1
|
Zhang L, Iannotti FA, R. Saber F, K. Arafa R, Schiano Moriello A, A. Rasle R, Soria‐Lopez A, G. Abd EL‐Gawwad S, Rocchetti G, Otero P, Kulinowski Ł, Skalicka‐Woźniak K, Lucini L, Simal‐Gandara J. The Phenolic Signature of Psidium cattleianum Fruits and Leaves Modulates TRPV1 and TRPA1 Transient Receptor Potential Channels: A Metabolomics, In Vitro, and In Silico Study. Food Sci Nutr 2025; 13:e70075. [PMID: 40129993 PMCID: PMC11931593 DOI: 10.1002/fsn3.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 03/26/2025] Open
Abstract
Although Psidium cattleianum (strawberry guava, Myrtaceae) is known for its anti-inflammatory, antioxidant, antimicrobial, and antidiabetic properties, its phytochemical profile and associated bioactivities remain largely underexplored. This study employed UHPLC-QTOF-HRMS for untargeted phenolic profiling of leaf and fruit extracts from P. cattleianum, followed by semi-quantification of phenolic subclasses and multivariate data analysis. Four hundred sixty-nine metabolites, including various phenolic subclasses-predominantly flavonoids and phenolic acids were- identified and annotated. Using HEK-293 cells stably transfected with TRPA1 or TRPV1 cation channels, it was found that both leaf and fruit extracts activate and rapidly desensitize TRPA1 in a concentration-dependent manner (EC50 18 and 30 μg/mL; IC50 60 and 47 μg/mL, respectively). Additionally, molecular docking analysis provided deeper insights into the interactions between P. cattleianum phytochemicals and the TRPA1 cation channel, identifying theaflavin 3,3'-O-digallate as the phenolic compound with the highest affinity (S score of -9.27 Kcal/mol). Interestingly, except for theaflavin 3,3'-O-digallate, compounds enriched in the leaf extract exhibited weaker binding interactions and lower S scores (approximately -7 Kcal/mol) compared to those enriched in the fruit extract. Also, a 100 ns molecular dynamics study of theaflavin 3,3'-O-digallate with TRAP1 demonstrated high binding stability of the complex. Overall, this study offers valuable insights into the phytochemical characteristics of P. cattleianum extracts and reveals their mechanism of action through affinity for the TRPA1 cation channel-receptors.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry (ICB); National Research Council (CNR)PozzuoliItaly
| | - Fatema R. Saber
- Pharmacognosy Department, Faculty of PharmacyCairo UniversityCairoEgypt
| | - Reem K. Arafa
- Drug Design and Discovery LabHelmy Institute for Medical Sciences, Zewail City of Science and TechnologyGizaEgypt
- Biomedical Sciences ProgramUniversity of Science and Technology, Zewail City of Science and TechnologyGizaEgypt
| | | | - Rasha A. Rasle
- Drug Design and Discovery LabHelmy Institute for Medical Sciences, Zewail City of Science and TechnologyGizaEgypt
- Biomedical Sciences ProgramUniversity of Science and Technology, Zewail City of Science and TechnologyGizaEgypt
| | - Anton Soria‐Lopez
- Department of Physical Chemistry, Faculty of SciencesUniversidade de VigoOurenseSpain
| | - Sara G. Abd EL‐Gawwad
- Drug Design and Discovery LabHelmy Institute for Medical Sciences, Zewail City of Science and TechnologyGizaEgypt
- Biomedical Sciences ProgramUniversity of Science and Technology, Zewail City of Science and TechnologyGizaEgypt
| | - Gabriele Rocchetti
- Department of Animal Science, Food and NutritionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Paz Otero
- Analytical Chemistry and Food Science Department, Faculty of ScienceNutrition and Bromatology GroupOurenseSpain
| | - Łukasz Kulinowski
- Department of Natural Products ChemistryMedical University of LublinLublinPoland
| | | | - Luigi Lucini
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Jesus Simal‐Gandara
- Analytical Chemistry and Food Science Department, Faculty of ScienceNutrition and Bromatology GroupOurenseSpain
- CISPACFontan Building, City of CultureSantiago de CompostelaSpain
| |
Collapse
|
2
|
Kuo PJ, Chen LT, Li SM, Chen ZR, Chen JJ. Pharmacological and Molecular Docking Investigation of Leaves of Eriobotrya japonica: Antioxidant, Enzyme Inhibition, and Anti-Inflammatory Effects. Antioxidants (Basel) 2025; 14:413. [PMID: 40298661 PMCID: PMC12024191 DOI: 10.3390/antiox14040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Leaves of Eriobotrya japonica have long been utilized in traditional Chinese medicine (TCM) for treating pulmonary inflammation and stomach disorders. This study extends their pharmacological applications by evaluating the antioxidant, anti-α-glucosidase, anti-acetylcholinesterase (AChE), and anti-inflammatory activities of solvent extracts and isolated bioactive components through an integrative approach combining extraction, bioassays, and molecular docking. Solvent extracts prepared with varying polarities exhibited distinct bioactivities, with the 100 °C water and methanol extracts displaying the strongest antioxidant potential. The ethyl acetate extract exhibited potent α-glucosidase inhibition, whereas the n-hexane extract demonstrated significant AChE inhibitory activity. Among the isolated compounds, epicatechin (5) (SC50 = 7.83 ± 0.34 μM) and rutin (6) (SC50 = 6.69 ± 0.25 μM) showed superior ABTS and superoxide scavenging activities, respectively, compared to the positive controls (BHT and cynaroside). Ursolic acid (2) exhibited stronger α-glucosidase inhibition (IC50 = 10.68 ± 0.76 μM) than acarbose (IC50 = 419.93 ± 29.15 μM), while tormentic acid (4) demonstrated superior AChE inhibition compared to chlorogenic acid. Ursolic acid (2) also displayed NO inhibition (IC50 = 20.18 ± 1.46 μM) comparable to quercetin (IC50 = 17.05 ± 1.63 μM), with Western blot analysis confirming its potent iNOS inhibitory activity. Molecular docking further supported these findings, revealing that ursolic acid (2) exhibited stronger binding affinity to α-glucosidase (-8.7 kcal/mol) than acarbose (-5.1 kcal/mol), tormentic acid (4) displayed higher binding energy to AChE (-8.8 kcal/mol) compared to chlorogenic acid (-7.8 kcal/mol), and ursolic acid (2) (-7.5 kcal/mol) showed a binding affinity to iNOS similar to that of quercetin (-7.7 kcal/mol). These results highlight the strong potential of E. japonica leaf extracts and bioactive compounds as natural antioxidants, enzyme inhibitors, and anti-inflammatory agents, supporting their development as dietary supplements or therapeutic candidates for managing oxidative stress, hyperglycemia, neurodegenerative diseases, and inflammatory disorders.
Collapse
Affiliation(s)
- Pao-Jen Kuo
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Li-Ting Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (L.-T.C.); (S.-M.L.); (Z.-R.C.)
| | - Sin-Min Li
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (L.-T.C.); (S.-M.L.); (Z.-R.C.)
| | - Zih-Rong Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (L.-T.C.); (S.-M.L.); (Z.-R.C.)
| | - Jih-Jung Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (L.-T.C.); (S.-M.L.); (Z.-R.C.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
3
|
Kim MH, Yeon SW, Ryu SH, Lee HH, Turk A, Jeong SY, Kim YJ, Lee KY, Hwang BY, Lee MK. Structural Diversity and Anti-Diabetic Potential of Flavonoids and Phenolic Compounds in Eriobotrya japonica Leaves. Molecules 2025; 30:736. [PMID: 39942838 PMCID: PMC11820478 DOI: 10.3390/molecules30030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Eriobotrya japonica (Thunb.) Lindl., commonly known as loquat, is a plant belonging to the Rosaceae family. While its fruit is widely consumed as food and used in traditional medicine, research on other parts of the plant remains insufficient. Therefore, the chemical constituents and biological activities of its leaves were investigated. Phytochemical analysis of E. japonica leaves identified 30 compounds, including flavonoids, phenolics, and megastigmanes. The flavonoids isolated from the leaves include flavones, flavans, flavolignans, flavonoid glycosides, and coumaroyl flavonoid glycosides. Coumaroyl flavonoid rhamnosides were characteristically present in E. japonica leaves, and the configurations of coumaric acids, as well as the binding position to the rhamnose in each compound, were identified through detailed NMR analysis. Notably, three of them were isolated from this plant for the first time. Phenolic compounds were found to be present as conjugates with organic acids, such as quinic acid, shikimic acid, and glucose. Flavonoid and phenolic compounds demonstrated significant antioxidant and α-glucosidase inhibitory effects, whereas megastigmanes showed little activity. Notably, coumaroyl flavonoid rhamnosides, which consist of flavonoids combined with the phenolic acid, coumaric acid, exhibited excellent anti-diabetic effects. Further molecular docking analysis confirmed that these compounds effectively bind to the α-glucosidase enzyme. In conclusion, the present study identified flavonoid and phenolic components with various structures in E. japonica leaves and clarified their anti-diabetic and antioxidant effects. These findings support the beneficial potential of E. japonica leaves for the treatment and/or prevention of metabolic diseases.
Collapse
Affiliation(s)
- Min Hee Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (M.H.K.); (S.W.Y.); (S.H.R.); (H.H.L.); (A.T.); (S.Y.J.); (B.Y.H.)
| | - Sang Won Yeon
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (M.H.K.); (S.W.Y.); (S.H.R.); (H.H.L.); (A.T.); (S.Y.J.); (B.Y.H.)
| | - Se Hwan Ryu
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (M.H.K.); (S.W.Y.); (S.H.R.); (H.H.L.); (A.T.); (S.Y.J.); (B.Y.H.)
| | - Hak Hyun Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (M.H.K.); (S.W.Y.); (S.H.R.); (H.H.L.); (A.T.); (S.Y.J.); (B.Y.H.)
| | - Ayman Turk
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (M.H.K.); (S.W.Y.); (S.H.R.); (H.H.L.); (A.T.); (S.Y.J.); (B.Y.H.)
| | - So Yeong Jeong
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (M.H.K.); (S.W.Y.); (S.H.R.); (H.H.L.); (A.T.); (S.Y.J.); (B.Y.H.)
| | - Young Jun Kim
- College of Pharmacy, Korea University, Sejong 47236, Republic of Korea; (Y.J.K.); (K.Y.L.)
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong 47236, Republic of Korea; (Y.J.K.); (K.Y.L.)
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (M.H.K.); (S.W.Y.); (S.H.R.); (H.H.L.); (A.T.); (S.Y.J.); (B.Y.H.)
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (M.H.K.); (S.W.Y.); (S.H.R.); (H.H.L.); (A.T.); (S.Y.J.); (B.Y.H.)
| |
Collapse
|
4
|
Kostenko O, Flores del Pino L, Jorge-Montalvo P, Visitación-Figueroa L. Management of waste containing polybrominated diphenyl ethers: A review. Heliyon 2024; 10:e40229. [PMID: 39584110 PMCID: PMC11585757 DOI: 10.1016/j.heliyon.2024.e40229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are substances used as flame retardants that can be released into the environment through volatilization, leaching, and abrasion throughout the useful life of the articles that contain them, especially at the end of their life cycle because PBDEs do not chemically bind to the initial materials (electrical and electronic equipment, textiles, materials used in transport vehicles, toys, among others). Research has shown that the toxic effects and risks of PBDEs to ecosystems and human health are greater than their benefits owing to their neurotoxicity, toxicity to the endocrine and reproductive systems, and possible carcinogenicity. This review shows the current situation of management of waste containing PBDEs (plastics, sludge, soil, and ash) and the characterization, valorization, treatment, and final disposal of these wastes, to minimize their impacts on ecosystems and human health are analyzed. Wastes with concentrations greater than 1000 mg/kg of PBDE should be considered as hazardous waste. This research identifies the methods available to reduce the risk in their management; at the same time, it provides innovative ideas for the integrated management of PBDE-containing wastes, prioritizing their valorization and disposal.
Collapse
Affiliation(s)
- Olga Kostenko
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
- Department of Environmental Engineering, Scientific University of the South, Lima, Peru
| | - Lisveth Flores del Pino
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Paola Jorge-Montalvo
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Lizardo Visitación-Figueroa
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| |
Collapse
|
5
|
Ali A, Wan C, Lin M, Flint-Garcia S, Vardhanabhuti B, Somavat P. Microencapsulation of highly concentrated polyphenolic compounds from purple corn pericarp by spray-drying with various biomacromolecules. Int J Biol Macromol 2024; 272:132938. [PMID: 38848831 DOI: 10.1016/j.ijbiomac.2024.132938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Colored corn pericarp contains unusually high amounts of industrially valuable phytochemicals, such as anthocyanins, flavanols, flavonoids, and phenolic acids. Polyphenols were extracted in an aqueous solution and spray-dried to produce microencapsulates using four carrier materials, namely, maltodextrin (MD), gum arabic (GA), methylcellulose (MC), and skim milk powder (SMP) at three concentrations (1, 2, and 3 %, respectively). The encapsulates were evaluated for their polyphenolic contents using spectrophotometric techniques and HPLC analyses, and their antioxidant properties were evaluated using four different assays. The physicochemical properties of encapsulates were analyzed by measuring the zeta potential (ZP), particle size distribution, water solubility index (WSI), water absorption index (WAI), and color parameters. Structural and thermal properties were evaluated using Fourier transform infrared spectroscopy (FTIR), optical profilometry, and differential scanning calorimetry (DSC) analyses. Comparative analysis of structural characteristics, particle size distribution, zeta potential, WSI, WAI, and aw of the samples confirmed the successful formulation of encapsulates. The microencapsulates embedded with 1 % concentrations of MD, MC, GA, or SMP retained polyphenolic compounds and exhibited noteworthy antioxidant properties. The samples encapsulated with GA or MD (1 %) demonstrated superior physicochemical, color, and thermal properties. Comprehensive metabolomic analysis confirmed the presence of 38 phytochemicals in extracts validating the spray-drying process.
Collapse
Affiliation(s)
- Ahmad Ali
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Sherry Flint-Garcia
- United States Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, Columbia, MO 65211, United States of America.
| | - Bongkosh Vardhanabhuti
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Pavel Somavat
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America; Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
6
|
Wang Z, Cui M, Wang H, Ma L, Han Y, Han D, Yan H. Identification of tyrosinase inhibitors in defatted seeds of evening primrose (Oenothera biennis L.) by affinity-labeled molecular networking. Food Res Int 2024; 180:114097. [PMID: 38395549 DOI: 10.1016/j.foodres.2024.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
The defatted seeds of evening primrose (DE), a by-product of evening primrose oil extraction, are currently underutilized. This study aimed to valorize DE by examining its effects on melanogenesis and tyrosinase activity in zebrafish embryos and in vitro, and an innovative affinity-labeled molecular networking workflow was proposed for the rapid identification of tyrosinase inhibitors in DE. Our results indicated DE significantly reduced melanin content (53.3 % at 100 μg/mL) and tyrosinse activity (80.05 % for monophenolase and 70.40 % for diphenolase at 100 μg/mL). Furthermore, through the affinity-labeled molecular networking approach, 20 compounds were identified as potential tyrosinase inhibitors within DE, predominantly flavonoids and tannins characterized by catechin and galloyl substructures. Seven of these compounds were isolated and their inhibitory effects on tyrosinase were validated using functional assays. This study not only underscores the potential of DE as a rich source of natural tyrosinase inhibitors but also establishes the effectiveness of affinity-labeled molecular networking in pinpointing bioactive compounds in complex biological matrices.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Mingfan Cui
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Hao Wang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Lei Ma
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yehong Han
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Shahat AA, Ullah R, Alqahtani AS, Fantoukh OI. Cardioprotective study of Eriobotrya japonica leaf extracts against carbon tetrachloride induced toxicity in rats. Saudi Pharm J 2023; 31:101869. [PMID: 38033747 PMCID: PMC10685020 DOI: 10.1016/j.jsps.2023.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
The Rosaceae family includes the evergreen subtropical tree known as Eriobotrya japonica Lindl (loquat). To test the effect of several E. japonica leaf extracts on shielding the heart from carbon tetrachloride (CCl4) cytotoxic effects, we employed carbon tetrachloride (CCl4), a highly toxic chemical, to cause cardiotoxicity in rats. The heart function enzymes that were examined were lactate dehydrogenase (LDH) and Creatine Kinase. When compared to both the hazardous and normal groups, it was discovered that the protective dose of ethyl acetate extract (200 mg/Kg) and aqueous extract (100 and 200 mg/Kg) lowered the cardiac indicators. Total protein, malondialdehyde (MDA), and non-protein sulfhydryls (NP-SH) indicators were used to assess myocardial oxidative stress. Rats pretreated with ethyl acetate (200 mg/Kg) and aqueous extract (100 and 200 mg/Kg) showed higher levels of total protein than the control group. When compared to the silymarin group, all of the loquat leaf extracts examined in this study increased the amount of the MDA enzyme. The data also demonstrated that, when compared to the results from the normal group, aqueous extract (100 and 200 mg/Kg) enhanced the amount of NP-SH. The histopathology showed that administration of all loquat leaf extracts at doses of (100 mg/kg, 200 mg/kg) before CCl4 intoxication greatly reduced the modifications that were exhibited by CCl4 and preserved cardiac muscles that were very equivalent to those of normal control. Based on the aforementioned data, we deduced that loquat leaf aqueous extract provided the highest protection for heart tissue against the effects of CCl4 intoxication. Through chemical examination of the methanolic extract, four flavonoids were extracted and identified. Their structures were found to be kaempferol-3-O-rhamnoside 1, quercetin-3-O-rhamnoside 2, quercetin-3,7 di-O-glycerides 3, and roseoside 4.
Collapse
Affiliation(s)
- Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Yan QJ, Chen YY, Wu MX, Yang H, Cao JP, Sun CD, Wang Y. Phenolics and Terpenoids Profiling in Diverse Loquat Fruit Varieties and Systematic Assessment of Their Mitigation of Alcohol-Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:1795. [PMID: 37891875 PMCID: PMC10604257 DOI: 10.3390/antiox12101795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
To compare and investigate the phenolic compounds in the peel and flesh of loquat (Eriobotrya japonica) and evaluate their ability to protect against alcohol-induced liver oxidative stress, we employed a combination of ultra-performance liquid chromatography (UPLC) and high-resolution mass spectrometry (HRMS) to qualitatively and quantitatively analyze 22 phenolics and 2 terpenoid compounds in loquat peel and flesh extracts (extraction with 95% ethanol). Among these, six compounds were identified for the first time in loquat, revealing distinct distribution patterns based on variety and tissue. Various chemical models, such as DPPH, FRAP, ORAC, and ABTS, were used to assess free radical scavenging and metal ion reduction capabilities. The results indicate that peel extracts exhibited higher antioxidant capacity compared with flesh extracts. Using a normal mouse liver cell line, AML-12, we explored the protective effects of loquat extracts and individual compounds against ethanol-induced oxidative stress. The findings demonstrate the enhanced cell viability and the induction of antioxidant enzyme activity through the modulation of Nrf2 and Keap1 gene expression. In a C57/BL6 mouse model of alcohol-induced liver damage, loquat extract was found to alleviate liver injury induced by alcohol. The restoration of perturbed serum liver health indicators underscored the efficacy of loquat extract in reclaiming equilibrium. The culmination of these findings significantly bolsters the foundational knowledge necessary to explore the utilization of loquat fruit extract in the creation of health-focused products.
Collapse
Affiliation(s)
- Qun-Jiao Yan
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100000, China;
| | - Yun-Yi Chen
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310000, China; (Y.-Y.C.); (M.-X.W.); (H.Y.); (J.-P.C.); (C.-D.S.)
| | - Man-Xi Wu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310000, China; (Y.-Y.C.); (M.-X.W.); (H.Y.); (J.-P.C.); (C.-D.S.)
| | - Han Yang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310000, China; (Y.-Y.C.); (M.-X.W.); (H.Y.); (J.-P.C.); (C.-D.S.)
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310000, China; (Y.-Y.C.); (M.-X.W.); (H.Y.); (J.-P.C.); (C.-D.S.)
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310000, China; (Y.-Y.C.); (M.-X.W.); (H.Y.); (J.-P.C.); (C.-D.S.)
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310000, China; (Y.-Y.C.); (M.-X.W.); (H.Y.); (J.-P.C.); (C.-D.S.)
| |
Collapse
|
9
|
Pawłowska AM, Żurek N, Kapusta I, De Leo M, Braca A. Antioxidant and Antiproliferative Activities of Phenolic Extracts of Eriobotrya japonica (Thunb.) Lindl. Fruits and Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:3221. [PMID: 37765385 PMCID: PMC10536983 DOI: 10.3390/plants12183221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Increasing interest in new sources of secondary metabolites as biologically active substances has resulted in an advanced study of many plant species. Loquat (Eriobotrya japonica (Thunb.) Lindl. = Rhaphiolepis bibas (Lour.) Galasso & Banfi, Rosaceae family), an evergreen, subtropical fruit tree, native to China and Japan, but cultivated in southern countries of Europe, is a species commonly used in folk medicine and may be an excellent source of bioactive compounds. Therefore, the aim of the present study was to evaluate the profile of the phenolic constituents of E. japonica fruits and leaves originating from Tuscany (Italy), as well as their in vitro antioxidant and chemopreventive activities on human cancer cell lines breast adenocarcinoma (MCF-7), colon adenocarcinoma (Caco-2 and HT-29), and glioblastoma (U87MG). Results revealed that the extract of leaves displayed higher antioxidant and anticancer potential than the fruit extract and contained 25 individual phenolic compounds that have been characterized and quantified by the UPLC-PDA-MS method. The antiproliferative activity was correlated with the content of polyphenolic compounds indicating that both fruits and leaves are a good source of antioxidants and may be exploited as nutraceuticals enriching food or as components for the cosmetic/pharmaceutical industry.
Collapse
Affiliation(s)
- Agata Maria Pawłowska
- Department of Food Technology and Human Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Natalia Żurek
- Department of Food Technology and Human Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| |
Collapse
|
10
|
Jorge-Montalvo P, Vílchez-Perales C, Visitación-Figueroa L. Valorisation of Zingiber officinale Roscoe postharvest residues as byproducts with antioxidant capacity. Heliyon 2023; 9:e19137. [PMID: 37636380 PMCID: PMC10457535 DOI: 10.1016/j.heliyon.2023.e19137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
During the postharvest phase of ginger, 2.6%-5% by weight of ginger rhizome residues are generated, which are disposed in landfills and constitute a continuous source of organic contamination causing serious environmental problems. The objective of this study was to valorise ginger postharvest residues (shoot, finger, slice, trunk, root, and rootles) from district Pichanaki (Peru) as dry powdered byproducts with an antioxidant capacity similar to that of rhizome. The nutrition composition, phenolic compounds, such as total phenolic content, total flavonoid content, 6-gingerol content, and 6-shogaol content, antioxidant capacity expressed by ferric reducing antioxidant power and IC50 of 2,2-diphenyl-1-picrylhydrazyl radical, surface changes, and structural morphology were evaluated. In addition, the dependent variables were correlated using the Pearson's matrix and principal component analysis (PCA). The results for shoot, finger, slice, and trunk residues showed similar phenolic compound contents and antioxidant capacities to those of rhizome, but similar results were not obtained for root and rootlet residues. These results were corroborated by analyses of surface and structural morphologies. The Pearson's matrix showed that the content of phenolic compounds correlated with the antioxidant capacity and carbohydrate content for the rhizome and residues, except for the root. The PCAshowed that residues that exhibited higher contents of starch grains with reserve functions such as shoot, finger, slice, and trunk were correlated with higher contents of phenolic compounds with antioxidant capacity, while residues with higher contents of crude fibre and ash with a support function exhibited a low antioxidant capacity. Thus, the shoot, finger, slice, and trunk residues, from district Pichanaki (Peru), can be valorised and reincorporated as byproducts in the ginger value chain. They are important for the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Paola Jorge-Montalvo
- Centre for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Carlos Vílchez-Perales
- Department of Nutrition, Faculty of Zootechnics, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Lizardo Visitación-Figueroa
- Centre for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| |
Collapse
|
11
|
Jing D, Liu X, He Q, Dang J, Hu R, Xia Y, Wu D, Wang S, Zhang Y, Xia Q, Zhang C, Yu Y, Guo Q, Liang G. Genome assembly of wild loquat ( Eriobotrya japonica) and resequencing provide new insights into the genomic evolution and fruit domestication in loquat. HORTICULTURE RESEARCH 2023; 10:uhac265. [PMID: 36778182 PMCID: PMC9909508 DOI: 10.1093/hr/uhac265] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 05/05/2023]
Abstract
Wild loquats (Eriobotrya japonica Lindl.) provide remarkable genetic resources for studying domestication and breeding improved varieties. Herein, we generate the first high-quality chromosome-level genome assembly of wild loquat, with 45 791 predicted protein-coding genes. Analysis of comparative genomics indicated that loquat shares a common ancestor with apple and pear, and a recent whole-genome duplication event occurred in loquat prior to its divergence. Genome resequencing showed that the loquat germplasms can be distinctly classified into wild and cultivated groups, and the commercial cultivars have experienced allelic admixture. Compared with cultivated loquats, the wild loquat genome showed very few selected genomic regions and had higher levels of genetic diversity. However, whole-genome scans of selective sweeps were mainly related to fruit quality, size, and flesh color during the domestication process. Large-scale transcriptome and metabolome analyses were further performed to identify differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in wild and cultivated loquats at various fruit development stages. Unlike those in wild loquat, the key DEGs and DAMs involved in carbohydrate metabolism, plant hormone signal transduction, flavonoid biosynthesis, and carotenoid biosynthesis were significantly regulated in cultivated loquats during fruit development. These high-quality reference genome, resequencing, and large-scale transcriptome/metabolome data provide valuable resources for elucidating fruit domestication and molecular breeding in loquat.
Collapse
Affiliation(s)
| | | | | | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Ruoqian Hu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Shuming Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Yin Zhang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Qingqing Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Chi Zhang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Yuanhui Yu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | | | | |
Collapse
|
12
|
Lee JH, Seo EY, Lee YM. Comparative investigation on variations of nutritional components in whole seeds and seed coats of Korean black soybeans for different crop years and screening of their antioxidant and anti-aging properties. Food Chem X 2023; 17:100572. [PMID: 36845484 PMCID: PMC9944501 DOI: 10.1016/j.fochx.2023.100572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
This research was conducted to demonstrate the comparisons of nutritional constituents (isoflavone; anthocyanin; protein; fatty acid; oil) and biological properties (antioxidant, anti-aging) in whole seeds and seed coats of black soybeans for crop years. Isoflavones and anthocyanins showed considerable differences in cultivars and growth years with the ranges of 794.9-4195.3 μg/g and 2.3-14.4 mg/g, while other components exhibited slight variations. In particular, malonylgenistin and cyanidin-3-O-glucoside were observed the most abundant phenolics, comprising approximately 35.5 (778.0 μg/g) and 76.7% (4.6 mg/g) of total average contents (isoflavone: 2197.8 μg/g; anthocyanin: 6.0 mg/g). Moreover, the whole seeds and seed coats displayed excellent activities in antioxidant (radical; DNA protectant), tyrosinase inhibition, and elastase inhibition. Their effects significantly occurred with dose-dependent patterns as follows: elastase (150 μg/mL) > tyrosinase (600 μg/mL) > ABTS (1500 μg/mL) > DPPH (1500 μg/mL) with higher abilities of seed coats than whole seeds. The DNA protection exhibited higher rates in seed coats with > 90% at 200 μg/mL. Natably, Socheong (isoflavone; 4182.4 μg/g) and Geomjeong 2 (anthocyanin: 10.3 mg/g) cultivars may be recommended as potential sources to the development of functional agents and new cultivars owing to their high average phenolic contents.
Collapse
Key Words
- ABTS, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)
- Acetylglycitin (PubChem CID: 53398650)
- Antioxidant
- Black soybean
- C3G, cyanidin-3-O-glucoside
- Cyanidin-3-glucoside (PubChem CID: 12303203)
- DPPH, 2,2-diphenyl-1-pycrylhydrazyl
- Daidzein (PubChem CID: 5281708)
- Daidzin (PubChem CID: 107971)
- Delphinidin-3-glucoside (PubChem CID: 443650)
- Enzyme inhibition
- Genistein (PubChem CID: 5280961)
- Genistin (PubChem CID: 5281377)
- Glycitein (PubChem CID: 5317750)
- Glycitin (PubChem CID: 187808)
- HPLC
- HPLC, high-performance liquid chromatography, D3G, delphinidine-3-O-glucoside
- Malonyldaidzin (PubChem CID: 9913968)
- Malonylgenistin (PubChem CID: 90658001)
- Malonylglycitin (PubChem CID: 23724657)
- NMR, nuclear magnetic resonance
- Nutritional component
- P3G, petunidin-3-O-glucoside
- Petunidin-3-glucoside (PubChem CID: 443651)
- Phenolic
Collapse
|
13
|
García-Pérez P, Zhang L, Miras-Moreno B, Lozano-Milo E, Landin M, Lucini L, Gallego PP. The Combination of Untargeted Metabolomics and Machine Learning Predicts the Biosynthesis of Phenolic Compounds in Bryophyllum Medicinal Plants (Genus Kalanchoe). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112430. [PMID: 34834793 PMCID: PMC8620224 DOI: 10.3390/plants10112430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Phenolic compounds constitute an important family of natural bioactive compounds responsible for the medicinal properties attributed to Bryophyllum plants (genus Kalanchoe, Crassulaceae), but their production by these medicinal plants has not been characterized to date. In this work, a combinatorial approach including plant tissue culture, untargeted metabolomics, and machine learning is proposed to unravel the critical factors behind the biosynthesis of phenolic compounds in these species. The untargeted metabolomics revealed 485 annotated compounds that were produced by three Bryophyllum species cultured in vitro in a genotype and organ-dependent manner. Neurofuzzy logic (NFL) predictive models assessed the significant influence of genotypes and organs and identified the key nutrients from culture media formulations involved in phenolic compound biosynthesis. Sulfate played a critical role in tyrosol and lignan biosynthesis, copper in phenolic acid biosynthesis, calcium in stilbene biosynthesis, and magnesium in flavanol biosynthesis. Flavonol and anthocyanin biosynthesis was not significantly affected by mineral components. As a result, a predictive biosynthetic model for all the Bryophyllum genotypes was proposed. The combination of untargeted metabolomics with machine learning provided a robust approach to achieve the phytochemical characterization of the previously unexplored species belonging to the Bryophyllum subgenus, facilitating their biotechnological exploitation as a promising source of bioactive compounds.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Agrobiotech for Health Group, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.); (P.P.G.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.Z.); (B.M.-M.)
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.Z.); (B.M.-M.)
| | - Eva Lozano-Milo
- Agrobiotech for Health Group, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.); (P.P.G.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Mariana Landin
- I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), E-15706 Santiago de Compostela, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.Z.); (B.M.-M.)
| | - Pedro P. Gallego
- Agrobiotech for Health Group, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.); (P.P.G.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| |
Collapse
|
14
|
Shen Y, Chen C, Cai N, Yang R, Chen J, Kahramanoǧlu İ, Okatan V, Rengasamy KRR, Wan C. The Antifungal Activity of Loquat ( Eriobotrya japonica Lindl.) Leaves Extract Against Penicillium digitatum. Front Nutr 2021; 8:663584. [PMID: 34490318 PMCID: PMC8417588 DOI: 10.3389/fnut.2021.663584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
This study was performed to determine the antifungal activity of loquat (Eriobotrya japonica Lindl) leaf extract (LLE) against the citrus postharvest pathogen Penicillium digitatum (P. digitatum). The LLE exhibited an antifungal activity against P. digitatum, with a minimum inhibitory concentration (MIC) of 0.625 mg/ml and a minimum fungicidal concentration (MFC) of 1.25 mg/ml. Significant inhibitory effects of LLE on mycelial growth and spore germination of P. digitatum were seen in a dose-dependent manner. Simultaneously, to investigate possible antifungal mechanisms by LLE, we analyzed their influence on morphological changes, cell membrane permeability, cell wall and cell membrane integrity, and adenosine phosphates (ATP, ADP, and AMP) levels. Alterations, such as sunken surface and malformation, occurred in the LLE-treated P. digitatum spores. Furthermore, intracellular inclusion content decreased after LLE treatment, indicating an increase in cell membrane permeability. Besides, the LLE treatment induced a significant decline in the level of adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP) with a noticeable addition of extracellular ATP, ADP, and AMP during the entire treatment period. Overall, the results manifested that the antifungal activity of LLE against P. digitatum can be attributed to the derangement of cell membrane permeability and disordered energy metabolism. This is the first report on the mechanism of antifungal activity of LLE and could be useful in the development of targeted fungicides from natural origin.
Collapse
Affiliation(s)
- Yuting Shen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits, Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits, Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Nan Cai
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits, Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Ruopeng Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits, Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits, Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - İbrahim Kahramanoǧlu
- Faculty of Agricultural Sciences and Technologies, European University of Lefke, Gemikonagi, Turkey
| | - Volkan Okatan
- Department of Horticulture, Faculty of Agriculture, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Kannan R. R. Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Mankweng, South Africa
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits, Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|