1
|
Wu X, Zhang J, Wang M, Sun Z, Chang C, Ying Y, Li D, Zheng H. Effect of emulsifier type on camellia oil-based nanostructured lipid carriers for delivery of curcumin. Food Chem 2025; 482:144193. [PMID: 40209370 DOI: 10.1016/j.foodchem.2025.144193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
In this study, a camellia oil-based nanostructured lipid carrier (NLC) was developed for the delivery of curcumin (Cur). To identify suitable natural emulsifiers, the effects of three different types, including tea saponin (TS), sodium caseinate (SC), and soy lecithin (SL), on the structure, stability, and digestibility of Cur-NLCs were investigated, with Tween 80 (T80) serving as a positive control. The results showed that the absolute zeta potential of NLCs prepared with natural emulsifiers exceeded 30 mV, and their encapsulation efficiency was above 85 %. Among them, TS-Cur-NLC demonstrated good uniformity and stability after 30 days of storage at 25 °C. Meanwhile, the bioavailability of SC-Cur-NLC reached 67.48 %, showing no significant difference from that of T80-Cur-NLC (p > 0.05). This study broadens the application scope of camellia oil and provides a theoretical foundation for utilizing natural emulsifiers in the development of delivery systems for fat-soluble active substances.
Collapse
Affiliation(s)
- Xinghui Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaxin Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengqi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhouliang Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengfu Chang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - YunXin Ying
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dan Li
- Heilongjiang Green Food Science Research Institute, Harbin, Heilongjiang 150028, China.
| | - Huanyu Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
2
|
Verma K, Tarafdar A, Kumar D, Sari TP, Badgujar PC, Pareek S, Assadpour E, Jafari SM. Microfluidization based nano/sub-micron curcumin formulations for food and nutraceuticals: Physico-functional characteristics and safety aspects. Food Chem 2025; 485:144402. [PMID: 40318331 DOI: 10.1016/j.foodchem.2025.144402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/02/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Curcumin is extensively used natural polyphenol with tremendous health benefits that are compromised due to its low water solubility, rapid degradation of its metabolites and low-bioavailability. It degrades during processing or in gastrointestinal tract and alkaline conditions leading to low bioavailability. These limitations have attracted many researchers' attention to improve its bioaccessibility and stability through several techniques by reducing its particle size. Microfluidization has progressed as a promising technique to achieve the micro and nano-sized curcumin. This review discusses microfluidics-based attempts to formulate submicron and nano-sized curcumin formulations for food and functional food applications. It highlights challenges associated with obtaining nano-sized curcumin, and subsequent improvement in the bioaccessibility/bioavailability through microfluidization. Further, the safety of such processed formulations as well as that of microfluidization and critical research gaps has also been discussed. This review shall provide a fresh perspective on effective utilization of microfluidized curcumin formulations for food & nutraceuticals applications.
Collapse
Affiliation(s)
- Kiran Verma
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Ayon Tarafdar
- Division of Livestock Production and Management, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - T P Sari
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India.
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Lüdtke FL, Silva TJ, da Silva MG, Hashimoto JC, Ribeiro APB. Lipid Nanoparticles: Formulation, Production Methods and Characterization Protocols. Foods 2025; 14:973. [PMID: 40231985 PMCID: PMC11941587 DOI: 10.3390/foods14060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 04/16/2025] Open
Abstract
Lipid nanoparticles (LNs) have emerged as advanced lipid-based delivery systems, offering an effective approach for encapsulating and protecting lipid-soluble bioactive compounds, increasing their bioavailability. Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) are particularly promising for bioactive compound entrapment. However, to fully exploit their potential, it is crucial to carefully select the appropriate lipid matrices and emulsifiers. This review offers a comprehensive, up-to-date examination, considering studies published in the last 15 years, of the chemical, physical, and structural characteristics of lipids employed in LN production, focusing on the key components of the formulations: lipid matrices, emulsifiers, and bioactive compounds. In addition, it provides an in-depth analysis of production methods, drawing on insights from the latest scientific literature, and emphasizes the most important characterization techniques for LNs. Key parameters, including particle size (PS), zeta potential (ZP), crystallinity, thermal behavior, morphology, entrapment efficiency (EE), load capacity (LC), and physical stability, are discussed. Ultimately, this review aims to identify critical factors for the successful production of stable LNs that efficiently encapsulate and deliver bioactive compounds, highlighting their significant potential for applications in food systems.
Collapse
Affiliation(s)
- Fernanda L. Lüdtke
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory, 4800-122 Guimarães, Portugal
| | - Thaís Jordânia Silva
- Center for Natural Sciences, Federal University of São Carlos (UFSCar), Campus Lagoa do Sino, Buri 13565-905, SP, Brazil;
| | - Mayanny Gomes da Silva
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (M.G.d.S.); (J.C.H.)
| | - Juliana Campos Hashimoto
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (M.G.d.S.); (J.C.H.)
| | - Ana Paula B. Ribeiro
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (M.G.d.S.); (J.C.H.)
| |
Collapse
|
4
|
Lanzoni D, Passos MSD, Mehn D, Gioria S, Vicente A, Giromini C. Impact of Nanoplastics on the Functional Profile of Microalgae Species Used as Food Supplements: Insights from Comparative In Vitro and Ex Vivo Digestion Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:798-810. [PMID: 39719267 PMCID: PMC11726606 DOI: 10.1021/acs.jafc.4c07368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024]
Abstract
The widespread use of plastics in the food industry raises concerns about plastic migration and health risks. The degradation of primary polymers like polystyrene (PS) and polyethylene (PE) can generate nanoplastics (NPs), increasing food biohazard. This study assessed the impact of PS, PE, and PS + PE NPs on Chlorella vulgaris (CV) and Haematococcus pluvialis (HP) before and after in vitro and ex vivo digestion, focusing on particle size, polydispersity index, and surface charge. The modulation of total phenolic content (TPC) induced by NP contamination was also evaluated. Results demonstrated that NP behavior varied with the microalgae medium and persisted postdigestion, posing health risks. Significant size increases were noted for PS + PE in the CV and HP. TPC increased significantly with NP exposure, especially PS + PE. These findings underline the need for regulatory measures to ensure food safety in cases of plastic contamination and to address the behavior and toxicity of NPs.
Collapse
Affiliation(s)
- Davide Lanzoni
- Department
of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 29600 Lodi, Italy
| | | | - Dora Mehn
- European
Commission, Joint Research Centre (JRC), 20127 Ispra, Italy
| | - Sabrina Gioria
- European
Commission, Joint Research Centre (JRC), 20127 Ispra, Italy
| | - António
A. Vicente
- CEB
− Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Carlotta Giromini
- Department
of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 29600 Lodi, Italy
- Institute
for Food, Nutrition and Health, University
of Reading, Reading RG6 5 EU, U.K.
| |
Collapse
|
5
|
Huang R, Song H, Li S, Guan X. Selection strategy for encapsulation of hydrophilic and hydrophobic ingredients with food-grade materials: A systematic review and analysis. Food Chem X 2025; 25:102149. [PMID: 39867216 PMCID: PMC11758843 DOI: 10.1016/j.fochx.2024.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025] Open
Abstract
Various lipid and biopolymer-based nanocarriers have been developed to encapsulate food ingredients. The selection of nanocarrier type, preparation techniques, and loading methods should consider the compatibility of nutrient properties, nanocarrier composition, and product requirements. This review focuses on the loading methods for hydrophilic and hydrophobic substances, along with a detailed exploration of nanocarrier categorization, composition, and preparation methods. Both lipid-based and biopolymer-based nanoparticles exhibit the capability to encapsulate hydrophilic or hydrophobic substances. Liposomes and nanoemulsions allow simultaneous encapsulation of hydrophilic and hydrophobic ingredients, while solid lipid nanoparticles and nanostructured lipid carriers are suited for hydrophobic ingredients. The three-dimensional network structure of nanogels can efficiently load hydrophilic substances, while the functional groups in polysaccharides improve the loading capacity of hydrophobic substances through intermolecular interactions. As for protein nanoparticles, the selection of proteins with solubility characteristics analogous to the bioactives is crucial to achieve high encapsulation efficiency.
Collapse
Affiliation(s)
- Ruihan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, China
| |
Collapse
|
6
|
Jia H, Jia Y, Ren F, Liu H. Enhancing bioactive compounds in plant-based foods: Influencing factors and technological advances. Food Chem 2024; 460:140744. [PMID: 39116769 DOI: 10.1016/j.foodchem.2024.140744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Plant-based foods are natural sources of phytochemicals, which exhibit free radical scavenging capacity. However, the bioaccessibility of phytochemicals in foods are limited due to their poor stability and solubility within food matrix. Moreover, chemical degradation induced by processing further diminish the levels of these bioactive compounds. This review explores the impacts of thermal and non-thermal processing on fruits and vegetables, emphasizing the application of emerging technologies to enhance food quality. Innovative non-thermal technologies, which align with sustainable and environmentally friendly principles of green development, are particularly promising. Supercritical CO2 and cold plasma can be applied in extraction of phytochemicals, and these extracts also can be used as natural preservatives in food products, as well as improve the texture and sensory properties of food products, offering significant potential to advance the field of food science and technology while adhering to eco-friendly practices.
Collapse
Affiliation(s)
- Hanbing Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
7
|
Sousa V, Toledo Hijo AAC, Lüdtke FL, Vicente AA, Dias O, Geada P. Recovery and encapsulation of Dunaliella salina β-carotene through a novel sustainable approach: Sequential application of an ionic liquid as naturally-derived solvent and emulsifier. Food Chem 2024; 458:140232. [PMID: 38991241 DOI: 10.1016/j.foodchem.2024.140232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Dunaliella salina is a promising source of β-carotene, widely employed in the food industry. This study aimed to evaluate the sequential application of the Ionic Liquid (IL) cholinium oleate as an extraction solvent for D. salina β-carotene recovery and, sequentially, as emulsifier for emulsion-based products obtained therefrom. The IL was evaluated regarding its ability to permeabilize the cells and recover β-carotene at different temperatures (25-65 °C) and IL concentrations (0-46%). The use of the IL as solvent greatly improved β-carotene recovery (>84%). The IL already present in the obtained extracts loaded with recovered β-carotene was sequentially used as emulsifier in the production of nanoemulsions (NE). NE presented a β-carotene entrapment efficiency of 100% and were kinetically stable for 30 days and presented droplet size, size distribution, and ζ-potential of 220 nm, 0.21, and -67 mV, respectively. These results indicate that using IL sequential as solvent and emulsifier has potential applications in the food industry.
Collapse
Affiliation(s)
- Vítor Sousa
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Ariel A C Toledo Hijo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS- associated laboratory, Braga, Guimarães, Portugal; School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862, Campinas, São Paulo, Brazil
| | - Fernanda L Lüdtke
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS- associated laboratory, Braga, Guimarães, Portugal
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS- associated laboratory, Braga, Guimarães, Portugal
| | - Oscar Dias
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS- associated laboratory, Braga, Guimarães, Portugal
| | - Pedro Geada
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS- associated laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
8
|
Vardanega R, Lüdtke FL, Loureiro L, Toledo Hijo AAC, Martins JT, Pinheiro AC, Vicente AA. Enhancing cannabidiol bioaccessibility using ionic liquid as emulsifier to produce nanosystems: Characterization of structures, cytotoxicity assessment, and in vitro digestion. Food Res Int 2024; 188:114498. [PMID: 38823878 DOI: 10.1016/j.foodres.2024.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The emulsifying potential of a biocompatible ionic liquid (IL) to produce lipid-based nanosystems developed to enhance the bioaccessibility of cannabidiol (CBD) was investigated. The IL (cholinium oleate) was evaluated at concentrations of 1 % and 2 % to produce nanoemulsions (NE-IL) and nanostructured lipid carriers (NLC-IL) loaded with CBD. The IL concentration of 1 % demonstrated to be sufficient to produce both NE-IL and NLC-IL with excellent stability properties, entrapment efficiency superior to 99 %, and CBD retention rate of 100 % during the storage period evaluated (i.e. 28 days at 25 °C). The in vitro digestion evaluation demonstrated that the NLC-IL provided a higher stability to the CBD, while the NE-IL improved the CBD bioaccessibility, which was mainly related to the composition of the lipid matrices used to obtain each nanosystem. Finally, it was observed that the CBD cytotoxicity was reduced when the compound was entrapped into both nanosystems.
Collapse
Affiliation(s)
- Renata Vardanega
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal.
| | - Fernanda L Lüdtke
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| | - Luís Loureiro
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| | - Ariel A C Toledo Hijo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal; School of Food Engineering, University of Campinas, R. Monteiro Lobato, 80, 13083-862 Campinas, Brazil
| | - Joana T Martins
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| | - Ana C Pinheiro
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
9
|
Vardanega R, Lüdtke FL, Loureiro L, Gonçalves RFS, Pinheiro AC, Vicente AA. Development and characterization of nanostructured lipid carriers for cannabidiol delivery. Food Chem 2024; 441:138295. [PMID: 38183719 DOI: 10.1016/j.foodchem.2023.138295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
This study evaluated the physicochemical characteristics of nanostructured lipid carriers (NLCs) as a potential vehicle for cannabidiol (CBD), a lipophilic molecule with great potential to promote health benefits. NLCs were produced using hemp seed oil and fully-hydrogenated soybean oil at different proportions. The emulsifiers evaluated were soybean lecithin (SL), Tween 80 (T80) and a mixture of SL:T80 (50:50). CBD was tested in the form of CBD-rich extract or isolate CBD, to verify if it affects the NLCs characteristics. Based on particle size and polydispersity, SL was considered the most suitable emulsifier to produce the NLCs. All lipid proportions evaluated had no remarkable effect on the physicochemical characteristics of NLCs, resulting in CBD-loaded NLCs with particle size below 250 nm, high CBD entrapment efficiency and CBD retention rate of 100% for 30 days, demonstrating that NLCs are a suitable vehicle for both CBD-rich extract or isolate CBD.
Collapse
Affiliation(s)
- Renata Vardanega
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal.
| | - Fernanda L Lüdtke
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| | - Luís Loureiro
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| | - Raquel F S Gonçalves
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Ana C Pinheiro
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
10
|
Vital N, Gramacho AC, Silva M, Cardoso M, Alvito P, Kranendonk M, Silva MJ, Louro H. Challenges of the Application of In Vitro Digestion for Nanomaterials Safety Assessment. Foods 2024; 13:1690. [PMID: 38890918 PMCID: PMC11171843 DOI: 10.3390/foods13111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Considering the increase in the production and use of nanomaterials (NM) in food/feed and food contact materials, novel strategies for efficient and sustainable hazard characterization, especially in the early stages of NM development, have been proposed. Some of these strategies encompass the utilization of in vitro simulated digestion prior to cytotoxic and genotoxic assessment. This entails exposing NM to fluids that replicate the three successive phases of digestion: oral, gastric, and intestinal. Subsequently, the resulting digestion products are added to models of intestinal cells to conduct toxicological assays, analyzing multiple endpoints. Nonetheless, exposure of intestinal cells to the digested products may induce cytotoxicity effects, thereby posing a challenge to this strategy. The aim of this work was to describe the challenges encountered with the in vitro digestion INFOGEST 2.0 protocol when using the digestion product in toxicological studies of NM, and the adjustments implemented to enable its use in subsequent in vitro biological assays with intestinal cell models. The adaptation of the digestion fluids, in particular the reduction of the final bile concentration, resulted in a reduced toxic impact of digestion products.
Collapse
Affiliation(s)
- Nádia Vital
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Ana Catarina Gramacho
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
| | - Mafalda Silva
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Food and Nutrition, 1649-016 Lisbon, Portugal
- REQUIMTE/LAQV, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Cardoso
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Food and Nutrition, 1649-016 Lisbon, Portugal
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Michel Kranendonk
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
11
|
Jacob S, Kather FS, Morsy MA, Boddu SHS, Attimarad M, Shah J, Shinu P, Nair AB. Advances in Nanocarrier Systems for Overcoming Formulation Challenges of Curcumin: Current Insights. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:672. [PMID: 38668166 PMCID: PMC11054677 DOI: 10.3390/nano14080672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Curcumin, an organic phenolic molecule that is extracted from the rhizomes of Curcuma longa Linn, has undergone extensive evaluation for its diverse biological activities in both animals and humans. Despite its favorable characteristics, curcumin encounters various formulation challenges and stability issues that can be effectively addressed through the application of nanotechnology. Nano-based techniques specifically focused on enhancing solubility, bioavailability, and therapeutic efficacy while mitigating toxicity, have been explored for curcumin. This review systematically presents information on the improvement of curcumin's beneficial properties when incorporated, either individually or in conjunction with other drugs, into diverse nanosystems such as liposomes, nanoemulsions, polymeric micelles, dendrimers, polymeric nanoparticles, solid-lipid nanoparticles, and nanostructured lipid carriers. Additionally, the review examines ongoing clinical trials and recently granted patents, offering a thorough overview of the dynamic landscape in curcumin delivery. Researchers are currently exploring nanocarriers with crucial features such as surface modification, substantial loading capacity, biodegradability, compatibility, and autonomous targeting specificity and selectivity. Nevertheless, the utilization of nanocarriers for curcumin delivery is still in its initial phases, with regulatory approval pending and persistent safety concerns surrounding their use.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| |
Collapse
|
12
|
Gonçalves RFS, Fernandes JM, Martins JT, Vieira JM, Abreu CS, Gomes JR, Vicente AA, Pinheiro AC. Incorporation of curcumin-loaded solid lipid nanoparticles into yogurt: Tribo-rheological properties and dynamic in vitro digestion. Food Res Int 2024; 181:114112. [PMID: 38448111 DOI: 10.1016/j.foodres.2024.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
The incorporation of nanostructures loaded with bioactive compounds into food matrices is a promising approach to develop new functional foods with improved nutritional, health profiles and good sensorial properties. The rheological and tribological properties of yogurt enriched with curcumin-loaded solid lipid nanoparticles (SLN) were evaluated. Also, the TCA solubility index, the bioaccessibility of curcumin and cell viability were assessed after dynamic in vitro digestion. The presence of SLN in yogurt did not affect its rheological properties; however, SLN addition increased the lubrication capability of yogurt. After in vitro digestion, yogurt with added SLN (yogurt_SLN) presented a lower TCA solubility index (22 %) than the plain yogurt (39 %). The bioaccessibility and stability of curcumin were statistically similar for yogurt_SLN (30 % and 42 %, respectively) and SLN alone (20 % and 39 %, respectively). Regarding cell viability results, the intestinal digesta filtrates of both controls (i.e., SLN alone and plain yogurt) did not affect significantly the cell viability, while the yogurt_SLN presented a possible cytotoxic effect at the concentrations tested. In general, the incorporation of SLN into yogurt seemed to promote the mouthfeel of the yogurt and did not adversely affect the bioaccessibility of curcumin. However, the interaction of SLN and yogurt matrix seemed to have a cytotoxic effect after in vitro digestion, which should be further investigated. Despite that, SLN has a high potential to be used as nanostructure in a functional food as a strategy to increase the bioactive compounds' bioaccessibility.
Collapse
Affiliation(s)
- Raquel F S Gonçalves
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Jean-Michel Fernandes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Joana T Martins
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge M Vieira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristiano S Abreu
- LABBELS -Associate Laboratory, Braga/Guimarães, Portugal; Physics Dep., Polytechnic of Porto - School of Engineering, Portugal; CMEMS-UMinho - Center for Microelectromechanical Systems, University of Minho, 4800-058 Guimarães, Portugal
| | - José R Gomes
- LABBELS -Associate Laboratory, Braga/Guimarães, Portugal; CMEMS-UMinho - Center for Microelectromechanical Systems, University of Minho, 4800-058 Guimarães, Portugal
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana C Pinheiro
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
13
|
Stahl MA, Lüdtke FL, Grimaldi R, Gigante ML, Ribeiro APB. Characterization and stability of solid lipid nanoparticles produced from different fully hydrogenated oils. Food Res Int 2024; 176:113821. [PMID: 38163721 DOI: 10.1016/j.foodres.2023.113821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The use of lipids from conventional oils and fats to produce solid lipid nanoparticles (SLN) attracting interest from the food industry, since due their varying compositions directly affects crystallization behavior, stability, and particle sizes (PS) of SLN. Thus, this study aimed evaluate the potential of fully hydrogenated oils (hardfats) with different hydrocarbon chain lengths to produce SLN using different emulsifiers. For that, fully hydrogenated palm kern (FHPkO), palm (FHPO), soybean (FHSO), microalgae (FHMO) and crambe (FHCO) oils were used. Span 60 (S60), soybean lecithin (SL), and whey protein isolate (WPI) were used as emulsifiers. The physicochemical characteristics and crystallization properties of SLN were evaluated during 60 days. Results indicates that the crystallization properties were more influenced by the hardfat used. SLN formulated with FHPkO was more unstable than the others, and hardfats FHPO, FHSO, FHMO, and FHCO exhibited the appropriate characteristics for use to produce SLN. Concerning emulsifiers, S60- based SLN showed high instability, despite the hardfat used. SL-based and WPI-based SLN formulations, showed a great stability, with crystallinity properties suitable for food incorporation.
Collapse
Affiliation(s)
- Marcella Aparecida Stahl
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, Brazil.
| | - Fernanda Luisa Lüdtke
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, Brazil; CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Renato Grimaldi
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, Brazil
| | - Mirna Lúcia Gigante
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, Brazil
| | - Ana Paula Badan Ribeiro
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, Brazil
| |
Collapse
|
14
|
Zhu YA, Sun P, Duan C, Cao Y, Kong B, Wang H, Chen Q. Improving stability and bioavailability of curcumin by quaternized chitosan coated nanoemulsion. Food Res Int 2023; 174:113634. [PMID: 37986538 DOI: 10.1016/j.foodres.2023.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
This study aims to enhance the stability and bioavailability of curcumin (Cur) using nanoemulsion coating technology. The nanoemulsion system was developed by encapsulating Cur with quaternized chitosan (QMNE), and the nanoemulsion containing Cur and medium-chain triglyceride (MCT) oil (MNE) was used as control sample. The microstructure of the nanoemulsion was examined using Dynamic light scattering (DLS), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The storage, thermal, ionic strength, and pH stability of QMNE were also evaluated, respectively. The results indicate that QMNE demonstrates superior stability, in vitro gastric fluid stability, bioavailability compared to MNE. QMNE exhibits excellent emulsification activity and stability. In addition, QMNE shows significant protection against oxidation in both emulsion systems after different heat treatments. The antimicrobial activity results reveal that QMNE exhibits greater efficacy than that of MNE. Consequently, this study provides valuable insights into the formulation of a system to encapsulate Cur and the improvement of its stability and bioavailability.
Collapse
Affiliation(s)
- Ying-Ao Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Pengyuan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengyu Duan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
15
|
Xia S, Xu C, Liu F, Chen G. Development of microRNA-based therapeutics for central nervous system diseases. Eur J Pharmacol 2023; 956:175956. [PMID: 37541374 DOI: 10.1016/j.ejphar.2023.175956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
MicroRNA (miRNA)-mediated gene silencing is a method of RNA interference in which a miRNA binds to messenger RNA sequences and regulates target gene expression. MiRNA-based therapeutics have shown promise in treating a variety of central nervous system diseases, as verified by results from diverse preclinical model organisms. Over the last decade, several miRNA-based therapeutics have entered clinical trials for various kinds of diseases, such as tumors, infections, and inherited diseases. However, such clinical trials for central nervous system diseases are scarce, and many central nervous system diseases, including hemorrhagic stroke, ischemic stroke, traumatic brain injury, intractable epilepsy, and Alzheimer's disease, lack effective treatment. Considering its effectiveness for central nervous system diseases in preclinical experiments, microRNA-based intervention may serve as a promising treatment for these kinds of diseases. This paper reviews basic principles and recent progress of miRNA-based therapeutics and summarizes general procedures to develop such therapeutics for treating central nervous system diseases. Then, the current obstacles in drug development are discussed. This review also provides a new perspective on possible solutions to these obstacles in the future.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China; Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Madalena DA, Araújo JF, Ramos ÓL, Vicente AA, Pinheiro AC. Assessing the In Vitro Digestion of Lactoferrin-Curcumin Nanoparticles Using the Realistic Gastric Model. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2237. [PMID: 37570554 PMCID: PMC10421352 DOI: 10.3390/nano13152237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Nanosized delivery systems have been the subject of research and discussion in the scientific community due to their unique properties and functionality. However, studies reporting the behaviour of nanodelivery systems under dynamic in vitro digestion conditions are still very scarce. To address this gap, this study aims to assess the dynamic in vitro gastric digestion of lactoferrin/curcumin nanoparticles in the realistic gastric model (RGM). For this purpose, the INFOGEST standard semi-dynamic digestion protocol was used. The nanosystems were characterized in terms of hydrodynamic size, size distribution, polydispersity index (PdI), and zeta potential using dynamic light scattering (DLS), before and during the digestion process. Confocal laser scanning microscopy (CLSM) was also used to examine particle aggregation. In addition, the release of curcumin was evaluated spectroscopically and the intrinsic fluorescence of lactoferrin was measured throughout the digestion process. The protein hydrolysis was also determined by UV-VIS-SWNIR spectroscopy to estimate, in real-time, the presence of free NH2 groups during gastric digestion. It was possible to observe that lactoferrin/curcumin nanoparticles were destabilized during the dynamic digestion process. It was also possible to conclude that low sample volumes can pose a major challenge in the application of dynamic in vitro digestion models.
Collapse
Affiliation(s)
- Daniel A. Madalena
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - João F. Araújo
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Óscar L. Ramos
- CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, 4202-401 Porto, Portugal
| | - António A. Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ana C. Pinheiro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
17
|
Talarico L, Pepi S, Susino S, Leone G, Bonechi C, Consumi M, Clemente I, Magnani A. Design and Optimization of Solid Lipid Nanoparticles Loaded with Triamcinolone Acetonide. Molecules 2023; 28:5747. [PMID: 37570717 PMCID: PMC10420805 DOI: 10.3390/molecules28155747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Principles of quality by design and design of experiments are acquiring more importance in the discovery and application of new drug carriers, such as solid lipid nanoparticles. In this work, an optimized synthesis of solid lipid nanoparticles loaded with Triamcinolone Acetonide is presented using an approach that involves Stearic Acid as a lipid, soy PC as an ionic surfactant, and Tween 80 as a nonionic surfactant. The constructed circumscribed Central Composite Design considers the lipid and nonionic surfactant quantities and the sonication amplitude in order to optimize particle size and Zeta potential, both measured by means of Dynamic Light Scattering, while the separation of unentrapped drug from the optimized Triamcinolone Acetonide-loaded solid lipid nanoparticles formulation is performed by Size Exclusion Chromatography and, subsequently, the encapsulation efficiency is determined by HPLC-DAD. The proposed optimized formulation-with the goal of maximizing Zeta potential and minimizing particle size-has shown good accordance with predicted values of Zeta potential and dimensions, as well as a high value of encapsulated Triamcinolone Acetonide. Experimental values obtained from the optimized synthesis reports a dimension of 683 ± 5 nm, which differs by 3% from the predicted value, and a Zeta potential of -38.0 ± 7.6 mV (12% difference from the predicted value).
Collapse
Affiliation(s)
- Luigi Talarico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Simone Pepi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Surama Susino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Ilaria Clemente
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| |
Collapse
|
18
|
Viegas C, Patrício AB, Prata JM, Nadhman A, Chintamaneni PK, Fonte P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics 2023; 15:1593. [PMID: 37376042 PMCID: PMC10305282 DOI: 10.3390/pharmaceutics15061593] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Solid-lipid nanoparticles and nanostructured lipid carriers are delivery systems for the delivery of drugs and other bioactives used in diagnosis, therapy, and treatment procedures. These nanocarriers may enhance the solubility and permeability of drugs, increase their bioavailability, and extend the residence time in the body, combining low toxicity with a targeted delivery. Nanostructured lipid carriers are the second generation of lipid nanoparticles differing from solid lipid nanoparticles in their composition matrix. The use of a liquid lipid together with a solid lipid in nanostructured lipid carrier allows it to load a higher amount of drug, enhance drug release properties, and increase its stability. Therefore, a direct comparison between solid lipid nanoparticles and nanostructured lipid carriers is needed. This review aims to describe solid lipid nanoparticles and nanostructured lipid carriers as drug delivery systems, comparing both, while systematically elucidating their production methodologies, physicochemical characterization, and in vitro and in vivo performance. In addition, the toxicity concerns of these systems are focused on.
Collapse
Affiliation(s)
- Cláudia Viegas
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana B. Patrício
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João M. Prata
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University, Hayatabad, Peshawar 25000, Pakistan
| | - Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM-Hyderabad Campus, Hyderabad 502329, Telangana, India
| | - Pedro Fonte
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
19
|
Wang X, Shi G, Fan S, Ma J, Yan Y, Wang M, Tang X, Lv P, Zhang Y. Targeted delivery of food functional ingredients in precise nutrition: design strategy and application of nutritional intervention. Crit Rev Food Sci Nutr 2023; 64:7854-7877. [PMID: 36999956 DOI: 10.1080/10408398.2023.2193275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
With the high incidence of chronic diseases, precise nutrition is a safe and efficient nutritional intervention method to improve human health. Food functional ingredients are an important material base for precision nutrition, which have been researched for their application in preventing diseases and improving health. However, their poor solubility, stability, and bad absorption largely limit their effect on nutritional intervention. The establishment of a stable targeted delivery system is helpful to enhance their bioavailability, realize the controlled release of functional ingredients at the targeted action sites in vivo, and provide nutritional intervention approaches and methods for precise nutrition. In this review, we summarized recent studies about the types of targeted delivery systems for the delivery of functional ingredients and their digestion fate in the gastrointestinal tract, including emulsion-based delivery systems and polymer-based delivery systems. The building materials, structure, size and charge of the particles in these delivery systems were manipulated to fabricate targeted carriers. Finally, the targeted delivery systems for food functional ingredients have gained some achievements in nutritional intervention for inflammatory bowel disease (IBD), liver disease, obesity, and cancer. These findings will help in designing fine targeted delivery systems, and achieving precise nutritional intervention for food functional ingredients on human health.
Collapse
Affiliation(s)
- Xu Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Guohua Shi
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Sufang Fan
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Junmei Ma
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Yonghuan Yan
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
20
|
Diethylene glycol monoethyl ether-mediated nanostructured lipid carriers enhance trans-ferulic acid delivery by Caco-2 cells superior to solid lipid nanoparticles. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:133-143. [PMID: 36692464 DOI: 10.2478/acph-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 01/25/2023]
Abstract
This work aimed to compare the performance of trans-ferulic acid-encapsulated nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) for transport by Caco-2 cells. The NLC particles (diameter: 102.6 nm) composed of Compritol® 888 ATO, ethyl oleate, Cremophor® EL, and Transcutol® P were larger than the SLNs (diameter: 86.0 nm) formed without liquid lipid (ethyl oleate), and the former had a higher encapsulation efficiency for trans-ferulic acid (p < 0.05). In vitro cultured Caco-2 cell transport was used to simulate intestinal absorption, and the cellular uptake of NLCs was higher than that of SLNs (p < 0.05). Compared to SLNs, NLCs greatly enhanced trans-ferulic acid permeation through the MillicellTM membrane (p < 0.05). This work confirms that NLCs have better properties than SLNs in terms of increasing drug transport by Caco-2 cells. This helps to comprehend the approach by which NLC-mediated oral bioavailability of trans-ferulic acid is better than that mediated by SLNs, as shown in our previous report.
Collapse
|
21
|
Liu H, Huang R, Zhao X, Yang S, He F, Qin W, Huang J, Yu G, Feng Y, Li J, Liao C. Ca2+/pH-triggered gelation of Pickering emulsion in vitro digestion: Visualization and sustained-release performance. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
22
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Enhancing the Gastrointestinal Stability of Curcumin by Using Sodium Alginate-Based Nanoemulsions Containing Natural Emulsifiers. Int J Mol Sci 2022; 24:ijms24010498. [PMID: 36613938 PMCID: PMC9820608 DOI: 10.3390/ijms24010498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Curcumin presents interesting biological activities but low chemical stability, so it has been incorporated into different emulsion-based systems in order to increase its bioaccessibility. Many strategies are being investigated to increase the stability of these systems. Among them, the use of polysaccharides has been seen to highly improve the emulsion stability but also to modulate their digestibility and the release of the encapsulated compounds. However, the effect of these polysaccharides on nanoemulsions depends on the presence of other components. Then, this work aimed to study the effect of alginate addition at different concentrations (0-1.5%) on the gastrointestinal fate and stability of curcumin-loaded nanoemulsions formulated using soybean lecithin or whey protein as emulsifiers. Results showed that, in the absence of polysaccharides, whey protein was more effective than lecithin in preventing curcumin degradation during digestion and its use also provided greater lipid digestibility and higher curcumin bioaccessibility. The addition of alginate, especially at ≥1%, greatly prevented curcumin degradation during digestion up to 23% and improved the stability of nanoemulsions over time. However, it reduced lipid digestibility and curcumin bioaccessibility. Our results provide relevant information on the use of alginate on different emulsifier-based nanoemulsions to act as carriers of curcumin.
Collapse
|
23
|
Gonçalves RFS, Rodrigues R, Vicente AA, Pinheiro AC. Incorporation of Solid Lipid Nanoparticles into Stirred Yogurt: Effects in Physicochemical and Rheological Properties during Shelf-Life. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:93. [PMID: 36616003 PMCID: PMC9823338 DOI: 10.3390/nano13010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The aim of this work was to develop a yogurt fortified with curcumin. Curcumin is a lipophilic compound with a wide range of biological activities; however, it presents low water solubility and low bioavailability, and therefore it was the first to be encapsulated in solid lipid nanoparticles (SLNs). Then the influence of the incorporation of curcumin-loaded SLNs on the physicochemical (i.e., pH, titratable acidity, syneresis and color) and rheological properties of yogurt during its shelf-life (30 days at 4 °C) was evaluated. SLN incorporation into yogurt did not affect pH and titratable acidity compared to the control (i.e., plain yogurt) during shelf-life, even though the yogurt with SLNs presented lower values of pH (4.25 and 4.34) and acidity (0.74% lactic acid and 0.84% lactic acid) than the control in the end, respectively. Furthermore, the yogurt with SLNs presented slightly higher values of syneresis than the control during the shelf-life; however, it did not present visual differences in whey separation. Relative to the color, the incorporation of SLNs into the yogurt imparted a strong yellow color to the sample but did not affect color stability during shelf-life. Both samples showed flow curves with yield stress and shear-thinning behavior during shelf-life, and, regarding the viscoelastic behavior, both showed a typical weak viscoelastic gel with an elastic structure. Overall, curcumin-loaded SLNs incorporation did not affect the physicochemical and rheological stability of yogurt during shelf-life, showing a promising application for the development of new functional foods.
Collapse
Affiliation(s)
- Raquel F. S. Gonçalves
- CEB—Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Rodrigues
- CEB—Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - António A. Vicente
- CEB—Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana C. Pinheiro
- CEB—Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
24
|
Gonçalves RF, Madalena DA, Fernandes JM, Marques M, Vicente AA, Pinheiro AC. Application of nanostructured delivery systems in food: From incorporation to detection and characterization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Luisa Lüdtke F, Aparecida Stahl M, Grimaldi R, Bruno Soares Forte M, Lúcia Gigante M, Paula Badan Ribeiro A. Optimization of high pressure homogenization conditions to produce nanostructured lipid carriers using natural and synthetic emulsifiers. Food Res Int 2022; 160:111746. [DOI: 10.1016/j.foodres.2022.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/04/2022]
|
26
|
Incorporation of curcumin-loaded lipid-based nano delivery systems into food: release behavior in food simulants and a case study of application in a beverage. Food Chem 2022; 405:134740. [DOI: 10.1016/j.foodchem.2022.134740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/20/2022]
|
27
|
Hu Y, Lin Q, Zhao H, Li X, Sang S, McClements DJ, Long J, Jin Z, Wang J, Qiu C. Bioaccessibility and bioavailability of phytochemicals: Influencing factors, improvements, and evaluations. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Lüdtke FL, Stahl MA, Grimaldi R, Cardoso LP, Gigante ML, Ribeiro APB. High oleic sunflower oil and fully hydrogenated soybean oil nanostructured lipid carriers: development and characterization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Shan M, Meng F, Tang C, Zhou L, Lu Z, Lu Y. Surfactin effectively improves bioavailability of curcumin by formation of nano-capsulation. Colloids Surf B Biointerfaces 2022; 215:112521. [PMID: 35490540 DOI: 10.1016/j.colsurfb.2022.112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022]
Abstract
To improve the bioavailability of curcumin, surfactin was used to prepare curcumin-loaded nanoemulsions (Cur-NEs). Moreover, the physicochemical properties, digestive characteristics, as well as inhibition activity to Caco-2 cells of Cur-NEs were measured. Furthermore, the morphological analysis revealed that Cur-NEs with 320 mg/L surfactin appeared spherical nanoparticale (23.23 ± 2.86 nm) and uniform distribution. The encapsulation efficiency of Cur-NEs with 320 mg/L surfactin was 97.25 ± 1.28%. Simulated gastrointestinal digestion results indicated that surfactin elevated the sustained-release characteristics and higher bioaccessibility (40.92 ± 2.84%) of curcumin. Besides, Cur-NEs with 320 mg/L surfactin exhibited excellent stability in different temperature, pH and light irradiation. In addition, the inhibition of Cur-NEs with 320 mg/L surfactin to Caco-2 cells was 71.29%. Biochemical analysis showed that Cur-NEs enhanced the activity of lactate dehydrogenase, superoxide dismutase, catalase and glutathione peroxidase, as well as the reactive oxygen species content. RT-PCR and ELISA results also revealed that Cur-NEs inhibited Caco-2 cells through the activated mitochondria-mediated pathway. This study provided a strategy to encapsulate curcumin in nanoparticles with surfactin for improving bioavailability.
Collapse
Affiliation(s)
- Mengyuan Shan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Chao Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Yingjian Lu
- College of Food Science and Technology, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu Province, China.
| |
Collapse
|
30
|
Sani MA, Tavassoli M, Azizi-Lalabadi M, Mohammadi K, McClements DJ. Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: Design, formulation, and application. Adv Colloid Interface Sci 2022; 305:102709. [PMID: 35640316 DOI: 10.1016/j.cis.2022.102709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
Abstract
Consumers are becoming increasingly aware of the impact of their dietary choices on the environment, animal welfare, and health, which is causing many of them to adopt more plant-based diets. For this reason, many sectors of the food industry are reformulating their products to contain more plant-based ingredients. This article describes recent research on the formation and application of nano-enabled colloidal delivery systems formulated from plant-based ingredients, such as polysaccharides, proteins, lipids, and phospholipids. These delivery systems include nanoemulsions, solid lipid nanoparticles, nanoliposomes, nanophytosomes, and biopolymer nanoparticles. The composition, size, structure, and charge of the particles in these delivery systems can be manipulated to create novel or improved functionalities, such as improved robustness, higher optical clarity, controlled release, and increased bioavailability. There have been major advances in the design, assembly, and application of plant-based edible nanoparticles within the food industry over the past decade or so. As a result, there are now a wide range of different options available for creating delivery systems for specific applications. In the future, it will be important to establish whether these formulations can be produced using economically viable methods and provide the desired functionality in real-life applications.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student's Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
31
|
Development of Tea Seed Oil Nanostructured Lipid Carriers and In Vitro Studies on Their Applications in Inducing Human Hair Growth. Pharmaceutics 2022; 14:pharmaceutics14050984. [PMID: 35631570 PMCID: PMC9143331 DOI: 10.3390/pharmaceutics14050984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Synthetic drugs used to treat hair loss cause many side-effects. Natural tea seed oil possesses many activities that can suppress hair loss. However, it is oily and sticky in direct application. In this study, tea seed oil loaded nanostructured lipid carriers (NLC) using Tween 80 (NLC-T), Varisoft 442 (NLC-V), and a combination of both surfactants (NLC-C) was developed. The obtained nanoformulations showed spherical particles in the size range 130–430 nm. Particle size and size distribution of NLC-C and NLC-T after storage at 4, 25, and 40 °C for 90 days were unchanged, indicating their excellent stability. The pH of NLC-T, NLC-V, and NLC-C throughout 90 days remained at 3, 4, and 3.7, respectively. NLC-C showed significantly greater nontoxicity and growth-stimulating effect on human follicle dermal papilla (HFDP) cells than the intact oil. NLC-T and NLC-V could not stimulate cell growth and showed high cytotoxicity. NLC-C showed melting point at 52 ± 0.02 °C and its entrapment efficiency was 96.26 ± 2.26%. The prepared hair serum containing NLC-C showed better spreading throughout the formulation than that containing the intact oil. Using 5% NLC-C showed a 78.8% reduction in firmness of the hair serum while enhancing diffusion efficiency by reducing shear forces up to 81.4%. In conclusion, the developed NLC-C of tea seed oil is an effective alternative in stimulating hair growth. Hair serum containing NLC-C obviously reduces sticky, oily, and greasy feeling after use.
Collapse
|
32
|
Madalena D, Fernandes J, Avelar Z, Gonçalves R, Ramos ÓL, Vicente AA, Pinheiro AC. Emerging challenges in assessing bio-based nanosystems’ behaviour under in vitro digestion focused on food applications – A critical view and future perspectives. Food Res Int 2022; 157:111417. [DOI: 10.1016/j.foodres.2022.111417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 01/23/2023]
|
33
|
Zhang T, Jin X, Zhang N, Jiao X, Ma Y, Liu R, Liu B, Li Z. Targeted drug delivery vehicles mediated by nanocarriers and aptamers for posterior eye disease therapeutics: barriers, recent advances and potential opportunities. NANOTECHNOLOGY 2022; 33:162001. [PMID: 34965522 DOI: 10.1088/1361-6528/ac46d5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Nanomedicine and aptamer have excellent potential in giving play to passive and active targeting respectively, which are considered to be effective strategies in the retro-ocular drug delivery system. The presence of closely adjoined tissue structures in the eye makes it difficult to administer the drug in the posterior segment of the eye. The application of nanomedicine could represent a new avenue for the treatment, since it could improve penetration, achieve targeted release, and improve bioavailability. Additionally, a novel type of targeted molecule aptamer with identical objective was proposed. As an emerging molecule, aptamer shows the advantages of penetration, non-toxicity, and high biocompatibility, which make it suitable for ocular drug administration. The purpose of this paper is to summarize the recent studies on the effectiveness of nanoparticles as a drug delivery to the posterior segment of the eye. This paper also creatively looks forward to the possibility of the combined application of nanocarriers and aptamers as a new method of targeted drug delivery system in the field of post-ophthalmic therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, 1 Huizhihuan Road, Dongli District, Tianjin 300309, People's Republic of China
| | - Nan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Xinyi Jiao
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Yuanyuan Ma
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Boshi Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, People's Republic of China
| |
Collapse
|
34
|
Verma K, Tarafdar A, Mishra V, Dilbaghi N, Kondepudi KK, Badgujar PC. Nanoencapsulated curcumin emulsion utilizing milk cream as a potential vehicle by microfluidization: Bioaccessibility, cytotoxicity and physico-functional properties. Food Res Int 2021; 148:110611. [PMID: 34507755 DOI: 10.1016/j.foodres.2021.110611] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
Curcumin loaded milk cream emulsion was microfluidized at different pressures (50-200 MPa) and passes (1-4) using a full-factorial experimental design. Ultrasonicated and microfluidized emulsion was evaluated for particle size, morphological characteristics, antioxidant activity, rheological properties, bioaccessibility and cytotoxicity. Significant reduction was observed in the average particle size (358.2 nm) after microfluidization at 100 MPa/2nd pass. Transmission electron micrographs of the control (homogenized) and microfluidized (100 MPa/2nd pass) samples showed uniform distribution of fat globules in the microfluidized sample with partially dissolved curcumin particles (50-150 nm). Encapsulation efficiency of microfluidized emulsion was found to be significantly higher (97.88%) after processing as compared to control (91.21%). Two-fold (100%) increase in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and 25% increase in ferric-reducing antioxidant power (FRAP) was observed for microfluidized emulsions over control. Infrared spectrums of the emulsion exhibited shift in high intensity peaks indicating bond cleavage after microfluidization. After characterization, emulsions were subjected to in vitro digestion (oral, gastric and intestinal phase) to evaluate its bioaccessibility which was found to be remarkably increased by 30% after microfluidization. For assessing processing induced safety of the formulation, in vitro cytotoxicity of the microfluidized nanocurcumin emulsion was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on HepG2 cells, wherein high % of cell viability (>93%) was seen even at a dose as high as 900 µg/mL revealing no toxic effect of the processing technique (microfluidization). This study highlights the efficacy of microfluidization as a technique and that of milk cream as an inexpensive, yet potential vehicle for generating stable and bio-accessible nano-curcumin emulsion.
Collapse
Affiliation(s)
- Kiran Verma
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana 131 028, India
| | - Ayon Tarafdar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana 131 028, India; Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana 131 028, India
| | - Neeraj Dilbaghi
- Department of Nano and Bio Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125 001, India
| | - Kanthi Kiran Kondepudi
- Food & Nutritional Biotechnology Division, Healthy Gut Research Group, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana 131 028, India.
| |
Collapse
|
35
|
Subramanian P. Lipid-Based Nanocarrier System for the Effective Delivery of Nutraceuticals. Molecules 2021; 26:5510. [PMID: 34576981 PMCID: PMC8468612 DOI: 10.3390/molecules26185510] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Nutraceuticals possess several health benefits and functions; however, most nutraceuticals are prone to degradation in the gastrointestinal environment and have poor bioavailability. Application of a novel carrier system is of increasing importance to overcome obstacles and provide efficient applicability. Lipid-based nanocarriers provide a large surface-to-mass ratio, enhanced intestinal absorption by solubilization in the intestinal milieu, intestinal lymphatic transport, and altering enterocyte-based transport. A critical overview of the current limitation, preparation, and application of lipid-based nanocarriers (liposomes and niosomes) and lipid nanoparticles (SLNs and NLCs) is discussed. Physical and gastrointestinal stability and bioavailability of nanoencapsulated nutraceuticals are considered as well.
Collapse
|
36
|
Donini M, Gaglio SC, Laudanna C, Perduca M, Dusi S. Oxyresveratrol-Loaded PLGA Nanoparticles Inhibit Oxygen Free Radical Production by Human Monocytes: Role in Nanoparticle Biocompatibility. Molecules 2021; 26:molecules26144351. [PMID: 34299623 PMCID: PMC8305861 DOI: 10.3390/molecules26144351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Oxyresveratrol, a polyphenol extracted from the plant Artocarpus lakoocha Roxb, has been reported to be an antioxidant and an oxygen-free radical scavenger. We investigated whether oxyresveratrol affects the generation of superoxide anion (O2−) by human monocytes, which are powerful reactive oxygen species (ROS) producers. We found that oxyresveratrol inhibited the O2− production induced upon stimulation of monocytes with β-glucan, a well known fungal immune cell activator. We then investigated whether the inclusion of oxyresveratrol into nanoparticles could modulate its effects on O2− release. We synthesized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and we assessed their effects on monocytes. We found that empty PLGA nanoparticles induced O2− production by resting monocytes and enhanced the formation of this radical in β-glucan-stimulated monocytes. Interestingly, the insertion of oxyresveratrol into PLGA nanoparticles significantly inhibited the O2− production elicited by unloaded nanoparticles in resting monocytes as well as the synergistic effect of nanoparticles and β-glucan. Our results indicate that oxyresveratrol is able to inhibit ROS production by activated monocytes, and its inclusion into PLGA nanoparticles mitigates the oxidative effects due to the interaction between these nanoparticles and resting monocytes. Moreover, oxyresveratrol can contrast the synergistic effects of nanoparticles with fungal agents that could be present in the patient tissues. Therefore, oxyresveratrol is a natural compound able to make PLGA nanoparticles more biocompatible.
Collapse
Affiliation(s)
- Marta Donini
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (M.D.); (C.L.); (S.D.)
| | | | - Carlo Laudanna
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (M.D.); (C.L.); (S.D.)
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
- Correspondence: ; Tel.: +39-045-802-7984
| | - Stefano Dusi
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (M.D.); (C.L.); (S.D.)
| |
Collapse
|