1
|
Zhang W, Chen L, Bian Q, Wang Z, Wang X, Zhong J. Structures and compositions of the oil/wall interfaces and wall layers affected the properties of spray-dried fish oil powders. Food Res Int 2025; 207:116075. [PMID: 40086961 DOI: 10.1016/j.foodres.2025.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/23/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Herein, 12 types of fish oil emulsions were used to prepare 12 types of spray-dried fish oil powders with three gelatins (positive fish gelatin, positive porcine skin gelatin, and negative bovine skin gelatin), two negative pectins (high and low methoxy pectin), and negative sodium starch octenyl succinate (SSOS). The powders consisted of microscale capsules with bi- or monolayer oil/wall interfaces, and monolayer wall layers. SSOS significantly decreased the bulk and tapped densities of the powders. All powders had low water activities (0.14-0.26). Gelatin/pectin and gelatin/pectin/SSOS powders had encapsulation efficiencies of 45.1 %-75.9 % and 70.1 %-93.0 %, respectively. The oxidative stability depended on the compositions of the powder wall layers. FG+/LMP/SSOS wall layer induced the lowest PV peak value (325 ± 15 mmol/kg oil). BSG-/HMP/SSOS wall layer induced the highest PV peak value (1273 ± 49 mmol/kg oil). The free fatty acid release percentages in the in vitro digestion system depended on the structures and compositions of oil/wall interfaces. FG+@LMP/SSOS interface induced the lowest FFA release percentage (33.9 % ± 1.7 %) and BSG-/HMP interface induced the highest FFA release (79.3 % ± 8.1 %). The results suggested useful information on the effect of oil/wall interfaces and wall layers on the preparation and properties of fish oil powders.
Collapse
Affiliation(s)
- Wenjie Zhang
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Medical Food Laboratory, Shanghai Institute for Pediatric Research, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lijia Chen
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Medical Food Laboratory, Shanghai Institute for Pediatric Research, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiqi Bian
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Medical Food Laboratory, Shanghai Institute for Pediatric Research, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhengquan Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Medical Food Laboratory, Shanghai Institute for Pediatric Research, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
2
|
Semenoglou I, Katsouli M, Giannakourou M, Taoukis P. Effect of High-Pressure Homogenization and Wall Material Composition on the Encapsulation of Polyunsaturated Fatty Acids from Fish Processing. Molecules 2025; 30:1434. [PMID: 40286064 PMCID: PMC11990714 DOI: 10.3390/molecules30071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
Fish oil, a rich source of omega-3 polyunsaturated fatty acids (PUFA), is a vital nutritional component, but considering its susceptibility to oxidation, it could benefit from an effective encapsulation system. This study aims to optimize high-pressure homogenization (HPH) parameters (pressure, number of passes) and wall material composition to maximize the encapsulation efficiency (EE) of fish oil, using different concentrations of maltodextrin with Arabic gum or sodium alginate. Key metrics such as emulsion droplet size, encapsulation efficiency, color, and oxidation in the final freeze-dried product were evaluated. Optimal values were achieved at 60 MPa, resulting in the lowest mean droplet diameter (369.4 ± 3.8 nm) and narrow distribution (0.197 ± 0.011) of the fish oil micelles prepared with a mixture of Tween80 and sodium caseinate as an emulsifier, without significant oxidation after four cycles of homogenization, while 80 MPa led to the highest EE (up to 95.6%), but increased oxidation. The combination of 10% w/w Arabic gum or 1% w/w sodium alginate with 20% w/w maltodextrin achieved the highest EE (79.1-82.9%) and whiteness index (82.5-83.0), indicating neutral-colored well-encapsulated fish oil without oxidation, which is desirable for product stability. Selecting optimal HPH conditions and wall material is crucial for the encapsulation efficiency and oxidation stability of omega-3 PUFA delivered in dehydrated forms.
Collapse
Affiliation(s)
| | | | | | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece; (I.S.); (M.K.); (M.G.)
| |
Collapse
|
3
|
Yang M, Li L, Zhu X, Liang L, Chen J, Cao W, Liu W, Duan X, Ren G, Liu Z. Microencapsulation of fish oil by spray drying, spray freeze-drying, freeze-drying, and microwave freeze-drying: Microcapsule characterization and storage stability. J Food Sci 2024; 89:3276-3289. [PMID: 38700316 DOI: 10.1111/1750-3841.17098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/15/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
The objective of this paper was to evaluate the effect of spray drying (SD), spray freeze-drying (SFD), freeze-drying (FD), and microwave freeze-drying (MFD) on the characteristics of fish oil (FO) microcapsules. The physicochemical properties, morphology, fatty acid composition, and stability of the microcapsules were analyzed. The encapsulation efficiencies of microcapsules dried by SD, SFD, FD, and MFD were 86.98%, 77.79%, 63.29%, and 57.89%, respectively. SD microcapsules exhibited superior properties in terms of effective loading capacity, color, and flowability. Conversely, SFD microcapsules demonstrated improved solubility. Microencapsulation positively affected the thermal stability of FO, but the content of unsaturated fatty acids decreased. The findings from the storage experiment indicated that the oxidative stability of SD fish oil microcapsules was marginally lower compared to microcapsules produced through three alternative drying techniques, all of which were based on the FD concept. The comparison of various drying methods and their effects on the quality of FO microcapsules offers valuable insights that can serve as a foundation for the industrial production of high-quality microcapsules.
Collapse
Affiliation(s)
- Mengmeng Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Linlin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Agricultural Product Drying Equipment Engineering Technology Research Center, Henan University of Science and Technology, Luoyang, China
| | - Xiaomai Zhu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Luodan Liang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Agricultural Product Drying Equipment Engineering Technology Research Center, Henan University of Science and Technology, Luoyang, China
| | - Weiwei Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Agricultural Product Drying Equipment Engineering Technology Research Center, Henan University of Science and Technology, Luoyang, China
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Agricultural Product Drying Equipment Engineering Technology Research Center, Henan University of Science and Technology, Luoyang, China
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Agricultural Product Drying Equipment Engineering Technology Research Center, Henan University of Science and Technology, Luoyang, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Agricultural Product Drying Equipment Engineering Technology Research Center, Henan University of Science and Technology, Luoyang, China
| | - Zhenbin Liu
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
4
|
Xu Y, Yan X, Zheng H, Li J, Wu X, Xu J, Zhen Z, Du C. The application of encapsulation technology in the food Industry: Classifications, recent Advances, and perspectives. Food Chem X 2024; 21:101240. [PMID: 38434690 PMCID: PMC10907187 DOI: 10.1016/j.fochx.2024.101240] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
Encapsulation technology has been extensively used to enhance the stability, specificity, and bioavailability of essential food ingredients. Additionally, it plays a vital role in improving product quality and reducing production costs. This study presents a comprehensive classification of encapsulation techniques based on the state of different cores (solid, liquid, and gaseous) and offers a detailed description and analysis of these encapsulation methods. Specifically, it introduces the diverse applications of encapsulation technology in food, encompassing areas such as antioxidant, protein activity, physical stability, controlled release, delivery, antibacterial, and probiotics. The potential impact of encapsulation technology is expected to make encapsulation technology a major process and research hotspot in the food industry. Future research directions include applications of encapsulation for enzymes, microencapsulation of biosensors, and novel technologies such as self-assembly. This study provides a valuable theoretical reference for the in-depth research and wide application of encapsulation technology in the food industry.
Collapse
Affiliation(s)
- Yaguang Xu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xinxin Yan
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibo Zheng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xiaowei Wu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jingjing Xu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Zongyuan Zhen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- The Institute of Functional Agriculture (Food) Science and Technology at Yangtze River Delta (iFAST), Chuzhou 239000, China
- Anhui Provincial Key Laboratory of Functional Agriculture and Functional Food, Chuzhou 233100, China
| | - Chuanlai Du
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Provincial Key Laboratory of Functional Agriculture and Functional Food, Chuzhou 233100, China
| |
Collapse
|
5
|
Koo H, Kim S, Lee J. Comparison of physicochemical properties and oxidative stability of microencapsulated perilla oil powder prepared by freeze-drying and spray-drying. Food Sci Biotechnol 2023; 32:1831-1839. [PMID: 37781056 PMCID: PMC10541381 DOI: 10.1007/s10068-023-01299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 10/03/2023] Open
Abstract
Perilla oil is vulnerable to lipid oxidation owing to its high linolenic acid content. Microencapsulation using freeze- and spray-drying methods was applied to enhance the oxidative stability and change the physicochemical properties of perilla oil. Freeze-dried powder (FDP) possessed 11.77 to 38.48% oil content, whereas spray-dried powder (SDP) had 8.90-27.83% oil content. Encapsulation efficiency ranged from 51.22 to 85.71% by freeze-drying and from 77.38 to 90.74% by spray-drying. The oxidative stability of powders depends on the oil content and production methods. Generally, FDP had higher oxidative stability and water solubility, and lower moisture content and water activity than SDP. The particle size of FDP (154.00-192.00 μm) in volume-weight mean diameter was 2.56-24.49 times larger than that of SDP (7.84-72.03 μm). SDP had a lower volatile content at the initial time of storage than FDP, while more volatiles were observed in SDP as storage time increased. The microencapsulation method should be selected appropriately depending on the target property or usage in food applications.
Collapse
Affiliation(s)
- HeeWon Koo
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 Republic of Korea
| | - SungHwa Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
6
|
Guo L, Fan L, Liu Y, Li J. Strategies for improving loading of emulsion-based functional oil powder. Crit Rev Food Sci Nutr 2023; 64:12780-12799. [PMID: 37724529 DOI: 10.1080/10408398.2023.2257325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Functional oil is type of oil that is beneficial to human health and has nutritional value, however, functional oils are rich in bioactive substances such as polyunsaturated fatty acids which are sensitive to environmental factors and are susceptible to oxidation or decomposition. Construction of emulsion-based oil powder is a promising approach for improving the stability and solubility of functional oils. However, the low effective loading of oil in powder is the main challenge limiting encapsulation technology. This manuscript focuses on reviewing the current research progress of emulsion-based functional oil powder construction and systematically summarizes the processing characteristics of emulsion-based oil powder with high payload and summarizing the strategies to enhance the payload of powder in term of emulsification and drying, respectively. The impact of emulsion formation on oil powder production is discussed from different characteristics of emulsions, including emulsion composition, emulsification methods and emulsion types. In addition, the current status of improving material loading performance by various modifications to the drying technology is discussed, including the addition of drying processing additives, changes in drying parameters and the effect of innovative technological means.
Collapse
Affiliation(s)
- Lingxi Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Díaz-Montes E. Wall Materials for Encapsulating Bioactive Compounds via Spray-Drying: A Review. Polymers (Basel) 2023; 15:2659. [PMID: 37376305 DOI: 10.3390/polym15122659] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Spray-drying is a continuous encapsulation method that effectively preserves, stabilizes, and retards the degradation of bioactive compounds by encapsulating them within a wall material. The resulting capsules exhibit diverse characteristics influenced by factors such as operating conditions (e.g., air temperature and feed rate) and the interactions between the bioactive compounds and the wall material. This review aims to compile recent research (within the past 5 years) on spray-drying for bioactive compound encapsulation, emphasizing the significance of wall materials in spray-drying and their impact on encapsulation yield, efficiency, and capsule morphology.
Collapse
Affiliation(s)
- Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticoman, Ciudad de Mexico 07340, Mexico
| |
Collapse
|
8
|
Sánchez-Osorno DM, López-Jaramillo MC, Caicedo Paz AV, Villa AL, Peresin MS, Martínez-Galán JP. Recent Advances in the Microencapsulation of Essential Oils, Lipids, and Compound Lipids through Spray Drying: A Review. Pharmaceutics 2023; 15:pharmaceutics15051490. [PMID: 37242731 DOI: 10.3390/pharmaceutics15051490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 05/28/2023] Open
Abstract
In recent decades, the microcapsules of lipids, compound lipids, and essential oils, have found numerous potential practical applications in food, textiles, agricultural products, as well as pharmaceuticals. This article discusses the encapsulation of fat-soluble vitamins, essential oils, polyunsaturated fatty acids, and structured lipids. Consequently, the compiled information establishes the criteria to better select encapsulating agents as well as combinations of encapsulating agents best suited to the types of active ingredient to be encapsulated. This review shows a trend towards applications in food and pharmacology as well as the increase in research related to microencapsulation by the spray drying of vitamins A and E, as well as fish oil, thanks to its contribution of omega 3 and omega 6. There is also an increase in articles in which spray drying is combined with other encapsulation techniques, or modifications to the conventional spray drying system.
Collapse
Affiliation(s)
- Diego Mauricio Sánchez-Osorno
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
- Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia
| | - María Camila López-Jaramillo
- Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia
| | - Angie Vanesa Caicedo Paz
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| | - Aída Luz Villa
- Grupo Catálisis Ambiental, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| | - María S Peresin
- Sustainable Bio-Based Materials Lab, Forest Products Development Center, College of Forestry, Wildlife, Auburn University, Auburn, AL 36849, USA
| | - Julián Paul Martínez-Galán
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| |
Collapse
|
9
|
Antioxidant Stability of Moringa Leaves Extract Powders Obtained by Cocrystallization, Vacuum Drying, and Plating. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3038403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cocrystallization, vacuum drying, and plating are three potential applications to preserve the antioxidant activity of moringa leaves. Moringa leaves extract was incorporated with sucrose at the same concentration (7 : 100, solid : solid) for all applications and stored for 30 days. This study aims to examine the effects of each application on the antioxidant stability of moringa leaves extract powders. Morphological properties by SEM showed that cocrystallized powders exhibited porous, agglomerated crystals, vacuum dried powders exhibited agglomerated crystals, and plated powders exhibited layered crystals. Based on XRD and hygroscopicity results, cocrystallization produced powders with the highest crystallinity, i.e., 69.11%, and the lowest hygroscopicity, i.e., 0.26 × 10−4 ± 0.02 × 10−4 g H2O/g solid/minute due to the slow water intake of the crystalline structure. Powders with the strongest initial antioxidant activity were obtained from cocrystallization, i.e., 3647.96 ± 20.29 ppm and followed by vacuum drying, i.e., 4378.51 ± 26.29 ppm. The least antioxidant activity was obtained from plating, i.e., 4733.46 ± 31.91 ppm. During 30 days of storage, powders obtained by cocrystallization maintained the most stable antioxidant activity (91.81–91.12%). The results indicated that the high temperature used in the process was likely to impact crystalline structure through the pore formation, which entrapped bioactive compounds and resulted in strong antioxidant activity. While, vacuum drying resulted in powders with a lower but increased antioxidant activity (84.06%–86.43%). In contrast to the other two applications, plating resulted in a decreased antioxidant activity (83.77–82.25%). This study suggests that application of cocrystallization produced moringa leaves extract powders with the strongest and most stable antioxidant activity during storage. Preserving the antioxidant stability of plant extract has been one of the major drives in the development of food encapsulation technology. Cocrystallization and vacuum drying are two relatively novel, less common techniques offering a simpler and more cost-effective method, but their effect on the antioxidant stability of moringa leaves extract has not yet been studied. This study discloses the effects of cocrystallization, vacuum drying, and plating (alternative extract incorporation method) on the antioxidant stability of moringa leaves extract powders. The results indicated that the three methods produced powders with high crystallinity and stable antioxidant stability during storage. Among the three methods, cocrystallization was the method that resulted in powders with the strongest and most stable antioxidant activity.
Collapse
|
10
|
Sánchez-Osorno DM, Caicedo Paz AV, López-Jaramillo MC, Villa AL, Martínez-Galán JP. Protection of Mono and Polyunsaturated Fatty Acids from Grapeseed Oil by Spray Drying Using Green Biopolymers as Wall Material. Foods 2022; 11:3954. [PMID: 36553695 PMCID: PMC9778292 DOI: 10.3390/foods11243954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
One of the most common ways to protect oils is microencapsulation, which includes the use of encapsulating agents. Due to the environmental problems facing humanity, this study seeks to combine green biopolymers (microcrystalline cellulose and whey protein isolate) that function as encapsulating agents for grapeseed oil. Grapeseed oil that is obtained from agro-industrial waste has shown health benefits, including cardioprotective, anticancer, antimicrobial, and anti-inflammatory properties. These health benefits have been mainly associated with monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids. In this sense, it has been observed that grapeseed oil can be easily modified by environmental factors such as oxygen, high temperatures, and light, showing the instability and easy degradation of grapeseed oil. In this study, grapeseed oil was encapsulated using the spray-drying technique to conserve its lipidic profile. Powder recovery of the grapeseed oil microcapsules ranged from 65% to 70%. The encapsulation efficiency of the microcapsules varied between 80% and 85%. The FTIR analysis showed chemical interactions that demonstrate chemisorption between the grapeseed oil and the encapsulating material, while the SEM micrographs showed a correct encapsulation in a spherical shape. Gas chromatography showed that the lipid profile of grapeseed oil is preserved thanks to microencapsulation. Release tests showed 80% desorption within the first three hours at pH 5.8. Overall, whey protein and microcrystalline cellulose could be used as a wall material to protect grapeseed oil with the potential application of controlled delivery of fatty acids microcapsules.
Collapse
Affiliation(s)
- Diego Mauricio Sánchez-Osorno
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
- Grupo de Investigación e Innovación Ambiental GIIAM, Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia
| | - Angie Vanesa Caicedo Paz
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| | - María Camila López-Jaramillo
- Grupo de Investigación e Innovación Ambiental GIIAM, Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia
| | - Aída Luz Villa
- Grupo Catálisis Ambiental, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| | - Julián Paul Martínez-Galán
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| |
Collapse
|
11
|
Klettenhammer S, Ferrentino G, Imperiale S, Segato J, Morozova K, Scampicchio M. Oxidative stability by isothermal calorimetry of solid lipid microparticles produced by particles from gas saturated solutions technique. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Multifunctional film based on gelatin with titanium dioxide and thymol@β-cyclodextrins for fresh-keeping packaging. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Perez-Palacios T, Ruiz-Carrascal J, Solomando JC, de-la-Haba F, Pajuelo A, Antequera T. Recent Developments in the Microencapsulation of Fish Oil and Natural Extracts: Procedure, Quality Evaluation and Food Enrichment. Foods 2022; 11:3291. [PMID: 37431039 PMCID: PMC9601459 DOI: 10.3390/foods11203291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 09/28/2023] Open
Abstract
Due to the beneficial health effects of omega-3 fatty acids and antioxidants and their limited stability in response to environmental and processing factors, there is an increasing interest in microencapsulating them to improve their stability. However, despite recent developments in the field, no specific review focusing on these topics has been published in the last few years. This work aimed to review the most recent developments in the microencapsulation of fish oil and natural antioxidant compounds. The impact of the wall material and the procedures on the quality of the microencapsulates were preferably evaluated, while their addition to foods has only been studied in a few works. The homogenization technique, the wall-material ratio and the microencapsulation technique were also extensively studied. Microcapsules were mainly analyzed for size, microencapsulation efficiency, morphology and moisture, while in vitro digestion, flowing properties, yield percentage and Fourier transform infrared spectroscopy (FTIR) were used more sparingly. Findings highlighted the importance of optimizing the most influential variables of the microencapsulation procedure. Further studies should focus on extending the range of analytical techniques upon which the optimization of microcapsules is based and on addressing the consequences of the addition of microcapsules to food products.
Collapse
Affiliation(s)
- Trinidad Perez-Palacios
- Meat and Meat Product University Institute (IProCar), University of Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | | | | | | | | | | |
Collapse
|
14
|
The role of the drying method on fish oil entrapment in a fish muscle protein ̶ κ-carrageenan ̶ fish protein hydrolysate wall matrix and the properties of colloidal dispersions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Stangierski J, Baranowska HM, Rezler R, Kawecki K. The Effect of Packaging Methods, Storage Time and the Fortification of Poultry Sausages with Fish Oil and Microencapsulated Fish Oil on Their Rheological and Water-Binding Properties. Molecules 2022; 27:5235. [PMID: 36014468 PMCID: PMC9416377 DOI: 10.3390/molecules27165235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to investigate how liquid fish oil and microencapsulated oil additives influenced the rheological characteristics and the dynamics of water binding in vacuum-packed (VP) and modified-atmosphere-packed (MAP) poultry sausages during 21-day storage. In contrast to the control sample, the sausages enriched with microencapsulated fish oil (MC) were characterised by the greatest ability to accumulate deformation energy. The elastic properties of all sausage variants increased significantly in the subsequent storage periods, whereas the dynamic viscosity of the samples tended to decrease. This phenomenon was confirmed by the gradual reduction of water activity (Aw) in all sausages in the subsequent storage periods. The packaging method influenced the dynamics of water binding in an oil-additive-form-dependent manner. During the storage of the VP and MAP sausages, in samples with the fish oil additive the T1 value tended to increase while the Aw decreased. The T1 value in the MAP MC sample was similar. The FO additive resulted in greater mobility of both proton fractions in the MAP samples than in the VP samples. There were inverse relationships observed in the MC samples. The NMR tests showed that the VP samples with the MC additive were slightly better quality than the other samples.
Collapse
Affiliation(s)
- Jerzy Stangierski
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznań, Poland
| | - Hanna Maria Baranowska
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznań, Poland
| | - Ryszard Rezler
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznań, Poland
| | - Krzysztof Kawecki
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznań, Poland
| |
Collapse
|
16
|
Vargas-Ramella M, Lorenzo JM, Zamuz S, Montes L, Santos López EM, Moreira R, Franco D. Influence of pork backfat replacement by microencapsulated fish oil on physicochemical, rheological, nutritional, and sensory features of pork liver pâtés. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
|
18
|
Rahim MA, Imran M, Khan MK, Ahmad MH, Ahmad RS. Impact of spray drying operating conditions on encapsulation efficiency, oxidative quality, and sensorial evaluation of chia and fish oil blends. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Muhammad Abdul Rahim
- Department of Food Science Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Muhammad Imran
- Department of Food Science Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Muhammad Kamran Khan
- Department of Food Science Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Muhammad Haseeb Ahmad
- Department of Food Science Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Rabia Shabir Ahmad
- Department of Food Science Faculty of Life Sciences Government College University Faisalabad Pakistan
| |
Collapse
|
19
|
Somacal S, Somacal S, Pinto VS, de Deus C, Vendruscolo RG, de Almeida TM, Wager R, Mazutti MA, de Menezes CR. Strategy to increase the lipid stability of the microbial oil produced by Umbelopsis isabellina for food purposes: Use of microencapsulation by external ionic gelation. Food Res Int 2022; 152:110907. [DOI: 10.1016/j.foodres.2021.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/30/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
|
20
|
Oxidative stability of encapsulated sunflower oil: effect of protein-polysaccharide mixtures and long-term storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
YIN M, CHEN M, MATSUOKA R, XI Y, WANG X. Effects of phospholipid type and concentration on the emulsion stability and in vitro digestion behaviors of fish oil-loaded emulsions. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.84622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Min CHEN
- Shanghai Ocean University, China
| | | | - Yinci XI
- Shanghai Ocean University, China
| | | |
Collapse
|
22
|
Fadini AL, Alvim ID, Carazzato CA, Paganotti KBDF, Miguel AMRDO, Rodrigues RAF. Microparticles loaded with fish oil: stability studies, food application and sensory evaluation. J Microencapsul 2021; 38:365-380. [PMID: 34278940 DOI: 10.1080/02652048.2021.1948622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
AIM Evaluate the stability of microparticles loaded with fish oil produced by spray drying, spray chilling and by the combination of these techniques (double-shell) and use the microparticles for food application. METHODS Samples were stored for 180 days at 6 °C and 24 °C (75% RH). Performed investigations included encapsulation efficiency, moisture content, aw, size (laser scattering), colour (L*, a*, b*), polyunsaturated fatty acids (PUFAs) (GC), thermal behaviour (DSC) and crystalline structure (XRD). RESULTS Double-shell microparticles containing 26 wt% core material, 22.74 ± 0.02 µm (D0.5) and 2.05 ± 0.03 span index, 1.262 ± 0.026 wt% moisture content and 0.240 ± 0.001 of aw had PUFAs retention higher than 90 wt% during storage at 6 °C without changes in crystalline structure (β'-type crystals) and melting temperature (54 °C). The sensory evaluation suggested low fish oil release in oral phase digestion. CONCLUSIONS Double-shell microparticles were effective to protect and deliver PUFAs.
Collapse
Affiliation(s)
- Ana Lúcia Fadini
- Cereal Chocotec, Institute of Food Technology, Campinas, Brazil
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | | | | | | | | | - Rodney Alexandre Ferreira Rodrigues
- Phytochemistry Division, CPQBA, University of Campinas, Paulínia, Brazil
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
23
|
Microencapsulation of Curcumin in Crosslinked Jelly Fig Pectin Using Vacuum Spray Drying Technique for Effective Drug Delivery. Polymers (Basel) 2021; 13:polym13162583. [PMID: 34451123 PMCID: PMC8398278 DOI: 10.3390/polym13162583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Microencapsulation of curcumin in jelly fig pectin was performed by the vacuum spray drying (VSD) technique. The VSD was advanced with a low inlet temperature of 80-90 °C and low pressure of 0.01 mPa. By the in situ cross-linking with multivalent calcium ions, jelly fig pectin produced stable curcumin encapsulated microparticles. The physiochemical characteristics of microparticles were thoroughly investigated. The results revealed that 0.75 w/w% of jelly fig pectin and inlet temperature of 90 °C could be feasible for obtaining curcumin microparticles. The VSD technique showed the best encapsulation efficiency and yield and loading efficiency was up to 91.56 ± 0.80%, 70.02 ± 1.96%, and 5.45 ± 0.14%, respectively. The curcumin was readily released into simulated gastrointestinal fluid with 95.34 ± 0.78% cumulative release in 24 h. The antioxidant activity was stable after being stored for six months and stored as a solution for seven days at room temperature before analysis. Hence, the VSD technique could be applicable for the microencapsulation of bioactive compounds such as curcumin to protect and use in the food/pharmaceutical industry.
Collapse
|