X, Pan J, Li Y, Bao J. Effects of storage on the physicochemical characteristics of rice with different starch lysophospholipids contents. Food Chem 2025; 481:144006. [PMID: 40147386 DOI: 10.1016/j.foodchem.2025.144006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Whether paddy rice varieties with different starch lysophospholipids (LPLs) exhibit similar changes in the physicochemical characteristics during storage remain largely unknown. This study investigated the dynamic changes in the physicochemical properties of a japonica rice and its low- and high-LPLs mutants during storage at 24 and 37 °C for one year. During storage, resistant starch (RS), peak viscosity, breakdown viscosity, pasting temperature and enthalpy of gelatinization gradually increased, with higher values observed at 37 °C compared to 24 °C after one year of storage. In contrast, the contents of storage protein components and amino acids gradually decreased, with lower values observed at 37 °C than at 24 °C after one year of storage. It seems that these changes were independent of the starch LPLs. However, principal component analysis based on these physicochemical properties successfully distinguished the three genotypes with different LPLs, indicating that LPLs influence the physicochemical properties during storage.
Collapse
Affiliation(s)
- Yue Gu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinyu Li
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jianming Pan
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yuqianqian Li
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinsong Bao
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
2
|
Zhou M, Liu D, Tan H, Wang C, Yu W, Xiong G, Wang L, Wu W, Qiao Y. Flavor formation and phospholipids degradation of crayfish meat treated by boiling combined air-frying during accelerated storage. Food Chem X 2025; 27:102406. [PMID: 40224346 PMCID: PMC11986982 DOI: 10.1016/j.fochx.2025.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Thermal treatment is an essential processing method in crayfish processing. This study analyzed the changes in lipids and volatile compounds in crayfish muscle subjected to three thermal processes: boiling (BO), air-frying (AF), and boiling combined air-frying (BO-AF). Aldehydes and heterocyclic compounds were found to be the predominant volatile compounds in crayfish muscle during thermal processing and storage. The intensity of lipid oxidation (POV, TBARS and p-AnV) was greatest in AF, and was notably lower in BO-AF. the total concentration of free fatty acids (FFAs) was highest in the AF group (4.14 mg/g) after processing, followed by BO (3.26 mg/g) and BO-AF (2.04 mg/g). During storage, the FFAs content gradually decreased, with generally lower levels observed at 65 °C compared to 45 °C. A total of 383 phospholipid species were identified, phosphatidylethanolamine being the primary difference lipid type in BO (26.7 %) and AF (36.7 %), while fatty acids were the main differential lipid types in BO-AF group, under the comparison between processed and stored. Overall, the BO-AF method improved the flavor sensory and decreased lipid oxidation, compared to the other two methods. These findings provide valuable insights into the effects of different thermal processing and storage methods on the quality and safety of crayfish muscle.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Dongyin Liu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongyuan Tan
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Wei Yu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
3
|
Kang J, Yeo J. Critical overview of mass spectrometry-based lipidomics approach for evaluating lipid oxidation in foods. Food Sci Biotechnol 2025; 34:837-849. [PMID: 39974859 PMCID: PMC11833014 DOI: 10.1007/s10068-024-01726-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 02/21/2025] Open
Abstract
Mass spectrometry-based lipidomics, developed through rapid advancements in instruments and techniques, provides comprehensive analyses of individual lipidomes in diverse biological systems. This contribution summarizes the limitations of classical methods for measuring lipid oxidation in foods and presents current novel technologies for evaluating lipid oxidation. Notably, this study introduces the mass spectrometry-based lipidomics approach and its utility in assessing lipid oxidation through various analytical modes, supported by numerous examples. This overview offers significant insights into the use of mass spectrometry-based lipidomics for measuring lipid oxidation in foods, proposing lipidomics analysis as a promising method to address the limitations of classical approaches.
Collapse
Affiliation(s)
- JaeYoon Kang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - JuDong Yeo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
4
|
Qu L, Zhao Y, Li Y, Lv H. Effect of storage temperature on the quality of brown rice revealed by integrated GC-MS and lipidomics analysis. Food Chem 2025; 465:142107. [PMID: 39571446 DOI: 10.1016/j.foodchem.2024.142107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
Brown rice is highly nutritious but more susceptible to deterioration without the rice husk's protection. In this study, the mechanism of storage temperature on brown rice quality was investigated based on GC-MS and lipidomics. The results showed that both 15 °C and 20 °C storage retarded the lipids oxidation of brown rice and maintained its texture properties. Moreover, 1-octanol, 1-octen-3-ol, octanal, fitone, 2, 3-dihydrobenzofuran, dodecane, and tridecane were key biomarkers in cooked brown rice flavor. Furthermore, significant correlations between lipid oxidation, texture, and flavor biomarkers were revealed. Notably, the quality of brown rice stored at 15 °C (Fatty acid value = 23.0 mg/100 g) was superior to that at 20 °C (Fatty acid value = 24.3 mg/100 g) due to more effective retardation of glycerophospholipid, glycerolipid, and phospholipid metabolism. This work provided a better understanding of temperature-controlled storage of brown rice and give recommendation for potential commercial applications.
Collapse
Affiliation(s)
- Lingyu Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Yan Zhao
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, Henan Province, China.
| | - Yanfei Li
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Haoxin Lv
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
5
|
Liu J, Guo J, Ye C, Chen K, Zhou X, Chen D, Xiao X, Liu C. Low temperature storage alleviates aging of paddy by reducing lipid degradation and peroxidation. Food Chem 2025; 465:142140. [PMID: 39581150 DOI: 10.1016/j.foodchem.2024.142140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
The quality deterioration of paddy during storage is closely associated to lipid metabolism. To explore the effect of lipid metabolism on the texture of paddy, freshly harvested Nanjingxiangzhan (Indica rice) stored for 60 days at 15 °C and 25 °C for 60 days was investigated. Paddy stored at 15 °C showed higher contents of ATP, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, triacylglycerols, diacylglycerols, monogalactosyldiacylglycerol and digalactosyldiacylglycerol but lower levels of lysophosphatidylcholine, lysophosphatidylethanolamine, phosphatidic acid, ceramides and free fatty acids. Storage at 15 °C inhibited lipase, phospholipase D (PLD), lipoxygenase (LOX) activities and the corresponding gene expressions. Moreover, 15 °C storage retarded the rise of hardness, cohesiveness and chewiness, while delayed the reduction of gumminess and springiness. These findings suggested that maintenance in glycerophospholipids, glycerolipids and saccharolipids abundance, reduction in lysophospholipids, phosphatidic acid, ceramides and free fatty acids accumulation could contribute to enhanced internal resistance to aging in freshly harvested paddy at low temperature storage.
Collapse
Affiliation(s)
- Juan Liu
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Jie Guo
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chanjuan Ye
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Ke Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xinqiao Zhou
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Dagang Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xin Xiao
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China.
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China.
| |
Collapse
|
6
|
Zheng T, Yang J, Chen Q, Huang X, Xue Y, Tang Q, Wang G, Li Y, Hu Z, Zeng HT. Analysis of lipidomics profile of Brassica napus hybrid 'Fangyou 777' and its parents during ripening stages based on UPLC-MS/MS. BMC PLANT BIOLOGY 2025; 25:197. [PMID: 39953462 PMCID: PMC11827199 DOI: 10.1186/s12870-025-06220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Lipids in rapeseed is of great significance to human health, and 'Fangyou 777' (No. GPD-2019-510073) has been identified as an excellent cultivar with high oil content. However, the change of lipid profile at different ripening stages remain unclear. Herein, UPLC-MS/MS was utilized for comprehensive lipidomics analysis of 'Fangyou 777' and its parents at four ripening stages. RESULTS 778 lipids components across 25 subclasses were identified, and triglycerides (TGs), diglycerides (DGs), phosphatidylserines (PSs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and free fatty acids (FFAs) were identified as the dominant lipid subclass. Due to heterotic vigor, the total lipids, TGs, FFAs, lysophosphatidylglycerol (LPGs) and PSs contents in 'Fangyou 777' were significantly higher than its parents. The PCA and OPLS-DA results elucidated that lipids in 'Fangyou 777' differed obviously from its parents at S1 (17 April, 2023; 28 days before ripening, 28 DBR), S2 (1 May, 2023; 14 DBR), and S3 (15 May, 2023; ripening day). TG(18:1_18:3_22:1), TG(18:1_22:1_18:2), TG(16:0_18:1_20:1), TG(16:0_18:1_22:1), TG(20:1_18:2_20:2), TG(18:1_18:1_20:1), and FFA(24:4) were recognized as key differential lipids. The glycerolipid metabolism and unsaturated fatty acid biosynthesis were the differential metabolic pathways at S1 and S3, while glycosylphosphatidylinositol (GPI)-anchor biosynthesis and glycerophospholipid metabolism were the differential metabolic pathways at S2 and S4 (7 days after ripening/physiologically ripened for one week). CONCLUSION This study provided a comprehensive profile to facilitate the understanding lipids accumulation in 'Fangyou 777' and its parents during ripening stages, and offered a foundation to comprehend lipid metabolism.
Collapse
Affiliation(s)
- Tao Zheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Jianmei Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Qiao Chen
- Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723001, China
| | - Xinxin Huang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Yan Xue
- Hanzhong Institute of Agricultural Sciences, Hanzhong, Shaanxi, 723001, China
| | - Qi Tang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Guodong Wang
- College of Life Sciences, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Ying Li
- Hanzhong Institute of Agricultural Sciences, Hanzhong, Shaanxi, 723001, China
| | - Zhubing Hu
- Henan University, Kaifeng, Henan, 475001, China.
| | - Haitao T Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China.
| |
Collapse
|
7
|
Lan L, Cao Y, Yuan J, Feng R, Pan H, Mao X, Ji S, Hu Q, Zhou H. A Comprehensive Investigation of Lipid Profile During the Solid-State Fermentation of Rice by Monascus purpureus. Foods 2025; 14:537. [PMID: 39942130 PMCID: PMC11817215 DOI: 10.3390/foods14030537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
Red yeast rice is a nutraceutical fermented product used worldwide for the symptomatic relief of dyslipidemia and cardiovascular disease. However, the fermentation-induced lipid transformation from rice to red yeast rice remains unclear. Herein, an ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry method was developed for the comprehensive lipid analysis during fermentation. A total of 246 lipids fall in 21 subclasses were annotated in rice and red yeast rice, including 37 lysophospholipids, 14 phospholipids, 29 diglycerides, 114 triglycerides and fatty acid (15 species), ceramide (12 species), hexosylceramide (3 species), sitosterol ester (2 species), monogalactosyldiacylglycerol (2 species), digalactosyldiacylglycerol (2 species), monogalactosylmonoacylglycerol (8 species), digalactosylmonoacylglycerol (5 species), coenzyme Q (1 species), acyl hexosyl campesterol ester (1 species), and acylcarnitine (1 species). Results showed that lipid profiles changed, and new lipid species emerged. Notably, 18 medium- and long-chain triacylglycerols and triacylglycerols with short-chains were tentatively identified. These triacylglycerols also show the effects of body fat accumulation reduction, and hypolipidemic and hypoglycemic activities. Furthermore, lipid species that were profoundly changed were quantified, and the dynamic changes were investigated. This study clarified the molecular species and compositional changes in fermented rice from lipid aspect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; (L.L.); (Y.C.)
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; (L.L.); (Y.C.)
| |
Collapse
|
8
|
Yang F, He X, Wen X, Qu G, Zhang H, Luo Z, Sun S. Integrated lipidomics and microbiomics reveal the quality changes of fresh yak tenderloin during storage. Food Chem X 2024; 24:101984. [PMID: 39629284 PMCID: PMC11612822 DOI: 10.1016/j.fochx.2024.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
The changes in lipid and microbial during beef storage exert a substantial impact on the overall quality of beef. In this study, lipidomics and microbiomics were used to evaluate the effects of chilled storage (at 4 °C, CS) and superchilled storage (at -2 °C, SS) on the quality of yak tenderloin. The data revealed that TG, PS, PI, PE, and Car are the key factors contributing to the generation of undesirable odor during the storage of tenderloin. Macrococcus, Lactobacillus, Myroides, and Proteobacteria directly affect the storage quality of yak tenderloin. Integrated analysis revealed that microbial metabolites interact with lipids, resulting in a deterioration of meat quality. These changes are mediated by Myroides, Pseudomonas, and Lactobacillus, which regulate fatty oxidation and metabolism of PE, PI, PS, Cer, and SM. These findings have important implications for understanding the changes in quality and microbial activity of refrigerated meat and meat products.
Collapse
Affiliation(s)
- Feiyan Yang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xudong He
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xin Wen
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Guangfan Qu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Hanzhi Zhang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China
| | - Shuguo Sun
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
9
|
Chen M, Gong L, Zhu L, Fang X, Zhang C, You Z, Chen H, Wei R, Wang R. Lipidomics combined with random forest machine learning algorithms to reveal freshness markers for duck eggs during storage in different rearing systems. Poult Sci 2024; 103:104201. [PMID: 39197340 PMCID: PMC11399630 DOI: 10.1016/j.psj.2024.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The differences in lipids in duck eggs between the 2 rearing systems during storage have not been fully studied. Herein, we propose untargeted lipidomics combined with a random forest (RF) algorithm to identify potential marker lipids based on ultra-performance liquid chromatography‒mass spectrometry (UPLPC-MS/MS). A total of 106 and 16 differential lipids (DL) were screened in egg yolk and white, respectively. In yolk, metabolic pathway analysis of DLs revealed that glycerophospholipid metabolism and sphingolipid metabolism were the key metabolic pathways in the traditional free-range system (TFS) during storage, glycosylphosphatidylinositol-anchored biosynthesis and glyceride metabolism were the key pathways in the floor-rearing system (FRS). In egg white, the key pathway in both systems is the biosynthesis of unsaturated fatty acids. Combined with RF algorithm, 12 marker lipids were screened during storage. Therefore, this study elucidates the changes in lipids in duck eggs during storage in 2 rearing systems and provides new ideas for screening marker lipids during storage. This approach is highly important for evaluating the quality of egg and egg products and provides guidance for duck egg production.
Collapse
Affiliation(s)
- Mengying Chen
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Jiangsu Provincial Key Laboratory of Food Quality and Safety-Province and Ministry jointly built the cultivation base of the State Key Laboratory, Nanjing 210014, China; College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lan Gong
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Jiangsu Provincial Key Laboratory of Food Quality and Safety-Province and Ministry jointly built the cultivation base of the State Key Laboratory, Nanjing 210014, China
| | - Lei Zhu
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Jiangsu Provincial Key Laboratory of Food Quality and Safety-Province and Ministry jointly built the cultivation base of the State Key Laboratory, Nanjing 210014, China
| | - Xiaomin Fang
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Jiangsu Provincial Key Laboratory of Food Quality and Safety-Province and Ministry jointly built the cultivation base of the State Key Laboratory, Nanjing 210014, China
| | - Can Zhang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhaorong You
- Gaoyou Duck Egg Association, Yangzhou 225600, China
| | | | - Ruicheng Wei
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Jiangsu Provincial Key Laboratory of Food Quality and Safety-Province and Ministry jointly built the cultivation base of the State Key Laboratory, Nanjing 210014, China.
| | - Ran Wang
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Jiangsu Provincial Key Laboratory of Food Quality and Safety-Province and Ministry jointly built the cultivation base of the State Key Laboratory, Nanjing 210014, China
| |
Collapse
|
10
|
Du P, Wang Q, He Y, Yu H, Lin L, Zhang Z. Lipidomic Profiling and Storage-Induced Changes in Cassava Flour Using LC-MS/MS. Foods 2024; 13:3039. [PMID: 39410074 PMCID: PMC11475662 DOI: 10.3390/foods13193039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Cassava serves as a primary staple food for over one billion people worldwide. The quality of cassava flour is markedly affected by the oxidation and deterioration of lipids during storage. Despite its significance, the lipid composition of cassava flour and its alterations throughout storage periods have not been extensively studied. This study offers a comprehensive lipidomic analysis of cassava flour over storage periods using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The results showed that 545 lipids from five classes and 27 subclasses were identified in cassava flour, including key substances such as free fatty acids (36 species), diglycerides (DGs) (31 species), and triglycerides (TGs) (259 species). Using Metware Cloud for statistical analysis, significant variations were observed in 50 lipid species over long-term storage, reflecting changes in lipid profiles due to storage. These lipids correlate with seven metabolic pathways, among which glycerolipid metabolism is the most affected. The metabolites associated with these pathways can differentiate cassava flour based on the length of storage. This study provides a theoretical basis and storage technology parameters for lipid changes during cassava flour storage.
Collapse
Affiliation(s)
- Peixu Du
- National R&D Centre for Potato Processing/Tropical Crops Genetic Resources Institute, China Academy of Tropical Agriculture Science, Haikou 571101, China; (P.D.); (Q.W.); (H.Y.); (L.L.)
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Qinfei Wang
- National R&D Centre for Potato Processing/Tropical Crops Genetic Resources Institute, China Academy of Tropical Agriculture Science, Haikou 571101, China; (P.D.); (Q.W.); (H.Y.); (L.L.)
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Houmei Yu
- National R&D Centre for Potato Processing/Tropical Crops Genetic Resources Institute, China Academy of Tropical Agriculture Science, Haikou 571101, China; (P.D.); (Q.W.); (H.Y.); (L.L.)
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China
| | - Liming Lin
- National R&D Centre for Potato Processing/Tropical Crops Genetic Resources Institute, China Academy of Tropical Agriculture Science, Haikou 571101, China; (P.D.); (Q.W.); (H.Y.); (L.L.)
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China
| | - Zhenwen Zhang
- National R&D Centre for Potato Processing/Tropical Crops Genetic Resources Institute, China Academy of Tropical Agriculture Science, Haikou 571101, China; (P.D.); (Q.W.); (H.Y.); (L.L.)
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China
| |
Collapse
|
11
|
Tong C, Chen X, Deng R, Guo Q, Liu L, Bao J. Effects of Artificial Aging on Rice Lysophospholipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16966-16975. [PMID: 39024574 DOI: 10.1021/acs.jafc.4c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Lysophospholipids (LPLs) represent a major class of polar lipids crucial for rice's nutritional and functional properties. This study investigates the impact of varying storage temperatures (20, 30, and 40 °C) and humidity (50 and 95%) on the nonstarch and starch LPLs of paddy and milled rice. The findings revealed that the average nonstarch LPL content in paddy rice aged at 20 °C (82.6 μg/g) and 40 °C (83.6 μg/g) was significantly lower than that at 30 °C (95.0 μg/g). The nonstarch LPL content of milled rice aged at 20 °C (78.0 μg/g) was significantly higher than that at 30 and 40 °C. High storage temperature (40 °C) and humidity (95%) resulted in a significant reduction in rice total starch LPC and LPE content when compared to low humidity (50%). The ratio of rice starch/nonstarch LPL components such as LPC16:0 and LPC18:2 remarkably increased with increased storage temperature and humidity.
Collapse
Affiliation(s)
- Chuan Tong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Faculty of Science and Engineering, Southern Cross University, Lismore2480, NSW, Australia
| | - Xiaoxiao Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rubing Deng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore2480, NSW, Australia
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore2480, NSW, Australia
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Liu X, Li Z, OuYang B, Wang W, Lan D, Wang Y. Lipidomics analysis of rice bran during storage unveils mechanisms behind dynamic changes in functional lipid molecular species. Food Chem 2024; 447:138946. [PMID: 38498952 DOI: 10.1016/j.foodchem.2024.138946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
Rice bran, recognized for its rich lipids and health-beneficial bioactive compounds, holds considerable promise in applications such as rice bran oil production. However, its susceptibility to lipid hydrolysis and oxidation during storage presents a significant challenge. In response, we conducted an in-depth metabolic profiling of rice bran over a storage period of 14 days. We focused on the identification of bioactive compounds and functional lipid species (25 acylglycerols and 53 phospholipids), closely tracking their dynamic changes over time. Our findings revealed significant reductions in these lipid molecular species, highlighting the impact of rancidity processes. Furthermore, we identified 19 characteristic lipid markers and elucidated that phospholipid and glycerolipid metabolism were key metabolic pathways involved. By shedding light on the mechanisms driving lipid degradation in stored rice bran, our study significantly advanced the understanding of lipid stability. These information provided valuable insights for countering rancidity and optimizing rice bran preservation strategies.
Collapse
Affiliation(s)
- Xuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China..
| | - Weifei Wang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd, Foshan, Guangdong 528200, China.
| |
Collapse
|
13
|
Yu X, Li B, Ouyang H, Xu W, Zhang R, Fu X, Gao S, Li S. Exploring the oxidative rancidity mechanism and changes in volatile flavors of watermelon seed kernels based on lipidomics. Food Chem X 2024; 21:101108. [PMID: 38292678 PMCID: PMC10825323 DOI: 10.1016/j.fochx.2023.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Watermelon seed kernels (WSK) are prone to oxidative rancidity, while their evaluation biomarkers and changes in volatile flavor are still unknown. The research tracked the changes in volatile compounds and lipid components before and after rancidity using HS-SPME-GC-O-MS and lipidomic techniques. The results showed the flavor of watermelon seed kernels changed significantly before and after rancidity, from mild aroma to rancidity. A total of 42 volatile compounds were detected via GC-O-MS, and a total of 220 lipid molecules were detected via lipidomic technology. 55 lipids with significant differences were screened via multivariate statistical analysis. Combining the above analysis, it found that glycerol phospholipid and glyceride pathways were the most important metabolic pathways and 1-Pentanol and styrene could be used as potential biomarkers to judge the rancidity process of watermelon seed kernels. The research could provide powerful technical support for the storage, transportation and freshness preservation of watermelon seed kernels.
Collapse
Affiliation(s)
- Xiongwei Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Wuhan Xudong Food Co Ltd, Wuhan 430000, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Ouyang
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Weijian Xu
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ruru Zhang
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xing Fu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sihai Gao
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Wuhan Xudong Food Co Ltd, Wuhan 430000, China
| |
Collapse
|
14
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
15
|
Wang Z, Wang R, Chu Y, Chen G, Lin T, Jiang R, Wang J. A method to assess industrial paraffin contamination levels in rice and its transferability analysis based on transfer component analysis. Food Chem 2024; 436:137682. [PMID: 37837682 DOI: 10.1016/j.foodchem.2023.137682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Accurate assessment of industrial paraffin contamination levels (IPCLs) in rice is critical for food safety. However, time-consuming and labor-intensive experiments to produce labels for targeted adulterated rice have hindered the development of IPCL estimation methods. In this paper, a transfer learning method (TCA-LSSVR) has been developed. The algorithm integrates transfer component analysis (TCA) with domain adaptive capabilities to produce accurate estimates. Rice from 7 different regions and 3 industrial paraffins were used to generate 4,680 samples from 9 datasets for benchmarking. The test results showed that the established algorithm achieved good estimation performance in various modelling strategies, and only 20 % of off-site samples were needed to supplement the source dataset, the average determination coefficient R2 reached 0.7045, the average RMSE reached 0.140 %, and the average RPD reached 2.023. This work highlights the prospect of rapidly developing a new generation of adulteration detection algorithms using only previous trial data.
Collapse
Affiliation(s)
- Zhentao Wang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Equipment Technology in Northern Cold Regions, Harbin 150030, China
| | - Ruidong Wang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yuhang Chu
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Equipment Technology in Northern Cold Regions, Harbin 150030, China
| | - Guoqing Chen
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Equipment Technology in Northern Cold Regions, Harbin 150030, China
| | - Tenghui Lin
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Rui Jiang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jinfeng Wang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Equipment Technology in Northern Cold Regions, Harbin 150030, China.
| |
Collapse
|
16
|
Qu L, Zhao Y, Li Y, Lv H. Oxidative Stability and Pasting Properties of High-Moisture Japonica Brown Rice following Different Storage Temperatures and Its Cooked Brown Rice Flavor. Foods 2024; 13:471. [PMID: 38338606 PMCID: PMC10855601 DOI: 10.3390/foods13030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The study proposed to investigate the impacts of storage temperatures (15, 20, 25 °C) on the oxidative stability (peroxide value, carbonyl value, malondialdehyde content) and sensory attributes (pasting properties, cooked brown rice flavor) of high-moisture japonica brown rice. According to the findings, the peroxide value, the carbonyl value, and the malondialdehyde content of high-moisture japonica brown rice stored at a temperature of 15 °C exhibited consistently low levels, and the pasting properties were favorable. In addition, 22 out of 51 flavor volatiles were screened as key differential volatile flavor compounds in cooked brown rice via a combination of ANOVA and orthogonal projections to latent structures-discriminant analysis (OPLS-DA). Among them, 3-heptylacrolein had an aroma of fat and mushroom, and its contents were higher at 15 °C and 20 °C. These findings could serve as a valuable reference for storing high-moisture japonica brown rice under low temperature conditions as well as for investigating the flavor characteristics of cooked brown rice derived from this variety.
Collapse
Affiliation(s)
| | - Yan Zhao
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450000, China; (L.Q.); (Y.L.); (H.L.)
| | | | | |
Collapse
|
17
|
Ba YB, Li R, Zhang JY, Zou L, Wu DT, Hu YC. Evaluation of Lipidomics Profile of Quinoa Flour and Changes during Storage Based on Ultra Performance Liquid Chromatography Coupled with Quadrupole Exactive Orbitrap Mass Spectrometry. Foods 2023; 12:4434. [PMID: 38137238 PMCID: PMC10743080 DOI: 10.3390/foods12244434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Although quinoa is nutritious, its high fat content and lipase activity make it easily oxidized during storage. Meanwhile, quinoa's lipid composition and changes during storage are still unknown. Therefore, we stored fresh quinoa flour at low temperature and low humidity (LL), normal temperature and normal humidity (NN), and high temperature and high humidity (HH) conditions for 120 days to assess its oxidative stability and to monitor the changes in lipid composition. Herein, the contents of fatty acids, the peroxide values, the malondialdehyde values, and the lipase activity in quinoa flour during storage are determined to evaluate its oxidation stability. At LL and NN conditions, the contents of fatty acids, the peroxide values, the malondialdehyde values, and the lipase activity changed slowly. They were 3 (LL) and 5 times (NN), 2.7 (LL) and 4.7 times (NN), 1.4 (LL) and 2.3 times (NN), and 1.5 (LL) and 1.6 times (NN) the initial content at storage up to 120 d. However, with the prolongation of storage time under HH conditions, they all increased significantly to 8, 6.6, 3, and 2 times the original content. Moreover, during the storage of quinoa under LL, NN, and HH conditions for 120 days, we continuously monitored the lipid composition of quinoa grains with UPLC-Q-Exactive Orbitrap MS/MS. We identified a total of 14 subclasses of 229 lipids, including 90 significantly different lipid species. PCA and PLS-DA showed that quinoa lipids in HH conditions changed significantly with prolonged storage; among these, the TG and DG classes were the most susceptible to oxidation, which could distinguish fresh quinoa from oxidized quinoa. Simultaneously, we also found that lipase activity has a significant impact on lipid metabolism through correlation analysis, which also indicates that enzyme inactivation treatment can slow down lipid hydrolysis and oxidation during storage. To explore the mechanism of these changes, we also identified twelve important lipid metabolism pathways during quinoa storage. In conclusion, our study advances knowledge of the storage stability and lipid oxidation mechanisms of quinoa and provides a theoretical basis for setting the shelf life of quinoa.
Collapse
Affiliation(s)
- Ya-bo Ba
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Rui Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Jia-yi Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yi-chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| |
Collapse
|
18
|
Qu L, Zhao Y, Xu X, Li Y, Lv H. Untargeted Lipidomics Reveal Quality Changes in High-Moisture Japonica Brown Rice at Different Storage Temperatures. Foods 2023; 12:4218. [PMID: 38231596 DOI: 10.3390/foods12234218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Low temperatures are an effective way of delaying grain rancidity and deterioration. However, little is known about the difference in quality changes in high-moisture japonica brown rice at different storage temperatures. In this study, the storage quality changes in japonica brown rice with a 15.50% moisture content stored at 15 °C, 20 °C, and 25 °C were investigated. In addition, an untargeted lipidomics analysis coupled with gas chromatography and mass spectrometry (GC-MS) was applied to analyze the volatile compounds and metabolite changes in the high-moisture japonica brown rice. The results showed that storage at 15 °C could well maintain the color and aroma stability of the brown rice and delay the increase in fatty acid value (FAV). The lipidomics results showed that storage at 15 °C delayed glycerolipid and sphingolipid metabolism and reduced glycerophospholipid catabolism in the brown rice. The low-temperature environment regulated these three metabolic pathways to maintain higher contents of triglycerides (TG), phosphatidylserine (PS), abd phosphatidylethanolamine (PE), and lower contents of diglycerides (DG), OAcyl-(gamma-hydroxy) FA (OAHFA), ceramides (Cer), and glycosylceramides (Hex1Cer) in the high-moisture japonica brown rice, which maintained the storage stability of the brown rice. Our results proposed the cryoprotection mechanism of postharvest brown rice from the perspective of volatile compounds and metabolite changes, providing a foothold for the further exploration of low-temperature storage as a safe and efficient cryoprotectant in the grain storage field.
Collapse
Affiliation(s)
- Lingyu Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yan Zhao
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Xiangdong Xu
- Yihai Kerry (Wuhan) Oils & Grains Industries Co., Ltd., Wuhan 430040, China
| | - Yanfei Li
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Haoxin Lv
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
19
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
20
|
Huang S, Zhang D, Wang Q, Shang B, Liu J, Xing X, Hong Y, Duan X, Sun H. Shotgun lipidomics reveals the changes in phospholipids of brown rice during accelerated aging. Food Res Int 2023; 171:113073. [PMID: 37330832 DOI: 10.1016/j.foodres.2023.113073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Brown rice exhibits higher nutritional value and attracts more and more attentions; however, the change in phospholipid molecular species in brown rice during aging is poorly understood. In this study, shotgun lipidomics was employed to investigate the changes in phospholipid molecular species in four brown rice varieties (two japonica rice and two indica rice) during accelerated aging. A total of 64 phospholipid molecular species were identified, and most of them were rich in polyunsaturated fatty acids. For japonica rice, phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) gradually decreased during accelerated aging. However, the content of PC, PE, and PG in indica rice showed no difference during accelerated aging. Significantly different phospholipid molecular species from four brown rice were screened during accelerated aging. Based on these significantly different phospholipids, the metabolic pathways including glycerophospholipid metabolism and linoleic acid metabolism during accelerated aging were depicted. The findings from this study could be helpful in explaining the impact of accelerated aging on phospholipids of brown rice, and offer an understanding on relationships between phospholipids degradation and brown rice deterioration.
Collapse
Affiliation(s)
- Shanshan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Qian Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Bo Shang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jianlei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoting Xing
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yu Hong
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
21
|
Shi C, Zi Y, Huang S, Chen J, Wang X, Zhong J. Development and application of lipidomics for food research. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:1-42. [PMID: 37236729 DOI: 10.1016/bs.afnr.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lipidomics is an emerging and promising omics derived from metabolomics to comprehensively analyze all of lipid molecules in biological matrices. The purpose of this chapter is to introduce the development and application of lipidomics for food research. First, three aspects of sample preparation are introduced: food sampling, lipid extraction, and transportation and storage. Second, five types of instruments for data acquisition are summarized: direct infusion-mass spectrometry (MS), chromatographic separation-MS, ion mobility-MS, MS imaging, and nuclear magnetic resonance spectroscopy. Third, data acquisition and analysis software are described for the lipidomics software development. Fourth, the application of lipidomics for food research is discussed such as food origin and adulteration analysis, food processing research, food preservation research, and food nutrition and health research. All the contents suggest that lipidomics is a powerful tool for food research based on its ability of lipid component profile analysis.
Collapse
Affiliation(s)
- Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Zi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Shudan Huang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jiahui Chen
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
22
|
Zhang D, Huang S, Wang Q, Shang B, Liu J, Xing X, Hong Y, Liu H, Duan X, Sun H. Lipidomics and volatilomics reveal the changes in lipids and their volatile oxidative degradation products of brown rice during accelerated aging. Food Chem 2023; 421:136157. [PMID: 37099952 DOI: 10.1016/j.foodchem.2023.136157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
Brown rice exhibits higher nutritional value and attracts more and more attentions; however, lipid alteration in brown rice during aging is poorly understood. In this study, lipidomics and volatilomics were employed to investigate free fatty acids, triglycerides, and volatile oxidative degradation products of lipids in brown rice during accelerated aging for 70 days. The results showed that the total free fatty acids in brown rice increased significantly (2.90-4.14 times) while triglycerides decreased remarkably at the initial stage of aging. Monounsaturated and polyunsaturated aldehydes, ketones, and acids increased obviously in brown rice during accelerated aging for 70 days. The screening of significantly different compounds indicated that the enzymatic hydrolysis of triglycerides (EHT) and enzymatic oxidation of lipids (EOL) were the main biochemical behaviors at the initial stage of aging (0-28 day) while automatic oxidation of lipids (AOL) was the primary chemical reaction for 28-70 days aging.
Collapse
Affiliation(s)
- Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Shanshan Huang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Bo Shang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jianlei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoting Xing
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yu Hong
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Hui Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
23
|
Zhang JJ, Niu Y, Ma C, Zhao T, Wang H, Yan Z, Zhou L, Liu X, Piao F, Du N. Accumulation and metabolism of pyroxasulfone in tomato seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114765. [PMID: 36907092 DOI: 10.1016/j.ecoenv.2023.114765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/01/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Pyroxasulfone (PYS) is an isoxazole herbicide favored for its high activity. However, the metabolic mechanism of PYS in tomato plants and the response mechanism of tomato to PYS are still lacking. In this study, it was found that tomato seedlings had a strong ability to absorb and translocate PYS from roots to shoots. The highest accumulation of PYS was in the apex tissue of the tomato shoots. Using UPLC-MS/MS, five metabolites of PYS were detected and identified in tomato plants, and their relative contents in different parts of tomato plants varied greatly. The serine conjugate, DMIT [5, 5-dimethyl-4, 5-dihydroisoxazole-3-thiol (DMIT)] &Ser, was the most abundant metabolites of PYS in tomato plants. In tomato plants, the conjugation of thiol-containing metabolic intermediates of PYS to serine may mimic the cystathionine β-synthase-catalyzed condensation of serine and homocysteine (in the pathway sly00260 sourced from KEGG database). This study ground breakingly proposed that serine may play an important role in plant metabolism of PYS and fluensulfone (whose molecular structure is similar to PYS). PYS and atrazine (whose toxicity profile is similar to PYS but not conjugate with serine) produced different regulatory outcomes for endogenous compounds in the pathway sly00260. Differential metabolites in tomato leaves exposed to PYS compared with the control, including amino acids, phosphates, and flavonoids, may play important roles in tomato response to PYS stress. This study provides inspiration for the biotransformation of sulfonyl-containing pesticides, antibiotics and other compounds in plants.
Collapse
Affiliation(s)
- Jing Jing Zhang
- Henan Key Laboratory for Creation and Application of New Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yujia Niu
- Henan Key Laboratory for Creation and Application of New Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Cong Ma
- Henan Key Laboratory for Creation and Application of New Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; PLA Army Service Academy Training Base, Chongqing, 400041, China
| | - Te Zhao
- Henan Key Laboratory for Creation and Application of New Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongwei Wang
- Henan Key Laboratory for Creation and Application of New Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Zishuo Yan
- Henan Key Laboratory for Creation and Application of New Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Lin Zhou
- Henan Key Laboratory for Creation and Application of New Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangyang Liu
- Henan Key Laboratory for Creation and Application of New Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
24
|
Wang C, Li Z, Wu W. Understanding fatty acid composition and lipid profile of rapeseed oil in response to nitrogen management strategies. Food Res Int 2023; 165:112565. [PMID: 36869550 DOI: 10.1016/j.foodres.2023.112565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The fatty acid composition of rapeseed seeds plays an important role in oil quality for human nutrition and a healthy diet. A deeper understanding of fatty acid composition and lipid profiles in response to different nitrogen managements is critical for producing healthier rapeseed oil for the human diet. The fatty acid composition and lipid profiles were characterized through targeted GC-MS and lipidomics analysis (UPLC-MS) in this study. The results showed that nitrogen management significantly altered the fatty acid composition, thereby influencing oil quality when it is used to maximize the seed yield of rapeseed. Several fatty acid components (particularly oleic acid, linoleic acid, and linolenic acid) decreased significantly with increasing N application rate. A total of 1212 differential lipids in response to different N levels in the two varieties were clearly identified, that can be categorized into five classes, including 815 glycerolipids (GLs), 195 glycerophospholipids (GPs), 155 sphingolipids (SPs), 32 sterols (STs), and 15 fatty acyls (FAs). These differential lipids are likely to participate in lipid metabolism and signal transduction. Co-expression lipid modules were determined, and the key lipids, such as triglyceride (20:0/16:0/16:0; 18:0/18:1/18:3; 8:0/11:3/18:1), were found to be strongly related to several predominant fatty acids such as oleic acid and linoleic acid. The results further imply that some identified lipids are involved with lipid metabolism and could affect the fatty acid composition, which provide a theoretical guidance for increasing seed oil in Brassica napus.
Collapse
Affiliation(s)
- Cheng Wang
- College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China; College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaojie Li
- College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China; College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Wu
- College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China; College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
25
|
Qu C, Xia Y, Yang Q, Li W, Hu M, Lu P. Novel insights into rice deterioration for nitrogen controlled atmosphere and re-aeration storage based on no-targeted metabolomics. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
26
|
Liu X, Li Y, Liu Q, Du H, Ma G, Shen F, Hu Q. Mechanism of electron beam irradiation on the lipid metabolism of paddy during high temperature storage. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
27
|
Guazzotti S, Pagliano C, Dondero F, Manfredi M. Lipidomic Profiling of Rice Bran after Green Solid-Liquid Extractions for the Development of Circular Economy Approaches. Foods 2023; 12:384. [PMID: 36673474 PMCID: PMC9857567 DOI: 10.3390/foods12020384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Rice bran is a rather underutilized by-product of the rice industry that nowadays is far from being valorized. In this study, the lipidomic profile of bran of the Italian rice variety, Roma, has been evaluated through ultra performance liquid chromatography-tandem mass spectrometry. Crude lipid extracts were obtained from rice bran treated with different green solvents (1-butanol, ethanol and methyl tert-butyl ether/methanol mixture) in combination with an ultrasonic pre-treatment, and then compared with extracts obtained with standard solvents (chloroform/methanol mixture). Lipid yield, number and type of lipids and composition of prevalent lipid classes extracted were evaluated in order to provide an exhaustive lipid profile of the rice bran and to identify the most efficient green solvent for solid-liquid extractions. Twelve different lipid classes and a maximum of 276 lipids were identified. Ethanol and methyl tert-butyl ether/methanol solvents provided higher lipid extraction yields, the former being the most effective solvent for the extraction of triglycerides and N-acylethanolamines and the latter the most effective for the extraction of diglycerides, phospholipids and ceramides at 4 °C. Moreover, extraction with ethanol at 20 °C gave similar results as at 4 °C in terms of lipid yield and for most of the classes of lipids extracted. Taken together, our results indicate ethanol and methyl tert-butyl ether/methanol as excellent solvents for lipid extraction from rice bran, with the aim to further valorize this food by-product in the perspective of a circular economy.
Collapse
Affiliation(s)
- Silvia Guazzotti
- Biological Mass Spectrometry Lab, Department of Translational Medicine (DiMeT), University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases—CAAD, University of Piemonte Orientale, Corso Trieste 15/A, 28100 Novara, Italy
| | - Cristina Pagliano
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Francesco Dondero
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Marcello Manfredi
- Biological Mass Spectrometry Lab, Department of Translational Medicine (DiMeT), University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases—CAAD, University of Piemonte Orientale, Corso Trieste 15/A, 28100 Novara, Italy
| |
Collapse
|
28
|
Nutritional lipidomics for the characterization of lipids in food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516469 DOI: 10.1016/bs.afnr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipids represent one out of three major macronutrient classes in the human diet. It is estimated to account for about 15-20% of the total dietary intake. Triacylglycerides comprise the majority of them, estimated 90-95%. Other lipid classes include free fatty acids, phospholipids, cholesterol, and plant sterols as minor components. Various methods are used for the characterization of nutritional lipids, however, lipidomics approaches become increasingly attractive for this purpose due to their wide coverage, comprehensiveness and holistic view on composition. In this chapter, analytical methodologies and workflows utilized for lipidomics profiling of food samples are outlined with focus on mass spectrometry-based assays. The chapter describes common lipid extraction protocols, the distinct instrumental mass-spectrometry based analytical platforms for data acquisition, chromatographic and ion-mobility spectrometry methods for lipid separation, briefly mentions alternative methods such as gas chromatography for fatty acid profiling and mass spectrometry imaging. Critical issues of important steps of lipidomics workflows such as structural annotation and identification, quantification and quality assurance are discussed as well. Applications reported over the period of the last 5years are summarized covering the discovery of new lipids in foodstuff, differential profiling approaches for comparing samples from different origin, species, varieties, cultivars and breeds, and for food processing quality control. Lipidomics as a powerful tool for personalized nutrition and nutritional intervention studies is briefly discussed as well. It is expected that this field is significantly growing in the near future and this chapter gives a short insight into the power of nutritional lipidomics approaches.
Collapse
|
29
|
Liu Y, Guo X, Wang N, Lu S, Dong J, Qi Z, Zhou J, Wang Q. Evaluation of changes in egg yolk lipids during storage based on lipidomics through UPLC-MS/MS. Food Chem 2023; 398:133931. [DOI: 10.1016/j.foodchem.2022.133931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
|
30
|
Storage Drives Alterations of Proteomic and Protein Structural Properties in Rice (Oryza sativa L.). Foods 2022; 11:foods11213541. [PMID: 36360154 PMCID: PMC9658062 DOI: 10.3390/foods11213541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Rice quality changes during storage. However, few studies have reported the difference in protein structure between the indica and japonica varieties of rice during storage. The current research characterized the structural properties of the rice protein, and further investigated the proteomic profiles of Jianzhen 2 (indica rice) and Nanjing 9108 (japonica rice) during storage using the TMT labeling method. A significant reduction in free sulfhydryl content and an increase in disulfide bonds content and surface hydrophobicity were observed in both varieties after storage. The results of FTIR indicated that the changes in the protein’s secondary structure of Nanjing 9108 (japonica rice) were more significant than in Jianzhen 2 (indica rice). A total of 4039 proteins in Nanjing 9108 and 4301 proteins in Jianzhen 2 were identified by TMT-labeled proteomics analysis in this study. Significantly, changes were detected in 831 proteins in Nanjing 9108, while only in 60 proteins in Jianzhen 2. Protein processing in endoplasmic reticulum, starch, and sucrose metabolism were both accelerated in both varieties, while oxidative phosphorylation in mitochondria, glycolysis, fatty acid metabolism, and glutathione metabolism were enhanced in Nanjing 9108 (japonica rice). This study provides insight into the proteomic changes and protein structure in rice induced by storage.
Collapse
|
31
|
Lan L, Huang W, Zhou H, Yuan J, Miao S, Mao X, Hu Q, Ji S. Integrated Metabolome and Lipidome Strategy to Reveal the Action Pattern of Paclobutrazol, a Plant Growth Retardant, in Varying the Chemical Constituents of Platycodon Root. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206902. [PMID: 36296498 PMCID: PMC9609321 DOI: 10.3390/molecules27206902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
Abstract
Platycodon root, a medicinal food homology species which has been used in Asian countries for hundreds of years, is now widely cultivated in China. Treatment with paclobutrazol, a typical plant growth retardant, has raised uncertainties regarding the quality of Platycodon root, which have been rarely investigated. In the present study, metabolomic and lipidomic differences were revealed by ultra-high performance liquid chromatography coupled to ion mobility-quadrupole time of flight mass spectrometry (UPLC-IM-QTOF-MS). A significant decrease of platycodigenin-type saponins was observed in the paclobutrazol-treated sample. Carrying out a comprehensive quantitative analysis, the contents of total saponins and saccharides were determined to illustrate the mode of action of paclobutrazol on Platycodon root. This study demonstrated an exemplary research model in explaining how the exogenous matter influences the chemical properties of medicinal plants, and therefore might provide insights into the reasonable application of plant growth regulators.
Collapse
Affiliation(s)
- Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Weizhen Huang
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Shui Miao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Xiuhong Mao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
- Correspondence: ; Tel.: +86-18001678046
| |
Collapse
|
32
|
Meng Y, Qiu N, Guyonnet V, Keast R, Zhu C, Mine Y. UHPLC-Q-Orbitrap-based untargeted lipidomics reveals the variation of yolk lipids during egg storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5690-5699. [PMID: 35411552 DOI: 10.1002/jsfa.11916] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Egg yolk is recognized for its excellent nutritional benefit and economic value; however, egg is a perishable food, potentially losing quality if not handled properly between the time from farm production to consumption. Knowledge of the changes of yolk lipid composition under an extreme storage condition close to vitelline membrane breaking, which results in an inedible condition for shelf-eggs, remains incomplete. Considering the complexity of yolk lipids, the architectural features of yolk lipids at high-temperature storage (30°C for 10 days versus fresh) were classified through lipidomics. RESULTS This strategy yielded 1508 features within the lipid database coupled with 74 significantly different lipids (P < 0.05, fold change > 1.2 or < 0.83), mainly triglycerides, phospholipids, and sphingolipids. Most of them were decreased after storage; for example, triglycerides were assumed to play a role as a 'buffer' to maintain the system stability during storage by balancing fatty acid saturation, which strongly reduces the egg edible value for humans. Furthermore, phospholipids, especially the highly unsaturated phosphatidylcholine, decreased significantly and were suggested to be the primary cause for the variation in yolk emulsifying properties and flavor. CONCLUSION Altogether, these results deriving from oxidation and lipolysis reactions enhance our understanding of lipid transformation and the biochemical mechanisms, at the molecular level, of the deteriorative process of the egg yolk. These findings may lay the foundation for identifying processes, including some modifications of the lipid composition of rations fed to laying hens, aiming to improve the long-term shelf-stability of shell eggs and egg products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Russell Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VI, Australia
| | - Chunxia Zhu
- Center of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
33
|
Li Q, Zhang W, Shen D, Li Z, Shu J, Liu Y. Comprehensive lipidomics analysis reveals the changes in lipid profile of camellia oil affected by insect damage. Front Nutr 2022; 9:993334. [PMID: 36118741 PMCID: PMC9478382 DOI: 10.3389/fnut.2022.993334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Information on changes in lipid composition of seed oils under biotic stresses is scare. The camellia weevil, Curculio chinensis (Coleoptera: Curculionidae) as a notorious seed predator of Camellia species, has caused huge economic losses in China. Lipidomics is used in this study to reveal the lipid composition of camellia oil and its changes after insect damage. 278 lipids including glycerolipids (GL) (221), glycerophospholipids (GP) (34), fatty acyls (FA) (13), sphingolipids (SP) (8), prenol lipids (PR) (1) and sterol lipids (ST) (1) were determined in camellia oils. Insect damage had a significant impact on lipids, particularly FA and GL. Ten significantly different lipids [FFA(18:2), FFA(24:6), TG(14:1/18:2/18:2), TG(16:0/23:0/18:2), TG(20:1/24:1/18:2), TG(18:2/24:0/18:2), TG(16:3/18:2/22:5), PI(16:1/18:1), PE(16:0/18:1), PE(18:1/18:2)] were identified as potential biomarkers for distinguishing oil extracted from non-infested oilseeds and oil from infested oilseeds. We also detected four most important metabolic pathways by bioinformatics analysis to explore the mechanisms underlying changes. Our findings may be useful for future camellia oil production and may provide new insight into improving of nutritional quality of camellia oil.
Collapse
|
34
|
Wang Q, Zhang D, Zhao L, Liu J, Shang B, Yang W, Duan X, Sun H. Metabolomic Analysis Reveals Insights into Deterioration of Rice Quality during Storage. Foods 2022; 11:foods11121729. [PMID: 35741928 PMCID: PMC9222621 DOI: 10.3390/foods11121729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
To determine the changes in the quality of rice during storage, this study investigated the comprehensive metabolomic profiles of Nanjing 9108 (typical japonica rice) and Jianzhen 2 (typical indica rice) varieties in China, using metabolomics. A total of 13 categories of 593 metabolites including lipids (134 species), phenolic acids (78 species), flavonoids (70 species), alkaloids (67 species), organic acids (64 species), amino acids and derivatives (64 species), saccharides and alcohols (44 species), nucleotides and derivatives (37 species), vitamins (14 species), lignans and coumarins (9 species), tannins (2 species), terpenoids (2 species), and others (8 species) were identified in both varieties. The result showed significant changes in 204 metabolites in Nanjing 9108, while only 26 were altered in Jianzhen 2 during storage. These metabolites involved 46 metabolic pathways. The TCA cycle, linoleic, and α-linolenic acid metabolic pathways were unique in Nanjing 9108. Finally, the results of quantitative mass spectrometry of 11 metabolites provided insight into biomarkers associated with quality deterioration of rice. This study provides insights into the mechanism of deterioration in the quality of rice during storage.
Collapse
|
35
|
Chen H, Peng L, Zhao C, Cai Z, Zhou X. Protective Mechanism of Polygonum perfoliatum L. Extract on Chronic Alcoholic Liver Injury Based on UHPLC-QExactive Plus Mass Spectrometry Lipidomics and MALDI-TOF/TOF Mass Spectrometry Imaging. Foods 2022; 11:foods11111583. [PMID: 35681333 PMCID: PMC9179971 DOI: 10.3390/foods11111583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
Polygonum perfoliatum L. has a long history of medicinal and edible applications. Studies have shown that it can significantly protect liver injury, but the mechanism is unclear. The purpose of this study was to explore the protective mechanism of P. perfoliatum on chronic alcoholic liver injury from the perspective of lipid metabolism. After 8 weeks of alcohol exposure in male Wister mice, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in serum were significantly increased, and the activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in liver were significantly decreased. Meanwhile, pathological changes of liver tissue in mice were observed by histopathology. Then, Ultra-High Performance Liquid Chromatography (UHPLC) QExactive Plus Mass Spectrometer lipidomics and matrix-assisted laser desorption/ionization time-of-flight/time -of-flight (MALDI-TOF/TOF) mass spectrometry imaging methods were established to analyze lipid metabolism in mice. Ten different lipids were identified by statistical analysis, including Fatty Acyls, Glycerophospholipids, Prenol lipids and Sphingomyelins. After intervention with P. perfoliatum extracts at different doses (25 to 100 mg/kg), levels of AST, ALT, ALP in serum, and activities of ADH and ALDH in liver were significantly corrected. The hepatic cord structure was clear, and the liver cells were closely arranged without other obvious abnormalities. Non-target lipidomics analysis showed that P. perfoliatum extract could regulate the metabolic disorders of the 10 different lipids caused by continuous alcohol exposure. Pathway analysis suggested that the mechanism of P. perfoliatum extract on chronic alcoholic liver injury may be related to the regulation of linoleic acid and α-linolenic acid.
Collapse
Affiliation(s)
- Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; (H.C.); (L.P.); (C.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Lei Peng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; (H.C.); (L.P.); (C.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Chao Zhao
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; (H.C.); (L.P.); (C.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Correspondence: (Z.C.); (X.Z.); Tel./Fax: +86-851-8669-0018 (X.Z.)
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; (H.C.); (L.P.); (C.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- Correspondence: (Z.C.); (X.Z.); Tel./Fax: +86-851-8669-0018 (X.Z.)
| |
Collapse
|
36
|
Effects of cold treatments on lipidomics profiles of large yellow croaker (Larimichthys crocea) fillets by UPLC-Q-Exactive Orbitrap MS analysis. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Zhang D, Guo X, Wang Q, Zhao L, Sun Q, Duan X, Cao Y, Sun H. Investigation on lipid profile of peanut oil and changes during roasting by lipidomic approach. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Zheng J, Yang C, Zheng X, Yan S, Qu F, Zhao J, Pei Y. Lipidomic, Transcriptomic, and BSA-660K Single Nucleotide Polymorphisms Profiling Reveal Characteristics of the Cuticular Wax in Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:794878. [PMID: 34899814 PMCID: PMC8652291 DOI: 10.3389/fpls.2021.794878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 05/15/2023]
Abstract
Plant epidermal wax helps protect plants from adverse environmental conditions, maintains the function of tissues and organs, and ensures normal plant development. However, the constituents of epidermal wax and the regulatory mechanism of their biosynthesis in wheat have not been fully understood. Wheat varieties with different wax content, Jinmai47 and Jinmai84, were selected to comparatively analyze their waxy components and genetic characteristics, using a combination of lipidomic, transcriptomic, and BSA-Wheat 660K chip analysis. Through lipidomic analysis, 1287 lipid molecules were identified representing 31 lipid subclasses. Among these, Diacylglycerols (DG), (O-acyl)-ω-hydroxy fatty acids (OAHFA), wax ester (WE), Triacylglycerols (TG), and Monoradylglycerols (MG) accounted for 96.4% of the total lipids in Jinmai84 and 94.5% in Jinmai47. DG, OAHFA, and WE were higher in Jinmai84 than in Jinmai47 with the content of OAHFA 2.88-fold greater and DG 1.66-fold greater. Transcriptome sequence and bioinformatics analysis revealed 63 differentially expressed genes related to wax biosynthesis. Differentially expressed genes (DEGs) were found to be involved with the OAHFA, DG, and MG of synthesis pathways, which enriched the wax metabolism pathway. Non-glaucous and glaucous bulks from a mapping population were used to identify single nucleotide polymorphisms (SNP) via 660K chip analysis. Two loci centered on chromosomes 2D and 4B were detected and the locus on 4B is likely novel. These data improve understanding of complex lipid metabolism for cuticular wax biosynthesis in wheat and lay the foundation for future detailed investigation of mechanisms regulating wax metabolism.
Collapse
Affiliation(s)
- Jun Zheng
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Chenkang Yang
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xingwei Zheng
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Suxian Yan
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Fei Qu
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jiajia Zhao
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Yanxi Pei
- College of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
39
|
Wang S, Chen Y, Chen Y, Liang P, Pang J, Zhu B, Dong X. Significantly Different Lipid Profile Analysis of Litopenaeus vannamei under Low-Temperature Storage by UPLC-Q-Exactive Orbitrap/MS. Foods 2021; 10:2624. [PMID: 34828903 PMCID: PMC8622687 DOI: 10.3390/foods10112624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Low-temperature storage is one of the most important preservation methods for aquatic product storage. However, the effects of low-temperature storage on the lipid profiles of shrimp are unclear. Herein, UPLC-Q-Exactive Orbitrap/MS combined with LipidSearch software was applied to analyze the effect of three low storage temperatures (4 °C, -2 °C, and -18 °C) on the lipidomics of Litopenaeus vannamei. A total of 15 lipid classes were analyzed, and PC, PE, DG, and TG accounted for vast majority of peak areas. Furthermore, 531 individual lipid variables enriched in 12 metabolic pathways were identified via bioinformatics analysis methods. A total of 56 significantly different lipid molecular species (55 belonging to PC, PE, DG, and TG) were selected as potential biomarkers of lipid oxidation via correlational analysis between physical properties (texture and color) and individual lipid variables. The results indicated that the three low storage temperatures caused different effects on the lipidomics profile of L. vannamei, and PC, PE, DG, and TG could become potential focuses in further studies of lipid oxidation in L. vannamei.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.C.); (Y.C.); (P.L.)
| | - Yongshi Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.C.); (Y.C.); (P.L.)
| | - Yu Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.C.); (Y.C.); (P.L.)
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.C.); (Y.C.); (P.L.)
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.C.); (Y.C.); (P.L.)
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| | - Xiuping Dong
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
40
|
Liu K, Zhang C, Xu J, Liu Q. Research advance in gas detection of volatile organic compounds released in rice quality deterioration process. Compr Rev Food Sci Food Saf 2021; 20:5802-5828. [PMID: 34668316 DOI: 10.1111/1541-4337.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Rice quality deterioration will cause grievous waste of stored grain and various food safety problems. Gas detection of volatile organic compounds (VOCs) produced by deterioration is a nondestructive detection method to judge rice quality and alleviate rice spoilage. This review discussed the research advance of VOCs detection in terms of nondestructive detection methods of rice quality deterioration, applications of VOCs in grain detection, inspection of characteristic gas produced during rice spoilage, rice deterioration prevention and control, and detection of VOCs released by rice mildew and insect attack. According to the main causes of rice quality deterioration and major sources of VOCs with off-odor generated during rice storage, deterioration can be divided into mold and insect infection. The results of literature manifested that researches mainly focused on the infection of Aspergillus in the mildew process and the attack of certain pests in recent years, thus the research scope was limited. In this paper, the gas detection methods combined with the chemometrics to qualitatively analyze the VOCs, as well as the correlation with the number of colonies and insects were further studied based on the common dominant strains during rice mildew, that is, Aspergillus and Penicillium fungi, and the common pests during storage, that is, Sitophilus oryzae and Rhyzopertha dominica. Furthermore, this paper pointed out that the quantitative determination of characteristic VOCs, the numeration relationship between VOCs and the degree of mildew and insect infestation, the further expansion of detection range, and the application of degraded rice should be the spotlight of future research.
Collapse
Affiliation(s)
- Kewei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Jinyong Xu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Qiaoquan Liu
- Key Laboratories of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|