1
|
Çubuk S, Kaplan P, Nallbani BG, Yetimoğlu EK, Kahraman MV. A versatile reusable polymer-based sensor for aluminum analysis in various food matrices. Food Chem 2025; 471:142809. [PMID: 39788005 DOI: 10.1016/j.foodchem.2025.142809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Within the scope of this study, a polymer-based optical sensor that can polymerize under UV radiation and produce fluorescence when suitable functional monomers and crosslinkers were prepared for aluminum determination in yogurt, soybean flour, and meat samples. Parameters such as operating range, pH, sensitivity, selectivity, determination limit, and foreign ion effect were thoroughly investigated to validate the developed method and characterize this polymer-based membrane. The designed sensor has wavelengths of 322 nm for fluorescence excitation and 356 nm for emission, respectively. The studies were done at pH 3.0, and the sensor had a reaction time of 20-40 s. Furthermore, the linear range of the study is between 7.41 × 10-9-1.11 × 10-7 mol L-1, and the detection limit of the developed sensor was calculated as 2.09 × 10-9 mol L-1.
Collapse
Affiliation(s)
- Soner Çubuk
- Department of Chemistry, Faculty of Science, Marmara University, 34722 Istanbul, Turkey.
| | - Pelin Kaplan
- Department of Chemistry, Faculty of Science, Marmara University, 34722 Istanbul, Turkey
| | - Belma Gjergjizi Nallbani
- Department of Chemistry, Faculty of Science, Marmara University, 34722 Istanbul, Turkey; UBT - Higher Education Institution, Faculty of Pharmacy, Lagjia Kalabria, 10000 Prishtina, Republic of Kosovo
| | - Ece Kök Yetimoğlu
- Department of Chemistry, Faculty of Science, Marmara University, 34722 Istanbul, Turkey
| | - Memet Vezir Kahraman
- Department of Chemistry, Faculty of Science, Marmara University, 34722 Istanbul, Turkey
| |
Collapse
|
2
|
Sha Y, Jiang M, Luo G, Meng W, Zhai X, Pan H, Li J, Yan Y, Qiao Y, Yang W, Li K. HerbMet: Enhancing metabolomics data analysis for accurate identification of Chinese herbal medicines using deep learning. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:261-272. [PMID: 39165116 DOI: 10.1002/pca.3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/22/2024]
Abstract
INTRODUCTION Chinese herbal medicines have been utilized for thousands of years to prevent and treat diseases. Accurate identification is crucial since their medicinal effects vary between species and varieties. Metabolomics is a promising approach to distinguish herbs. However, current metabolomics data analysis and modeling in Chinese herbal medicines are limited by small sample sizes, high dimensionality, and overfitting. OBJECTIVES This study aims to use metabolomics data to develop HerbMet, a high-performance artificial intelligence system for accurately identifying Chinese herbal medicines, particularly those from different species of the same genus. METHODS We propose HerbMet, an AI-based system for accurately identifying Chinese herbal medicines. HerbMet employs a 1D-ResNet architecture to extract discriminative features from input samples and uses a multilayer perceptron for classification. Additionally, we design the double dropout regularization module to alleviate overfitting and improve model's performance. RESULTS Compared to 10 commonly used machine learning and deep learning methods, HerbMet achieves superior accuracy and robustness, with an accuracy of 0.9571 and an F1-score of 0.9542 for distinguishing seven similar Panax ginseng species. After feature selection by 25 different feature ranking techniques in combination with prior knowledge, we obtained 100% accuracy and an F1-score for discriminating P. ginseng species. Furthermore, HerbMet exhibits acceptable inference speed and computational costs compared to existing approaches on both CPU and GPU. CONCLUSIONS HerbMet surpasses existing solutions for identifying Chinese herbal medicines species. It is simple to use in real-world scenarios, eliminating the need for feature ranking and selection in classical machine learning-based methods.
Collapse
Affiliation(s)
- Yuyang Sha
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Meiting Jiang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Gang Luo
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Weiyu Meng
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Xiaobing Zhai
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Hongxin Pan
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Junrong Li
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Yan Yan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yongkang Qiao
- Centre for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Wenzhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kefeng Li
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| |
Collapse
|
3
|
Lo Turco V, Nava V, Potortì AG, Sgrò B, Arrigo MA, Di Bella G. Total Polyphenol Contents and Mineral Profiles in Commercial Wellness Herbal Infusions: Evaluation of the Differences between Two Preparation Methods. Foods 2024; 13:2145. [PMID: 38998650 PMCID: PMC11241193 DOI: 10.3390/foods13132145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The popularity of the consumption of wellness herbal teas is due to the many health-promoting properties they seem to possess. Modern preparation methods using coffee machines are also popular today. Therefore, the purpose of this research was to evaluate differences in infusions obtained by the traditional method using filters and by espresso coffee machines using pods. In this regard, different herbal materials were selected and purchased in two different types of herbal containers, and the corresponding infusions were analyzed for the contents of total polyphenols and mineral elements. Results showed that filter infusions had higher polyphenol and mineral contents than pod infusions, excluding Cd and Pb. For each of the plant materials used, differences due to the method of infusion preparation are highlighted. From a qualitative point of view, both methods of infusion preparation are valid, but the filter infusion method allows a higher transfer of minerals and polyphenols into the infusion, improving quality. The analyzed infusions can be safely consumed with respect to As, Cd, Pb, and Hg contents. Good amounts of polyphenols and Mn can be obtained by drinking a cup of any of the infusions analyzed, especially the mate infusion obtained by the filter technique, with amounts of 429 mg for polyphenols and 69.27% of the RDA for manganese.
Collapse
Affiliation(s)
| | | | - Angela Giorgia Potortì
- Department of Biomedical and Dental Sciences and of Morphological and Functional Images (BIOMORF), University of Messina, 98168 Messina, Italy; (V.L.T.); (V.N.); (B.S.); (M.A.A.); (G.D.B.)
| | | | | | | |
Collapse
|
4
|
Doménech E, Martorell S. Review of the Terminology, Approaches, and Formulations Used in the Guidelines on Quantitative Risk Assessment of Chemical Hazards in Food. Foods 2024; 13:714. [PMID: 38472827 PMCID: PMC10931373 DOI: 10.3390/foods13050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This paper reviews the published terminology, mathematical models, and the possible approaches used to characterise the risk of foodborne chemical hazards, particularly pesticides, metals, mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons (PAHs). The results confirmed the wide variability of the nomenclature used, e.g., 28 different ways of referencing exposure, 13 of cancer risk, or 9 of slope factor. On the other hand, a total of 16 equations were identified to formulate all the risk characterisation parameters of interest. Therefore, the present study proposes a terminology and formulation for some risk characterisation parameters based on the guidelines of international organisations and the literature review. The mathematical model used for non-genotoxic hazards is a ratio in all cases. However, the authors used the probability of cancer or different ratios, such as the margin of exposure (MOE) for genotoxic hazards. For each effect studied per hazard, the non-genotoxic effect was mostly studied in pesticides (79.73%), the genotoxic effect was mostly studied in PAHs (71.15%), and both effects were mainly studied in metals (59.4%). The authors of the works reviewed generally opted for a deterministic approach, although most of those who assessed the risk for mycotoxins or the ratio and risk for acrylamide used the probabilistic approach.
Collapse
Affiliation(s)
- Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sebastián Martorell
- MEDASEGI Research Group, Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
5
|
Mendes MI, Cunha SC, Rebai I, Fernandes JO. Algerian Workers' Exposure to Mycotoxins-A Biomonitoring Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6566. [PMID: 37623152 PMCID: PMC10454754 DOI: 10.3390/ijerph20166566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Mycotoxins, produced by fungi as secondary metabolites, have the potential to induce both short-term and long-term toxic consequences in animals and humans. The present study aimed to determine multi-mycotoxin levels in Algerian workers using urine as the target. A method based on a QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction procedure followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was optimized and validated for the determination of eleven mycotoxins in 96 urine samples. Different sorbents were tested to be used in the dispersive solid-phase extraction (d-SPE) cleanup step of QuEChERS. The final method was fit-for-purpose and showed good analytical performance in terms of specificity, linearity, and precision. All samples contained at least two mycotoxins, and toxin-2 (T-2) was the most common, being found in 92.7% of the samples, followed by zearalenone (ZEN) in 90.6% of positive samples, and ochratoxin A (OTA) in 86.4%. T-2 levels ranged from 0.3 μg/L to 36.3 μg/L, while OTA ranged from 0.3 μg/L to 3.5 μg/L, and ZEN ranged from 7.6 μg/L to 126.8 μg/L. This was the first mycotoxin biomonitoring study carried out in the Algerian population. The findings highlight the need for accurate data for better risk assessment and for the development of better regulation to manage mycotoxin contamination in this country.
Collapse
Affiliation(s)
- Marta I. Mendes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Sara C. Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Iméne Rebai
- Laboratory of Toxicology, Faculty of Medicine, Salah Boubnider University 3, Constantine 5000, Algeria;
| | - José O. Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| |
Collapse
|
6
|
Delgado-Ospina J, Esposito L, Molina-Hernandez JB, Pérez-Álvarez JÁ, Martuscelli M, Chaves-López C. Cocoa Shell Infusion: A Promising Application for Added-Value Beverages Based on Cocoa's Production Coproducts. Foods 2023; 12:2442. [PMID: 37444183 DOI: 10.3390/foods12132442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The cocoa shell (CS) is being incorporated into different food products due to its recognized content of bioactive compounds. In the case of cocoa shell infusions (CSI), the bioactive compounds that manage to be transferred to the infusion have yet to be clearly known, i.e., what is really available to the consumer. In this study, CS was obtained from toasted Colombian Criollo cocoa beans. Three particle sizes (A: >710 µm; B: >425 and <710 µm; C: <425 µm) were evaluated in the CSI, which was traditionally prepared by adding CS to hot water (1%). The decrease in particle size increased the antioxidant capacity (DPPH and ABTS) and the total phenolic compounds. A significant effect (p < 0.05) both of the particle size and of the temperature of tasting was found on some sensory attributes: greater bitterness, acidity, and astringency were due to the greater presence of epicatechin, melanoidins, and proanthocyanidins in the smaller particle sizes. The analysis of the volatile organic compounds showed that the CSI aroma was characterized by the presence of nonanal, 2-nonanone, tetramethylpyrazine, α-limonene, and linalool, which present few variations among the particle sizes. Moreover, analysis of biogenic amines, ochratoxin A, and microbial load showed that CSI is not a risk to public health. Reducing particle size becomes an important step to valorize the functional properties of CS and increase the quality of CSI.
Collapse
Affiliation(s)
- Johannes Delgado-Ospina
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia
| | - Luigi Esposito
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Junior Bernardo Molina-Hernandez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Orihuela, Spain
| | - Maria Martuscelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Clemencia Chaves-López
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Orihuela, Spain
| |
Collapse
|
7
|
Wei M, Dhanasekaran S, Ji Q, Yang Q, Zhang H. Sustainable and efficient method utilizing N-acetyl-L-cysteine for complete and enhanced ochratoxin A clearance by antagonistic yeast. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130975. [PMID: 36860082 DOI: 10.1016/j.jhazmat.2023.130975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
With the increasing global climate change, ochratoxin A (OTA) pollution in food and environment has become a serious and potential risk element threatening food safety and human health. Biodegradation of mycotoxin is an eco-friendly and efficient control strategy. Still, research works are warranted to develop low-cost, efficient, and sustainable approaches to enhance the mycotoxin degradation efficiency of microorganisms. In this study, the activities of N-acetyl-L-cysteine (NAC) against OTA toxicity were evidenced, and its positive effects on the OTA degradation efficiency of antagonistic yeast, Cryptococcus podzolicus Y3 were verified. Co-culturing C. podzolicus Y3 with 10 mM NAC improved 100% and 92.6% OTA degradation rate into ochratoxin α (OTα) at 1 d and 2 d. The excellent promotion role of NAC on OTA degradation was observed even at low temperatures and alkaline conditions. C. podzolicus Y3 treated with OTA or OTA+NAC promoted reduced glutathione (GSH) accumulation. GSS and GSR genes were highly expressed after OTA and OTA+NAC treatment, contributing to GSH accumulation. In the early stages of NAC treatment, yeast viability and cell membrane were reduced, but the antioxidant property of NAC prevented lipid peroxidation. Our finding provides a sustainable and efficient new strategy to improve mycotoxin degradation by antagonistic yeasts, which could be applied to mycotoxin clearance.
Collapse
Affiliation(s)
- Meilin Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Qihao Ji
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr 2023; 10:1118761. [PMID: 37057062 PMCID: PMC10086256 DOI: 10.3389/fnut.2023.1118761] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are recognized as natural sources of antioxidants (e.g., polyphenols, flavonoids, vitamins, and other active compounds) that can be extracted by green solvents like water, ethanol, or their binary mixtures. Plant extracts are becoming more used as food additives in various food systems due to their antioxidant abilities. Their application in food increases the shelf life of products by preventing undesirable changes in nutritional and sensory properties, such as the formation off-flavors in lipid-rich food. This review summarizes the most recent literature about water or ethanol-water plant extracts used as flavors, colorings, and preservatives to fortify food and beverages. This study is performed with particular attention to describing the benefits of plant extract-fortified products such as meat, vegetable oils, biscuits, pastries, some beverages, yogurt, cheese, and other dairy products. Antioxidant-rich plant extracts can positively affect food safety by partially or fully replacing synthetic antioxidants, which have lately been linked to safety and health issues such as toxicological and carcinogenic consequences. On the other hand, the limitations and challenges of using the extract in food should be considered, like stability, level of purity, compatibility with matrix, price, sensory aspects like distinct taste, and others. In the future, continuous development and a tendency to use these natural extracts as food ingredients are expected, as indicated by the number of published works in this area, particularly in the past decade.
Collapse
Affiliation(s)
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| |
Collapse
|
9
|
Mateus ARS, Crisafulli C, Vilhena M, Barros SC, Pena A, Sanches Silva A. The Bright and Dark Sides of Herbal Infusions: Assessment of Antioxidant Capacity and Determination of Tropane Alkaloids. Toxins (Basel) 2023; 15:toxins15040245. [PMID: 37104183 PMCID: PMC10144634 DOI: 10.3390/toxins15040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Herbal infusions are highly popular beverages consumed daily due to their health benefits and antioxidant properties. However, the presence of plant toxins, such as tropane alkaloids, constitutes a recent health concern for herbal infusions. This work presents an optimized and validated methodology based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction procedure followed by Ultra-High Performance Liquid Chromatography combined with Time-of-Flight Mass Spectrometry (UHPLC-ToF-MS) for the determination of tropane alkaloids (atropine, scopolamine, anisodamine, and homatropine) in herbal infusions, in accordance with criteria established by Commission Recommendation EU No. 2015/976. One of the seventeen samples was contaminated with atropine, exceeding the current European regulation regarding tropane alkaloids. In addition, this study evaluated the antioxidant capacity of common herbal infusions available on Portuguese markets, indicating the high antioxidant capacity of yerba mate (Ilex paraguariensis), lemon balm (Melissa officinalis), and peppermint (Mentha x piperita).
Collapse
|
10
|
Ying TT, Wan MY, Wang FX, Zhang Y, Tang YZ, Tan YH, Liao J, Wang LJ. High-T c 1D Phase-Transition Semiconductor Photoluminescent Material with Broadband Emission. Chemistry 2023; 29:e202203893. [PMID: 36579748 DOI: 10.1002/chem.202203893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 12/30/2022]
Abstract
One dimensional (1D) organic-inorganic halide hybrid perovskites have the advantages of excellent organic cation modifiability and diversity of inorganic framework structures, which cannot be ignored in the development of multi-functional phase-transition materials in photoelectric and photovoltaic devices. Here, we have successfully modified and synthesized an organic-inorganic hybrid perovskite photoelectric multifunctional phase-transition material: [C7 H13 ONCH2 F]⋅PbBr3 (1). The synergistic effect of the order double disorder transition of organic cations and the change of the degree of distortion of the inorganic framework leads to its high temperature reversible phase-transition point of Tc =374 K/346 K and its ultra-low loss high-quality dielectric switch response. Through in-depth research and calculation, compound 1 also has excellent semiconductor characteristics with a band gap of 3.06 eV and the photoluminescence characteristics of self-trapped exciton (STE) broadband emission. Undoubtedly, this modification strategy provides a new choice for the research field of organic-inorganic hybrid perovskite reversible phase-transition photoelectric multifunctional materials with rich coupling properties.
Collapse
Affiliation(s)
- Ting-Ting Ying
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Ming-Yang Wan
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Fang-Xin Wang
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Yu Zhang
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Yun-Zhi Tang
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Yu-Hui Tan
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Juan Liao
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| | - Li-Juan Wang
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, China
| |
Collapse
|
11
|
Guo L, Li Y, Gao S, Ren L. Detection of ochratoxin A using a "turn-on" fluorescence assay based on guanine quenching of the aptamer. ANAL SCI 2023; 39:51-57. [PMID: 36242755 PMCID: PMC9569010 DOI: 10.1007/s44211-022-00199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/27/2022] [Indexed: 01/06/2023]
Abstract
Ochratoxin A (OTA) is a common mycotoxin with high carcinogenicity; therefore, it is crucial to establish a simple, rapid, and sensitive method for its detection. In this study, we developed a "turn-on" fluorescence assay for detecting OTA based on guanine quenching of the aptamer. The method uses fluorescein (FAM) fluorophore to label the complementary strand of the OTA aptamer, Fc-DNA. In the absence of OTA, the Fc-DNA hybridizes with the aptamer to form a double strand. Due to the occurrence of photo-induced electron transfer (PET), the FAM fluorescence signal is quenched as the FAM on the Fc-DNA approaches the guanine of the aptamer at the 5' end. When OTA is present, the aptamer binds to it and thus, is unable to hybridize with Fc-DNA to form a double strand; the FAM fluorescence signal is restored as FAM moves away from the guanine of the aptamer. The assay achieved OTA detection at a detection limit of 28.4 nM. The application of the original guanine of the aptamer as the quenching agent helps avoid the complex designing and labeling of the aptamer, which ensures the high affinity of the aptamer for OTA. Meanwhile, this "turn-on" detection mode helps avoid potential false-positive results as in the "turn-off" mode and improves the assay's sensitivity. Additionally, the method has good selectivity and can be used to detect OTA in traditional Chinese medicine. This method provides a simple, low-cost, and rapid method for OTA detection.
Collapse
Affiliation(s)
- Limin Guo
- College of traditional Chinese medicine and food engineering, Shanxi University of Chinese Medicine, 121 University Street, Yuci, Jinzhong, 030619, People's Republic of China.
| | - Yun Li
- College of traditional Chinese medicine and food engineering, Shanxi University of Chinese Medicine, 121 University Street, Yuci, Jinzhong, 030619, People's Republic of China
| | - Shichao Gao
- College of traditional Chinese medicine and food engineering, Shanxi University of Chinese Medicine, 121 University Street, Yuci, Jinzhong, 030619, People's Republic of China
| | - Lei Ren
- College of traditional Chinese medicine and food engineering, Shanxi University of Chinese Medicine, 121 University Street, Yuci, Jinzhong, 030619, People's Republic of China
| |
Collapse
|
12
|
Llano S, Henao C, María Gómez A, Fernando Gallo Ortiz A. Determination of contaminants in turmeric: Validation of LC-HRMS methods for the determination of pesticides and mycotoxins. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Ndoro J, Manduna IT, Nyoni M, de Smidt O. Multiple Mycotoxin Contamination in Medicinal Plants Frequently Sold in the Free State Province, South Africa Detected Using UPLC-ESI-MS/MS. Toxins (Basel) 2022; 14:690. [PMID: 36287959 PMCID: PMC9607566 DOI: 10.3390/toxins14100690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Medicinal plants are important in the South African traditional healthcare system, the growth in the consumption has led to increase in trade through muthi shops and street vendors. Medicinal plants are prone to contamination with fungi and their mycotoxins. The study investigated multiple mycotoxin contamination using Ultra High Pressure Liquid Chromatography-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) for the simultaneous detection of Aflatoxin B1 (AFB1), Deoxynivalenol (DON), Fumonisins (FB1, FB2, FB3), Nivalenol (NIV), Ochratoxin A (OTA) and Zearalenone (ZEN) in frequently sold medicinal plants. Medicinal plant samples (n = 34) were purchased and analyzed for the presence of eight mycotoxins. DON and NIV were not detected in all samples analyzed. Ten out of thirty-four samples tested positive for mycotoxins -AFB1 (10.0%); OTA (10.0%); FB1 (30.0%); FB2 (50.0%); FB3 (20.0%); and ZEN (30.0%). Mean concentration levels ranged from AFB1 (15 µg/kg), OTA (4 µg/kg), FB1 (7-12 µg/kg), FB2 (1-18 µg/kg), FB3 (1-15 µg/kg) and ZEN (7-183 µg/kg). Multiple mycotoxin contamination was observed in 30% of the positive samples with fumonisins. The concentration of AFB1 reported in this study is above the permissible limit for AFB1 (5 µg/kg). Fumonisin concentration did not exceed the limits set for raw maize grain (4000 µg/kg of FB1 and FB2). ZEN and OTA are not regulated in South Africa. The findings indicate the prevalence of mycotoxin contamination in frequently traded medicinal plants that poses a health risk to consumers. There is therefore a need for routine monitoring of multiple mycotoxin contamination, human exposure assessments using biomarker analysis and establishment of regulations and standards.
Collapse
Affiliation(s)
- Julius Ndoro
- Department of Life Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Private Bag X20539, Bloemfontein 9300, South Africa
| | - Idah Tichaidza Manduna
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Free State, Bloemfontein 9300, South Africa
| | - Makomborero Nyoni
- Research, Development and Innovation Department, National Biotechnology Authority, 21 Princess Drive Newlands, Harare, Zimbabwe
| | - Olga de Smidt
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
14
|
Soil-to-plant transfer factor for stable elements in lemon balm (Melissa officinalis L.) and estimates of the daily intakes. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Pallarés N, Tolosa J, Ferrer E, Berrada H. Mycotoxins in raw materials, beverages and supplements of botanicals: A review of occurrence, risk assessment and analytical methodologies. Food Chem Toxicol 2022; 165:113013. [PMID: 35523385 DOI: 10.1016/j.fct.2022.113013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/20/2022] [Accepted: 04/10/2022] [Indexed: 12/30/2022]
Abstract
Over recent years, consumer interest in natural products, such as botanicals has increased considerably. One of the factors affecting their quality is the presence of mycotoxins. This review focuses on exploring the mycotoxin occurrence in botanicals (raw material and ready-to-eat forms such as infusions or tablets) and the risk assessment due to their ingestion. Aflatoxins, Ochratoxin A, and Fumonisins are the most commonly studied mycotoxins and data in the literature report levels ranging from traces to 1000 μg/kg in raw materials. In general, the highest contents observed in raw materials decreased to unconcerning levels after the preparation of the infusions, reaching values that generally do not exceed 100 μg/L. Regarding botanical dietary supplements, the levels observed were lower than those reported for other matrices, although higher levels (of up to 1000 μg/kg) have been reported in some cases. Risk assessment studies in botanicals revealed a higher risk when they are consumed as tablets compared to infusions. Analytical methodologies implied in mycotoxin determination have also been contemplated. In this sense, liquid chromatography coupled to fluorescence detection has been the most frequently employed analytical technique, although in recent years tandem mass spectrometry has been widely used.
Collapse
Affiliation(s)
- N Pallarés
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - J Tolosa
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - E Ferrer
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain.
| | - H Berrada
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| |
Collapse
|
16
|
Voica C, Nechita C, Iordache AM, Roba C, Zgavarogea R, Ionete RE. ICP-MS Assessment of Essential and Toxic Trace Elements in Foodstuffs with Different Geographic Origins Available in Romanian Supermarkets. Molecules 2021; 26:molecules26237081. [PMID: 34885663 PMCID: PMC8658825 DOI: 10.3390/molecules26237081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
The present study was conducted to quantify the daily intake and target hazard quotient of four essential elements, namely, chromium, cobalt, nickel, and copper, and four toxic trace elements, mercury, cadmium, lead, and arsenic. Thirty food items were assigned to five food categories (seeds, leaves, powders, beans, and fruits) and analyzed using inductively coupled plasma-mass spectrometry. Factor analysis after principal component extraction revealed common metal patterns in all foodstuffs, and using hierarchical cluster analysis, an association map was created to illustrate their similarity. The results indicate that the internationally recommended dietary allowance was exceeded for Cu and Cr in 27 and 29 foodstuffs, respectively. According to the tolerable upper level for Ni and Cu, everyday consumption of these elements through repeated consumption of seeds (fennel, opium poppy, and cannabis) and fruits (almond) can have adverse health effects. Moreover, a robust correlation between Cu and As (p < 0.001) was established when all samples were analyzed. Principal component analysis (PCA) demonstrated an association between Pb, As, Co, and Ni in one group and Cr, Cu, Hg, and Cd in a second group, comprising 56.85% of the total variance. For all elements investigated, the cancer risk index was within safe limits, highlighting that lifetime consumption does not increase the risk of carcinogens.
Collapse
Affiliation(s)
- Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania;
| | - Constantin Nechita
- National Research and Development Institute for Forestry “Marin Drăcea”—INCDS, 725100 Câmpulung Moldovenesc, Romania
- Correspondence: (C.N.); (A.M.I.); (R.Z.)
| | - Andreea Maria Iordache
- National Research and Development Institute of Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 4 Uzinei Str., 240050 Rm. Valcea, Romania;
- Correspondence: (C.N.); (A.M.I.); (R.Z.)
| | - Carmen Roba
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, 30 Fantanele Str., 400294 Cluj-Napoca, Romania;
| | - Ramona Zgavarogea
- National Research and Development Institute of Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 4 Uzinei Str., 240050 Rm. Valcea, Romania;
- Correspondence: (C.N.); (A.M.I.); (R.Z.)
| | - Roxana Elena Ionete
- National Research and Development Institute of Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 4 Uzinei Str., 240050 Rm. Valcea, Romania;
| |
Collapse
|
17
|
Maurya A, Kumar S, Singh BK, Chaudhari AK, Dwivedy AK, Prakash B, Dubey NK. Mechanistic investigations on antifungal and antiaflatoxigenic activities of chemically characterised Carum carvi L. essential oil against fungal infestation and aflatoxin contamination of herbal raw materials. Nat Prod Res 2021; 36:4569-4574. [PMID: 34672233 DOI: 10.1080/14786419.2021.1994566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to investigate the efficiency of chemically characterised Carum carvi essential oil (CcEO) against aflatoxin B1 (AFB1) producing strain of Aspergillus flavus (AF-LHP-WS-4) causing deterioration of herbal raw materials (HRM). GC-MS analysis of the EO revealed the presence of carvone (69.85%) as a dominant component. CcEO caused complete suppression of A. flavus growth and AFB1 secretion at 0.7 and 0.6 µL/mL, respectively. The investigation on antifungal mode of action showed that CcEO inhibited fungal growth via abrogating ergosterol biosynthesis and triggered efflux of vital cellular ions. The inhibition of AFB1 biosynthesis was attributed to the inhibition of cellular methylglyoxal (MG) biosynthesis. In addition, CcEO showed remarkable antioxidant activity (IC50 = 10.564 µL/mL) against DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals. Based on overall results, it can be concluded that the CcEO may be recommended as potential antifungal agent for protection of HRM from fungal infestation and AFB1 contamination.
Collapse
Affiliation(s)
- Akash Maurya
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Susheel Kumar
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Bijendra Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Bhanu Prakash
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|