1
|
Muhtar A, Jian P, Muhammad T, Zhao J, Dolkun A, Zhou T, Piletsky SA. A dummy template molecularly imprinted polymer-coated fiber array extraction for simultaneous HPLC analysis of eight biogenic amines in fermented horse milk. Anal Chim Acta 2025; 1352:343901. [PMID: 40210271 DOI: 10.1016/j.aca.2025.343901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/01/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Biogenic amines (BAs) are low molecular weight nitrogenous compounds present in various foods. While physiologically essential in trace amounts, elevated concentrations of BAs pose health risks, including serving as precursors to carcinogens. In fermented foods such as kumiss-a traditional fermented horse milk-the quantitative assessment of BAs is critical due to their health implications. However, the wide range of logP and pKa values among BAs presents significant challenges for their simultaneous extraction and accurate analysis. RESULT This study introduces a novel approach for the simultaneous extraction of eight BAs in kumiss using dummy molecularly imprinted polymer (DMIP) coated fibers. The DMIP was synthesized using diethylamine dansyl chloride as a derivatized template, enabling selective recognition of eight BA derivatives. The fabricated coated fibers, which are reusable and cost-effective, were integrated into an array device for high-throughput solid-phase microextraction (SPME), achieving an average extraction time of less than 2 min per sample. The SPME method demonstrated high recoveries (70.06-110.92 %) when coupled with high-performance liquid chromatography (HPLC) analysis. Linear calibration curves were established between the peak area and the concentration of BAs over the range of 0.2-10 mg L-1, with high regression coefficients (>0.99) and low detection limits (0.025-0.123 mg L-1). The DMIP coated fiber array extraction device provided highly selective and efficient separation of BA derivatives from complex matrices, as successfully demonstrated using kumiss samples. SIGNIFICANCE AND NOVELTY This study presents a novel dummy molecular imprinting strategy for the fabrication of DMIP coated fiber array for SPME, addressing the limitations of traditional methods in the simultaneous recognition of structurally diverse BAs. This approach significantly enhances the efficiency and selectivity of BA analysis, which is essential for the quality control of fermented foods.
Collapse
Affiliation(s)
- Adila Muhtar
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Pengli Jian
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Turghun Muhammad
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China; Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, 352100, PR China.
| | - Jia Zhao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Almire Dolkun
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Tiantian Zhou
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Sergey A Piletsky
- School of Chemistry, College of Science and Engineering, University of Leicester, George Porter Building, University Road, LE1 7RH, UK
| |
Collapse
|
2
|
Shanab O, Fareed F, Nassar AY, Abd-Elhafeez HH, Ahmed AS, El-Zamkan MA. Molecular characterization of histidine and tyrosine decarboxylating Enterococcus species isolated from some milk products. BMC Microbiol 2025; 25:234. [PMID: 40264025 PMCID: PMC12016370 DOI: 10.1186/s12866-025-03940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Fermented foods can cause adverse effects on human health because of the biogenic amines (BAs) accumulating through amino acid decarboxylation. This study investigated the presence of BAs including tyramine and histamine in 240 samples of some cheese and fermented milk samples using high-performance liquid chromatography. Another aim of this study is to isolate and identify Enterococcus spp. as the most important and frequent BA producer in the examined samples. The isolated Enterococcus spp. was investigated phenotypically for their capacity to produce amino acid decarboxylase enzyme using decarboxylase microplate assay, and genotypically through molecular detection of some genes encoding amino acid decarboxylation (tyrdc and hdc). Biogenic amines producing enterococci were then investigated for their antimicrobial resistance, biofilm production as well as their virulence determinants. RESULTS Tyramine and histamine could be detected in 86.7 and 87.9% of the investigated samples with 52.9% being contaminated with Enterococcus spp. Significant correlation between the incidence of Enterococci enterococci and BAs formed in the examined samples (P < 0.0001). tyrdc and hdc genes were detected in 85 and 5% of amino acid decarboxylating Enterococcus spp., respectively. A high percentage of Enterococcus isolates (57.5%) were multidrug-resistant and resistance against penicillin was widespread among isolates followed by tetracycline, vancomycin, erythromycin and linezolid. Also, 77.5% of the isolates were capable of forming biofilms and a highly significant correlation (P < 0.0001) was found between biofilm formation and multidrug resistance. The results showed that the rates of most virulence genes gelE, esp, ace, asa1, and cylA were 77.5. 47.5, 47.5, 35 and 7.5%, respectively, while the hyl gene was not detected in any isolates. CONCLUSION The study highlights the significant presence of BAs (TYM and HIS) in cheese and fermented milk samples, with a strong correlation between enterococci contamination and TYM production. The high prevalence of tyramine-producing Enterococcus species poses a notable public health concern especially with the high prevalence of multidrug-resistant, biofilm production and virulence in BAs producing Enterococcus spp. in dairy products, emphasizing the urgent need for improved antimicrobial stewardship among food producers and veterinarians to mitigate the risk of transferring resistant strains to humans.
Collapse
Affiliation(s)
- Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Faten Fareed
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Ahmed Y Nassar
- Department of Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Ahmed Shaban Ahmed
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mona A El-Zamkan
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
3
|
Zhang X, Chi H, Peng D, Jiang M, Wang C, Zhang H, Kang W, Li L. Integrated Metagenomic and LC-MS/MS Analysis Reveals the Biogenic Amine-Producing Strains of Two Typical Chinese Traditional Fish Products: Fermented Mandarin Fish ( Siniperca chuatsi) and Semi-Dried Yellow Croaker ( Larimichthys crocea). Foods 2025; 14:1016. [PMID: 40232020 PMCID: PMC11942074 DOI: 10.3390/foods14061016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 04/16/2025] Open
Abstract
Two typical fish products-fermented mandarin fish and semi-dried yellow croaker-are associated with biogenic amines (BAs), which are harmful to human health. The objective of this study was to investigate the bacterial ecology of the two fish products and to determine their capacity for producing BAs. Putrescine and cadaverine were major BAs detected in the fish products. Concentrations of BAs were significantly corrected with microbial count (p < 0.05). BA-producing isolates (33) in the two fish products were all multiple BA producers. Several of them, including Lactobacillus sakei, Bacillus cereus and Hafnia alvei isolated from fermented mandarin fish, as well as Shewanella baltica, Aeromonas veronii, and Photobacterium phosphoreum isolated from semi-dried yellow croaker, showed remarkable BA-producing capacity. Hafnia alvei produced the greatest abundance of putrescine, cadaverine, tyramine and 2-phenylethylamine. Lactobacillus sakei mainly produced tryptamine and putrescine. Photobacterium phosphoreum showed the strongest histamine-producing capacity.
Collapse
Affiliation(s)
- Xuan Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (D.P.); (M.J.); (C.W.); (H.Z.); (W.K.)
| | - Hai Chi
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China;
| | - Di Peng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (D.P.); (M.J.); (C.W.); (H.Z.); (W.K.)
| | - Mei Jiang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (D.P.); (M.J.); (C.W.); (H.Z.); (W.K.)
| | - Cuihua Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (D.P.); (M.J.); (C.W.); (H.Z.); (W.K.)
| | - Haiyan Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (D.P.); (M.J.); (C.W.); (H.Z.); (W.K.)
| | - Wei Kang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (D.P.); (M.J.); (C.W.); (H.Z.); (W.K.)
| | - Lei Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (X.Z.); (D.P.); (M.J.); (C.W.); (H.Z.); (W.K.)
| |
Collapse
|
4
|
Samková E, Dadáková E, Matějková K, Hasoňová L, Janoušek Honesová S. Can the Contents of Biogenic Amines in Olomoucké Tvarůžky Cheeses Be Risky for Consumers? Foods 2025; 14:456. [PMID: 39942049 PMCID: PMC11816877 DOI: 10.3390/foods14030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Smear-ripened cheeses are fermented dairy products characterised by an increased content of biogenic amines (BAs). The high contents of these bioactive compounds can negatively affect consumers. The study aimed to observe the contents of BAs and po-lyamines (PAs) in Olomoucké tvarůžky cheeses depending on selected factors (year, batch, ripening/storage time, shape, weight, specific surface area, acidity, and salt content). The results showed that the variability was explained primarily by the batch (83% for the sum of BAs) and by the year (63% for the sum of PAs). The storage time significantly influenced the contents of putrescine, cadaverine, spermidine, and spermine (the explained variability was only 1-3%). The total BA contents negatively correlated with weight (r = -0.6374; p < 0.001) and positively with specific surface area (r = +0.4349; p < 0.001). A negligible positive correlation coefficient was found between the total BAs and pH (r = +0.1303). A low negative correlation was also found between the total BAs and salt content (r = -0.1328). Compared to previous studies, the total average BA contents were considerably low. In conclusion, this type of cheese does not represent a serious problem for most consumers.
Collapse
Affiliation(s)
- Eva Samková
- Department of Food Biotechnologies and Agricultural Products’ Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (E.S.); (S.J.H.)
| | - Eva Dadáková
- Department of Applied Chemistry, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (E.D.); (K.M.)
| | - Kateřina Matějková
- Department of Applied Chemistry, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (E.D.); (K.M.)
| | - Lucie Hasoňová
- Department of Food Biotechnologies and Agricultural Products’ Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (E.S.); (S.J.H.)
| | - Simona Janoušek Honesová
- Department of Food Biotechnologies and Agricultural Products’ Quality, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (E.S.); (S.J.H.)
| |
Collapse
|
5
|
Wang Z, Shi X, Guo J, Wang L, Cao M, Wang S, Chen Y. Drop-on-demand printing of amine-responsive fluorescence-ratiometric sensor array for online monitoring meat freshness. Food Chem X 2025; 25:102099. [PMID: 39810945 PMCID: PMC11731488 DOI: 10.1016/j.fochx.2024.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/01/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Aiming to enable online freshness-monitoring of meat within modified-atmosphere package, we developed a ratiometric array that was fluorescently responsive to volatile organic compounds-ammonia (NH3) released by protein decaying. The array was consisted of two 3 mm × 6 mm rectangles precisely and uniformly printed with fluorescein isothiocyanate (FITC) as indicator and rhodamine B (RhB) as internal reference on the filter-paper, respectively. The fluorescence intensity of the array area was calibrated according to Green/Red ratio of the digitalized pixels extracted from images facilitated by a smartphone. The fluorescence-ratiometric sensor array displayed remarkable detection performances, including high sensitivity (LOD = 1.1 ppm), stability (91 % responding attenuation over 10 d of storage) and reproducibility (RSD < 10 %), which was further validated with real pork and shrimp samples. Subsequently, the fluorescent signals of the dual-rectangle array showed high correlation to the total volatile base nitrogen value that was officially used for indexing the meat freshness status.
Collapse
Affiliation(s)
- Zhijian Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Xudong Shi
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Jingze Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Lin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Meilin Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Shiyao Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yisheng Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Puglisi R, Testa C, Scuderi S, Greco V, Trusso Sfrazzetto G, Petroselli M, Pappalardo A. Detection of VOCs and Biogenic Amines Through Luminescent Zn-Salen Complex-Tethered Pyrenyl Arms. Molecules 2024; 29:5796. [PMID: 39683953 DOI: 10.3390/molecules29235796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Amines are produced through various industrial and biological processes, contributing significantly to atmospheric pollution, particularly in the troposphere. Moreover, amine-related pollution raises global concerns due to its detrimental effects on human health, environmental quality, and the preservation of animal species. Low-molecular-weight volatile amines, categorized as volatile organic compounds (VOCs), are present in the atmosphere, and they represent the main cause of air pollution. Biogenic amines, resulting from the natural decarboxylation of amino acids, are released into the environment from both natural and industrial sources. Several methods have been developed so far to detect amines in the environment. In this study, we present a novel fluorescent receptor based on a Zn-Salen complex, functionalized with pyrenyl moieties and a chiral diamine bridge, to enhance its affinity for a broad range of amines. Fluorescence titrations and density functional theory (DFT) calculations reveal and explain the high binding affinity of this receptor toward selected amines, demonstrating its potential as an effective tool for amine detection.
Collapse
Affiliation(s)
- Roberta Puglisi
- Department of Chemical Science, University of Catania, 95125 Catania, Italy
| | - Caterina Testa
- Department of Chemical Science, University of Catania, 95125 Catania, Italy
| | - Sara Scuderi
- Department of Chemical Science, University of Catania, 95125 Catania, Italy
| | - Valentina Greco
- Department of Chemical Science, University of Catania, 95125 Catania, Italy
| | | | - Manuel Petroselli
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Andrea Pappalardo
- Department of Chemical Science, University of Catania, 95125 Catania, Italy
| |
Collapse
|
7
|
Wang W, Liu K, Dong H, Liao W, Yang X, He Q. A frontier exploration of ancient craftsmanship: Effects of various tea products in traditional Chinese cuisine "tea flavored beef". Food Chem 2024; 454:139834. [PMID: 38815322 DOI: 10.1016/j.foodchem.2024.139834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Modern science often overlooks to reveal the scientific essence of traditional crafts to promote their inheritance and development. In this work, five different types of tea products were prepared using the same variety of tea leaves referring to traditional methods. The analysis of their components and activities indicated that the processing reduced total catechin contents (from 172.8 mg/g to 48.2 mg/g) and promoted the synthesis of theaflavins (from 17.9 mg/g to 43.4 mg/g), reducing antioxidant and antimicrobial abilities of the resulting tea products. On this basis, the tea products were applied to "tea flavored beef" to reveal long-term effects. Within 15 days of storage, tea treatment showed remarkable antimicrobial and antioxidant activities on the beef. Also, the declines of sensory scores and texture of the treated beef were significantly suppressed. Meanwhile, protein degradation in the beef was inhibited, limiting the contents of various biogenic amines within relatively low levels.
Collapse
Affiliation(s)
- Wenxia Wang
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province 510006, China
| | - Kun Liu
- School of Public Health / Food Safety and Health Research Center / School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Wenzhen Liao
- School of Public Health / Food Safety and Health Research Center / School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xingfen Yang
- School of Public Health / Food Safety and Health Research Center / School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Qi He
- School of Public Health / Food Safety and Health Research Center / School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China; South China Hospital, Shenzhen University, Shenzhen, Guangdong Province 518116, China.
| |
Collapse
|
8
|
Zhao X, Wang W, Cheng J, Xia Y, Duan C, Zhong R, Zhao X, Li X, Ni Y. Nanolignin-containing cellulose nanofibrils (LCNF)-enabled multifunctional ratiometric fluorescent bio-nanocomposite films for food freshness monitoring. Food Chem 2024; 453:139673. [PMID: 38772308 DOI: 10.1016/j.foodchem.2024.139673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Herein, the nanolignin-containing cellulose nanofibrils (LCNF)-enabled ratiometric fluorescent bio-nanocomposite film is developed. Interestingly, the inclusion of LCNF in the cellulose-based film enhances the detecting performance of food freshness, such as high sensitivity to biogenic amines (BAs) (limit of detection (LOD) of up to 1.83 ppm) and ultrahigh discernible fluorescence color difference (ΔE = 113.11). The underlying mechanisms are the fluorescence resonance energy transfer (FRET), π - π interaction, and cation - π interaction between LCNF and fluorescein isothiocyanate (FITC), as well as the increased hydrophobicity due to lignin, which increases the interactions of amines with FITC. Its color stability (up to 28 days) and mechanical property (49.4 Mpa) are simultaneously improved. Furthermore, a smartphone based detecting platform is developed to achieve access to food safety. This work presents a novel technology, which can have a great potential in the field of food packaging and safety.
Collapse
Affiliation(s)
- Xingjin Zhao
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Wenliang Wang
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jinbao Cheng
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuanyuan Xia
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chao Duan
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Ruofan Zhong
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xinyu Zhao
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xinping Li
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
9
|
Liao S, Lu Y, He Q, Chi Y. Insights into Genomic Characteristics and Biogenic Amine Degradation Potential and Mechanisms: A Strain of Pediococcus acidilactici Sourced from Doubanjiang. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20622-20632. [PMID: 39225480 DOI: 10.1021/acs.jafc.4c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The control of excess biogenic amines (BAs) is crucial for the sustainable development of fermented foods. This study aimed to screen endogenous functional strains in Doubanjiang with the capacity to degrade BAs and to elucidate their application potential. Pediococcus acidilactici L-9 (PA), which was confirmed as a safe strain by phenotypic and genotypic analyses, exhibited an efficient degradation ability on BAs, particularly regarding tyramine. Notably, the degradation of tyramine was maintained at 24.03-50.60% at different temperatures (20-40 °C), pH values (4.0-9.0), and NaCl concentrations (3-18%, w/v). Additionally, genomic data revealed the presence of the laccase-coding gene, which was demonstrated to play a pivotal role in BA degradation by heterologous expression. Further, molecular docking results indicated that the degradation of BA by laccase is closely linked to the electron transfer pathway formed by the substrate and key amino acid residues. Finally, the degradation of tyramine by PA remained within the range of 8.19-64.19% under the simulated system with 6-12% salinity. This study provided valuable insights into the safety of PA and its potential degradation capacity on BAs, particularly in mitigating tyramine accumulation, which could improve the quality of Doubanjiang and other fermented foods.
Collapse
Affiliation(s)
- Shenglan Liao
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yunhao Lu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qiang He
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
10
|
Wang H, Sui Y, Liu J, Liu S, Kong B, Qin L, Chen Q. Targeted inhibition of biogenic amine-producing strains by spice extracts and control of biogenic amine accumulation in reduced-salt dry sausages. Food Microbiol 2024; 121:104527. [PMID: 38637089 DOI: 10.1016/j.fm.2024.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
This study aimed to screen spice extracts that can target the inhibition of biogenic amine (BA)-producing bacteria and reduce the BA accumulation in reduced-salt dry sausages. A total of 59 bacterial strains were isolated from reduced-salt dry sausages; among them, three isolates, namely, Staphylococcus epidermidis S1, S. saprophyticus S2, and S. edaphicus S3, had the strongest ability to produce BA. Eight spice extracts, i.e. Angelica dahurica, cinnamon, ginger, clove, fennel, Amomum, nutmeg, and orange peel, were extracted. The inhibition zone diameter and minimum inhibitory concentration indicated that A. dahurica, Amomum, and clove elicited the strongest inhibitory effect on BA-producing strains. Growth kinetics showed the strongest inhibitory effect of clove extracts, followed by Amomum and A. dahurica. In the medium system, clove extract was the most effective in controlling the total BA content by inhibiting of BA-producing strains S. epidermidis S1, S. saprophyticus S2, and S. edaphicus S3; their contents were reduced by 23.74%, 31.05% and 21.37%, respectively. In the dry sausage system, the control of BA accumulation by clove was quite prominent, and the total BA content was reduced from 373.70 mg/kg to 259.05 mg/kg on day 12.
Collapse
Affiliation(s)
- Huiping Wang
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yumeng Sui
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jiaqi Liu
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Siting Liu
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ligang Qin
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
11
|
Wang H, Sui Y, Liu J, Liu H, Qin L, Kong B, Chen Q. Screening and evaluating microorganisms with broad-spectrum biogenic amine-degrading ability from naturally fermented dry sausage collected from Northeast China. Meat Sci 2024; 210:109438. [PMID: 38290305 DOI: 10.1016/j.meatsci.2024.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
This study aimed to screen autochthonous strains with broad-spectrum biogenic amine (BA) degradation ability from traditional dry sausages and to evaluate their BA-degrading ability in dry sausages. A total of 120 strains were isolated from dry sausages collected from various regions in Northeast China, and 35 of 120 isolates were identified as non-BA producing strains by the in vitro agar method. The random amplified polymorphic DNA polymerase chain reaction technique genotyped these 35 isolates into 18 biotypes. Moreover, high performance liquid chromatography (HPLC) quantification showed that six strains (Latilactobacillus sakei MDJ6; Lactiplantibacillus plantarum SH7; Weissella hellenica DQ9; Staphylococcus saprophyticus JX18 and SYS8; and Macrococcus caseolyticus SYS11) of the 18 biotypes exhibited broad-spectrum BA-degrading ability, all of which had various levels of amine oxidase activity with monoamine oxidase and diamine oxidase activities ranged of 6.60-619.04 and 26.32-352.81 U/mg protein, respectively. These six strains were subsequently inoculated into dry sausages and the results showed that they exhibited varying degrees of BA-degrading ability, of which strain Lat. sakei MDJ6 allowed to have less BA production on dry sausage with a final concentration of 61.33 mg/kg.
Collapse
Affiliation(s)
- Huiping Wang
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yumeng Sui
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ligang Qin
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
12
|
Saha Turna N, Chung R, McIntyre L. A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon 2024; 10:e24501. [PMID: 38304783 PMCID: PMC10830535 DOI: 10.1016/j.heliyon.2024.e24501] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Biogenic amines (BAs) are low-molecular decarboxylation products of amino acids formed during microbial fermentation. Several fermented foods may contain BAs such as histamine, tyramine, and/or phenylethylamine, at levels above documented toxic doses. Dietary exposure to foods containing high levels of BAs is associated with many adverse health effects, such as migraines, elevated blood pressure, and tachycardia. BA-mediated toxicity may occur at levels a hundred times below regulatory and suggested toxic doses, depending on an individual's sensitivity and factors such as alcohol consumption and certain medications. Although BAs occur in a wide variety of fermented foods, food safety and public health professionals are not well informed about the potential health risks and control strategies in these foods. In this review, we highlight the health risks and symptoms linked to BA exposures, the BA levels found in different fermented foods, regulatory and suggested toxic doses, and risk mitigation strategies to inform food industry and public health professionals' practice.
Collapse
Affiliation(s)
- Nikita Saha Turna
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| | - Rena Chung
- Public Health Ontario (PHO), 480 University Avenue, Suite 300, Toronto, ON, M5G 1V2, Canada
| | - Lorraine McIntyre
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| |
Collapse
|
13
|
Kuley F, Rathod NB, Kuley E, Yilmaz MT, Ozogul F. Inhibition of Food-Borne Pathogen Growth and Biogenic Amine Synthesis by Spice Extracts. Foods 2024; 13:364. [PMID: 38338500 PMCID: PMC10855824 DOI: 10.3390/foods13030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Food-borne pathogens and their toxins cause significant health problems in humans. Formation of biogenic amines (BAs) produced by microbial decarboxylation of amino acids in food is undesirable because it can induce toxic effects in consumers. Therefore, it is crucial to investigate the effects of natural additives with high bioactivity like spice extracts to inhibit the growth of these bacteria and the formation of BAs in food. In the present study, the antibacterial effects of diethyl ether spice (sumac, cumin, black pepper, and red pepper) extracts at doses of 1% (w/v) on Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa, Campylobacter jejuni, Aeromonas hydrophila, Salmonella Paratyphi A, and Yersinia enterocolitica) food-borne pathogen bacterial strains (FBP) were established. In addition, the accumulation of ammonia (AMN), trimethylamine (TMA), and biogenic amines (BAs) in tyrosine decarboxylase broth (TDB) was investigated by using high performance liquid chromatography (HPLC). Sumac extract exhibited the highest antibacterial potential against all FBPs, followed by cumin and peppers. AMN (570.71 mg/L) and TMA (53.66 mg/L) production were strongly inhibited by sumac extract in the levels of 55.10 mg/L for Y. enterocolitica and 2.76 mg/L for A. hydrophila, respectively. With the exception of S. aureus, black pepper dramatically reduced the synthesis of putrescine, serotonin, dopamine, and agmatine by FBP especially for Gram-negative ones. Furthermore, sumac extracts inhibited histamine and tyramine production by the majority of FBP. This research suggests the application of sumac extracts as natural preservatives for inhibiting the growth of FBPs and limiting the production of AMN, TMA, and BAs.
Collapse
Affiliation(s)
- Ferhat Kuley
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Balcali, 01330 Adana, Turkey (E.K.)
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post Harvest Technology and Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Killa-Roha 402116, Maharashtra State, India;
| | - Esmeray Kuley
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Balcali, 01330 Adana, Turkey (E.K.)
| | - Mustafa Tahsin Yilmaz
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Balcali, 01330 Adana, Turkey (E.K.)
- Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
14
|
Okman Koçoğlu İ, Erden PE, Kılıç E. Disposable biosensor based on ionic liquid, carbon nanofiber and poly(glutamic acid) for tyramine determination. Anal Biochem 2024; 684:115387. [PMID: 37951456 DOI: 10.1016/j.ab.2023.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
In this study, an electrochemical biosensor based on carbon nanofibers (CNF), ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (IL), poly(glutamic acid) (PGA) and tyrosinase (Tyr) modified screen printed carbon electrode (SPE) was constructed for tyramine determination. Optimum experimental parameters such as CNF and IL amount, polymerization conditions of glutamic acid, enzyme loading, pH of test solution and operating potential were explored. The construction steps of the Tyr/PGA/CNF-IL/SPE were pursued by scanning electron microscopy and cyclic voltammetry. The Tyr/PGA/CNF-IL/SPE biosensor exhibited linear response to tyramine in the range of 2.0 × 10-7 - 4.8 × 10-5 M with a low detection limit of 9.1 × 10-8 M and sensitivity of 302.6 μA mM-1. The other advantages of Tyr/PGA/CNF-IL/SPE include its high reproducibility, good stability and anti-interference ability. The presented biosensor was also applied for tyramine determination in malt drink and pickle juice samples and mean analytical recoveries of spiked tyramine were calculated as 100.6% and 100.4% respectively.
Collapse
Affiliation(s)
- İrem Okman Koçoğlu
- Department of Chemistry, Faculty of Science, Karabük University, 78050, Karabük, Turkey.
| | - Pınar Esra Erden
- Department of Chemistry, Polatlı Faculty of Science and Arts, Ankara Haci Bayram Veli University, Ankara, Turkey
| | - Esma Kılıç
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
15
|
Liao H, Asif H, Huang X, Luo Y, Xia X. Mitigation of microbial nitrogen-derived metabolic hazards as a driver for safer alcoholic beverage choices: An evidence-based review and future perspectives. Compr Rev Food Sci Food Saf 2023; 22:5020-5062. [PMID: 37823801 DOI: 10.1111/1541-4337.13253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Alcoholic beverages have been enjoyed worldwide as hedonistic commodities for thousands of years. The unique quality and flavor are attributed to the rich microbiota and nutritional materials involved in fermentation. However, the metabolism of these microbiota can also introduce toxic compounds into foods. Nitrogen-derived metabolic hazards (NMH) are toxic metabolic hazards produced by microorganisms metabolizing nitrogen sources that can contaminate alcoholic beverages during fermentation and processing. NMH contamination poses a risk to dietary safety and human health without effective preventive strategies. Existing literature has primarily focused on investigating the causes of NMH formation, detection methods, and abatement techniques for NMH in fermentation end-products. Devising effective process regulation strategies represents a major challenge for the alcoholic beverage industry considering our current lack of understanding regarding the processes whereby NMH are generated, real-time and online detection, and the high degradation rate after NMH formation. This review summarizes the types and mechanisms of nitrogenous hazard contamination, the potential risk points, and the analytical techniques to detect NMH contamination. We discussed the changing patterns of NMH contamination and effective strategies to prevent contamination at different stages in the production of alcoholic beverages. Moreover, we also discussed the advanced technologies and methods to control NMH contamination in alcoholic beverages based on intelligent monitoring, synthetic ecology, and computational assistance. Overall, this review highlights the risks of NMH contamination during alcoholic beverage production and proposes promising strategies that could be adopted to eliminate the risk of NMH contamination.
Collapse
Affiliation(s)
- Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Hussain Asif
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Yi Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
16
|
Esposito L, Mastrocola D, Martuscelli M. Who Cares about Biogenic Amines? Foods 2023; 12:3900. [PMID: 37959019 PMCID: PMC10648416 DOI: 10.3390/foods12213900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Biogenic amines (BAs) have been under study since the early 1970s [...].
Collapse
Affiliation(s)
| | | | - Maria Martuscelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (D.M.)
| |
Collapse
|
17
|
Świder O, Roszko MŁ, Wójcicki M. The inhibitory effects of plant additives on biogenic amine formation in fermented foods - a review. Crit Rev Food Sci Nutr 2023; 64:12935-12960. [PMID: 37724793 DOI: 10.1080/10408398.2023.2258964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fermented food has unique properties and high nutritional value, and thus, should constitute a basic element of a balanced and health-promoting diet. However, it can accumulate considerable amount of biogenic amines (BAs), which ingested in excess can lead to adverse health effects. The application of plant-derived additives represents a promising strategy to ensure safety or enhance the functional and organoleptic properties of fermented food. This review summarizes currently available data on the application of plant-origin additives with the aim to reduce BA content in fermented products. The importance of ensuring fermented food safety has been highlighted considering the growing evidence of beneficial effects resulting from the consumption of this type of food, as well as the increasing number of individuals sensitive to BAs. The examined plant-origin additives reduced the BA concentration to varying degrees, and their efficacy depended on the type of additive, matrix, autochthonous, and inoculated microorganisms, as well as the manufacturing conditions. The main mechanisms of action include antimicrobial effects and the inhibition of microbial decarboxylases. Further research on the optimization of bioactive substances extraction, standardization of their chemical composition, and development of detailed procedures for its use in fermented products manufacturing are needed.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
18
|
Li X, Zhang Y, Ma X, Zhang G, Hou H. Effects of a Novel Starter Culture on Quality Improvement and Putrescine, Cadaverine, and Histamine Inhibition of Fermented Shrimp Paste. Foods 2023; 12:2833. [PMID: 37569102 PMCID: PMC10416889 DOI: 10.3390/foods12152833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Fermented shrimp paste is a popular food in Asian countries. However, biogenic amines (BAs) are a typically associated hazard commonly found during the fermentation of shrimp paste and pose a food-safety danger. In this work, an autochthonic salt-tolerant Tetragenococcus muriaticus TS (T. muriaticus TS) strain was used as a starter culture for grasshopper sub shrimp paste fermentation. It was found that with the starter culture, putrescine, cadaverine, and histamine concentrations were significantly lower (p < 0.05) with a maximal reduction of 19.20%, 14.01%, and 28.62%, respectively. According to high-throughput sequencing data, T. muriaticus TS could change the interactions between species and reduce the abundance of bacterial genera positively associated with BAs, therefore inhibiting the BA accumulation during shrimp paste fermentation. Moreover, the volatile compounds during the fermentation process were also assessed by HS-SPME-GC-MS. With the starter added, the content of pyrazines increased, while the off-odor amines decreased. The odor of the shrimp paste was successfully improved. These results indicate that T. muriaticus TS can be used as an appropriate starter culture for improving the safety and quality of grasshopper sub shrimp paste.
Collapse
Affiliation(s)
- Xinyu Li
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (X.L.); (Y.Z.); (X.M.); (G.Z.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Yang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (X.L.); (Y.Z.); (X.M.); (G.Z.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Xinxiu Ma
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (X.L.); (Y.Z.); (X.M.); (G.Z.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (X.L.); (Y.Z.); (X.M.); (G.Z.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (X.L.); (Y.Z.); (X.M.); (G.Z.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| |
Collapse
|
19
|
Meradji M, Bachtarzi N, Mora D, Kharroub K. Characterization of Lactic Acid Bacteria Strains Isolated from Algerian Honeybee and Honey and Exploration of Their Potential Probiotic and Functional Features for Human Use. Foods 2023; 12:2312. [PMID: 37372522 DOI: 10.3390/foods12122312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Using culture enrichment methods, 100 strains of bacilli of lactic acid bacteria (LAB) were isolated from honeybee Apis mellifera intermissa and fresh honey, collected from apiaries located in the north-east of Algeria. Amongst all of the isolated LAB, 19 selected strains were closely affiliated to four species-Fructobacillus fructosus (10), Apilactobacillus kunkeei (5), Lactobacillus kimbladii and/or Lactobacillus kullabergensis (4)-using phylogenetic and phenotypic approaches. The in vitro probiotic characteristics (simulated gastrointestinal fluids tolerance, autoaggregation and hydrophobicity abilities, antimicrobial activity and cholesterol reduction) and safety properties (hemolytic activity, antibiotic resistance and absence of biogenic amines) were evaluated. The results indicated that some strains showed promising potential probiotic properties. In addition, neither hemolytic activity nor biogenic amines were produced. The carbohydrate fermentation test (API 50 CHL) revealed that the strains could efficiently use a broad range of carbohydrates; additionally, four strains belonging to Apilactobacillus kunkeei and Fructobacillus fructosus were found to be exopolysaccharides (EPS) producers. This study demonstrates the honeybee Apis mellifera intermissa and one of her products as a reservoir for novel LAB with potential probiotic features, suggesting suitability for promoting host health.
Collapse
Affiliation(s)
- Meriem Meradji
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, Constantine 25000, Algeria
| | - Nadia Bachtarzi
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, Constantine 25000, Algeria
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
| | - Karima Kharroub
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, Constantine 25000, Algeria
| |
Collapse
|
20
|
Zhu Z, Song X, Jiang Y, Yao J, Li Z, Dai F, Wang Q. Determination of Biogenic Amines in Wine from Chinese Markets Using Ion Chromatography-Tandem Mass Spectrometry. Foods 2023; 12:foods12112262. [PMID: 37297506 DOI: 10.3390/foods12112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
A method for the determination of nine biogenic amines (BAs) in wine was established using ion chromatography-tandem mass spectrometry (IC-MS/MS) without derivatization. BAs were separated by a cation exchange column (IonPac CG17, 50 mm × 4 mm, 7 µm) with a gradient aqueous formic acid elution. Good linearity was obtained for nine BAs with coefficients of determination (R2) > 0.9972 within the range of 0.01-50 mg/L. The limits of detection and quantification were within the ranges of 0.6-40 µg/L and 2.0-135 µg/L, respectively, with the exception of spermine (SPM). The recoveries were demonstrated within the range of 82.6-103.0%, with relative standard deviations (RSDs) of less than 4.2%. This simple method featuring excellent sensitivity and selectivity was suitable for the quantification of BAs in wines. The occurrence of BAs in 236 wine samples that are commercially available in China was determined. The BA levels in wines of different geographical origins varied significantly. The acute dietary exposure assessment of BAs was carried out by calculating the estimated short-term intake (ESTI) and comparing the acute reference dose (ARfD) specified by the European Food Safety Authority (EFSA). Results showed that the exposure to histamine (HIS) and tyramine (TYR) via the consumption of wines was much lower than the recommended ARfD level for healthy individuals. However, exposure could lead to symptoms in susceptible individuals. These results provided basic data regarding the occurrence and risk of BAs in wines for wine production, health guidance and consumer safety.
Collapse
Affiliation(s)
- Zuoyi Zhu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Xinyue Song
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunzhu Jiang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Jiarong Yao
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Zhen Li
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Fen Dai
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Qiang Wang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| |
Collapse
|
21
|
Urbonavičiūtė G, Dyglė G, Černauskas D, Šipailienė A, Venskutonis PR, Leskauskaitė D. Alginate/Pectin Film Containing Extracts Isolated from Cranberry Pomace and Grape Seeds for the Preservation of Herring. Foods 2023; 12:foods12081678. [PMID: 37107473 PMCID: PMC10137684 DOI: 10.3390/foods12081678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Alginate/pectin films supplemented with extracts from cranberry pomace (CE) or grape seeds (GE) were developed and applied to herring fillets that were stored for 18 days at 4 °C. Herring coated with films containing GE and CE inhibited the growth of Listeria monocytogenes and Pseudomonas aeruginosa during the storage period, whereas pure alginate/pectin films did not show an antimicrobial effect against the tested pathogens. The application of alginate/pectin films with CE and GE minimised pH changes and inhibited total volatile basic nitrogen (TVN) and the formation of thiobarbituric acid-reactive substances (TBARS) in the herring fillets. The coating of herring fillets with films with CE or GE resulted in three- and six-fold lower histamine formation and one-and-a-half- and two-fold lower cadaverine formation, respectively, when compared to unwrapped herring samples after 18 days of storage. The incorporation of 5% extracts isolated from cranberry pomace or grape seeds into the alginate/pectin film hindered herring spoilage due to the antimicrobial and antioxidant activity of the extracts.
Collapse
Affiliation(s)
- Gabrielė Urbonavičiūtė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl 19, LT-50254 Kaunas, Lithuania
| | - Gintarė Dyglė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl 19, LT-50254 Kaunas, Lithuania
| | - Darius Černauskas
- Food Institute, Kaunas University of Technology, Radvilenu pl 19, LT-50254 Kaunas, Lithuania
| | - Aušra Šipailienė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl 19, LT-50254 Kaunas, Lithuania
| | - Petras Rimantas Venskutonis
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl 19, LT-50254 Kaunas, Lithuania
| | - Daiva Leskauskaitė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
22
|
He Y, Xie Z, Xu Y, Guo C, Zhao X, Yang H. Effect of slightly acid electrolysed water ice on metabolite and volatilome profile of shrimp (Penaeus vannamei) during cold storage. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Zhu J, Wang X, Mao L, Chen X, Han J, Li X, Xia S, Wang H. Electrospun nanofibrous poly(ether-block-amide) membrane for removing biogenic amines in acidic wastewater from the yellow rice wine factory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160720. [PMID: 36481143 DOI: 10.1016/j.scitotenv.2022.160720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Compared with other techniques for wastewater treatment, adsorption offers an effective, economical and ecofriendly way to reduce the content of biogenic amines. Herein, the poly(ether-block-amide) (PEBA 2533) membranes were employed as the adsorbent to remove histamine, putrescine, cadaverine and tyramine in the synthetic and real wastewater from a local yellow rice wine factory. Electrospun PEBA membranes consisting of fine nanofibers were successfully obtained without the addition of surfactant for the first time. Characteristics of the prepared membranes were evaluated by their morphology, wetting behaviors and mechanical properties. Adsorption performance of the nanofibrous membrane was investigated in comparison to the dense membrane prepared by conventional casting. The fibrous membrane exhibited much higher adsorption rate over 10 times to the dense membrane along with 1.5 times more adsorption capacity towards the amines. In addition, the as-prepared membrane showed a promising reusability in the real wastewater treatment. The good balance of its chemical stability, adsorption capacity, selectivity, removal efficiency and reusability endows the electrospun membrane with an outstanding potential to be applied in the acidic wastewater treatment for the yellow rice wine industry.
Collapse
Affiliation(s)
- Jiaxin Zhu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Lili Mao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinyue Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingchao Han
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinyang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuwei Xia
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Haizeng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
24
|
Ye H, Ke Y, Li W, Zhu B, Jiang L, Hu X, Zeng L. Molecular engineering of fluorescence probe for real-time non-destructive visual screening of meat freshness. Anal Chim Acta 2023; 1254:341125. [PMID: 37005030 DOI: 10.1016/j.aca.2023.341125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023]
Abstract
Spoiled meat poses a great challenge to food security and human health, which should be addressed by the early monitoring and warning of the meat freshness. We herein exploited a molecular engineering strategy to construct a set of fluorescence probes (PTPY, PTAC, and PTCN) with phenothiazine as fluorophore and cyanovinyl as recognition site for the facile and efficient monitoring of meat freshness. These probes produce an obvious fluorescence color transition from dark red to bright cyan in response to cadaverine (Cad) through the nucleophilic addition/elimination reaction. The sensing performances were elaborately improved to achieve quick response (16 s), low detection limit (LOD = 3.9 nM), and high contrast fluorescence color change by enhancing the electron-withdrawing strength of cyanovinyl moiety. Furthermore, PTCN test strips were fabricated for portable and naked-eye detection of Cad vapor with fluorescence color change from crimson to cyan, and accurate determination of Cad vapor level with RGB color (red, green, blue) mode analysis. The test strips were employed to detect the freshness of real beef samples, and demonstrated a good capability of non-destructive, non-contact and visual screening meat freshness on site.
Collapse
Affiliation(s)
- Huan Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yingjun Ke
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Wenlu Li
- School of Food and Drug, Luoyang Normal University, Henan Luoyang, 471934, China
| | - Beitong Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Lirong Jiang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xichao Hu
- School of Food and Drug, Luoyang Normal University, Henan Luoyang, 471934, China.
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; School of Chemistry and Materials Science, Hubei Engineering University, Hubei Xiaogan, 432100, China.
| |
Collapse
|
25
|
Kmieciak A, Jastrzębska A, Szymańska K, Krzemiński MP, Muzioł TM, Kurzawa M, Szłyk E. The Selection of the Best Derivatization Reagents for the Determination of Polyamines in Home-Made Wine Samples. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1474. [PMID: 36837108 PMCID: PMC9960030 DOI: 10.3390/ma16041474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The procedures of putrescine, spermine, spermidine, and cadaverine derivatization using 2-chloro-1,3-dinitro-5-(trifluoromethyl)benzene, 1-fluoro-2-nitro-4-(trifluoromethyl) benzene, and 3,5-bis-(trifluoromethyl)phenyl isothiocyanate for chromatographic determination in home-made wine samples are compared in the present study. The procedures discussed were compared regarding simplicity, linearity, precision, and accuracy. The polyamines derivatives were isolated and characterized by X-ray crystallography and 1H, 13C, and 19F NMR spectroscopy. The obtained structures of aliphatic amines showed that all amino groups, four in spermine, two in putrescine and cadaverine, and three in spermidine, regardless of the applied reagent, were substituted. The applicability of the described procedures was tested during the chromatographic analysis of the compounds' content in home-made wines. For this purpose, a simple and environmentally friendly sample preparation procedure was developed. The obtained results present the derivatization of polyamines with 1-fluoro-2-nitro-4-(trifluoromethyl)benzene as a better choice for the determination of these compounds in food samples.
Collapse
Affiliation(s)
- Anna Kmieciak
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Karolina Szymańska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Marek P. Krzemiński
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Tadeusz M. Muzioł
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Marzanna Kurzawa
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Edward Szłyk
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| |
Collapse
|
26
|
Fluorescence digital image-based method to measure biogenic amines in Buffalo Mozzarella and other cheeses produced in Brazil. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
27
|
Formation of biogenic amines in soy sauce and reduction via simple phytochemical addition. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Hui X, Wan Y, Dong H, Peng J, Wu W, Yang X, He Q. A promising insight into the inhibition of lipid oxidation, protein degradation and biogenic amine accumulation in postmortem fish: Functional glazing layers of modified bio-polymer. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
29
|
Hydrophobic Mesoporous Silica-Coated Solid-Phase Microextraction Arrow System for the Determination of Six Biogenic Amines in Pork and Fish. Foods 2023; 12:foods12030578. [PMID: 36766106 PMCID: PMC9914681 DOI: 10.3390/foods12030578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
In this study, a functionalized mesoporous silica-coated solid-phase microextraction (SPME) Arrow system was developed for the enrichment of six biogenic amines (BAs) from pork and fish samples before gas chromatographic separation with a mass spectrometer as a detector. MCM-41 was utilized as the substrate material and thereby functionalized by titanate and sodium dodecyl sulfate to adjust its surface acidity and hydrophobicity, respectively. The functionalized MCM-41 (named as MCM-T-H) was coated on a bare SPME Arrow using the dipping method and polyacrylonitrile was used as the adhesive. The extraction capacity and selectivity of the MCM-T-H-SPME Arrow for six kinds of derivatized BAs were studied and compared with commercial SPME Arrows. Experimental parameters, e.g., sample volume, derivatization reagent amount, extraction time, and desorption time, which have a dramatic effect on SPME Arrow pretreatment, were optimized. Acidity enhanced MCM-T-H coating showed a much higher affinity to derivatized BAs compared to a commercial SPME Arrow in terms of extraction capacity. In addition, hydrophobicity modification significantly reduced the interference of water molecules on the interaction between MCM-T-H and the derivatized BAs. The MCM-T-H-SPME Arrow showed efficient separation and enrichment capacity for derivatized BAs from complex matrices and therefore, the sample pretreatment time was saved. According to the experimental results, the optimal condition was to add 10 μL derivatization reagent to a 10 mL sample and maintain an agitation speed of 1250 r min-1. The MCM-T-H-SPME showed excellent reproducibility (RSD < 9.8%) and fast adsorption kinetics (30 min) and desorption kinetics (5 min) for derivatized BAs under optimal conditions. In summary, the MCM-T-H-SPME Arrow based method was employed for accurate monitoring of the variations of BAs in pork and fish, and good results were achieved.
Collapse
|
30
|
Sun L, Guo W, Zhai Y, Zhao L, Liu T, Yang L, Jin Y, Duan Y. Screening and the ability of biogenic amine-degrading strains from traditional meat products in Inner Mongolia. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Zhang C, Zhang J, Xin X, Niu H, Liao X, Liu D. Reduced formation of biogenic amines in low-salt Zhacai via fermentation under CO 2-modified atmosphere. Food Res Int 2023; 163:112256. [PMID: 36596167 DOI: 10.1016/j.foodres.2022.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Reducing sodium salt content in traditional fermented vegetables and developing low-salt fermented products have attracted increasing attention.However, low-salt fermented vegetables are prone to accumulate toxic biogenic amines (BAs) caused by the undesirable metabolism of spoilage microorganisms. This study aimed to investigate the impact of a CO2-modified atmosphere (MA) approach to the fermentation of low-salt Zhacai and the accumulation of BAs. The results show CO2-MA effectively suppressed the production of excessive BAs in low-salt Zhacai, as evidenced by a decrease in the total BA content from 63.66 to 161.41 mg/ kg under natural air conditions to 1.88-24.76 mg/ kg under CO2-MA. Overall, the mechanism of hindering BA formation was closely related to the change in the microbial community and the downregulation of BA-producing enzymes. Lactic acid bacteria, including Lactiplantibacillus plantarum, Weissella spp., and Pediococcus spp., were enriched under CO2-MA, whereas amine-producing microorganisms (e.g., Halomonas spp., Psychrobacter spp., Corynebacterium spp., and Levilactobacillus brevis) were greatly inhibited. Moreover, metagenomic analysis revealed that genes encoding amino acid decarboxylase, amine deiminase, and amine synthase were downregulated, which could be the fundamental reason for BA reduction. This study provides an alternative method for reducing BA production in fermented food.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 310021, PR China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Haiyue Niu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 310021, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
32
|
Dergal NB, Douny C, Gustin P, Abi-Ayad SMEA, Scippo ML. Monitoring of Biogenic Amines in Tilapia Flesh ( Oreochromis niloticus) by a Simple and Rapid High-Performance Thin-Layer Chromatography Method. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2154628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nadir Boudjlal Dergal
- Laboratory of Biotechnology for Food Security and Energetic, Department of Biotechnology, Faculty of Natural and Life Sciences, University of Oran 1, Oran, Algeria
| | - Caroline Douny
- Laboratory of Food Analysis (LADA), Fundamental andApplied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, Liège, Belgium
| | - Pascal Gustin
- Department of Functional Sciences, Unit of Pharmacology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Sidi-Mohammed El-Amine Abi-Ayad
- Laboratory of Aquaculture and Bioremediation (AQUABIOR), Department of Biotechnology, Faculty of Natural and Life Sciences, University of Oran 1, Oran, Algeria
| | - Marie-Louise Scippo
- Laboratory of Food Analysis (LADA), Fundamental andApplied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, Liège, Belgium
| |
Collapse
|
33
|
Bioactive Amines in Wines. The Assessment of Quality Descriptors by Flow Injection Analysis with Tandem Mass Spectrometry. Molecules 2022; 27:molecules27248690. [PMID: 36557822 PMCID: PMC9783241 DOI: 10.3390/molecules27248690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Biogenic amines (BAs) occur in a wide variety of foodstuffs, mainly from the decomposition of proteins by the action of microorganisms. They are involved in several cellular functions but may become toxic when ingested in high amounts through the diet. In the case of oenological products, BAs are already present in low concentrations in must, and their levels rise dramatically during the fermentation processes. This paper proposes a rapid method for the determination of BAs in wines and related samples based on precolumn derivatization with dansyl chloride and further detection by flow injection analysis with tandem mass spectrometry. Some remarkable analytes such as putrescine, ethanolamine, histamine, and tyramine have been quantified in the samples. Concentrations obtained have shown interesting patterns, pointing out the role of BAs as quality descriptors. Furthermore, it has been found that the BA content also depends on the vinification practices, with malolactic fermentation being a significant step in the formation of BAs. From the point of view of health, concentrations found in the samples are, in general, below 10 mg L-1, so the consumption of these products does not represent any special concern. In conclusion, the proposed method results in a suitable approach for a fast screening of this family of bioactive compounds in wines to evaluate quality and health issues.
Collapse
|
34
|
Gao X, Li C, He R, Zhang Y, Wang B, Zhang ZH, Ho CT. Research advances on biogenic amines in traditional fermented foods: Emphasis on formation mechanism, detection and control methods. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Wang H, Zhang H, Liu S, Qin L, Chen Q, Kong B. Analysis of biogenic amine in dry sausages collected from northeast China: From the perspective of free amino acid profile and bacterial community composition. Food Res Int 2022; 162:112084. [DOI: 10.1016/j.foodres.2022.112084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/04/2022]
|
36
|
Moniente M, García-Gonzalo D, Llamas-Arriba MG, Virto R, Ontañón I, Pagán R, Botello-Morte L. Potential of histamine-degrading microorganisms and diamine oxidase (DAO) for the reduction of histamine accumulation along the cheese ripening process. Food Res Int 2022; 160:111735. [DOI: 10.1016/j.foodres.2022.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/04/2022]
|
37
|
Huang J, Zhou T, Zhao W, Zhang M, Zhang Z, Lai W, Kadasala NR, Liu H, Liu Y. Magnetic-Core-Shell-Satellite Fe 3O 4-Au@Ag@(Au@Ag) Nanocomposites for Determination of Trace Bisphenol A Based on Surface-Enhanced Resonance Raman Scattering (SERRS). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3322. [PMID: 36234450 PMCID: PMC9565892 DOI: 10.3390/nano12193322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
As a typical representative of endocrine-disrupting chemicals (EDCs), bisphenol A (BPA) is a common persistent organic pollutant in the environment that can induce various diseases even at low concentrations. Herein, the magnetic Fe3O4-Au@Ag@(Au@Ag) nanocomposites (CSSN NCs) have been prepared by self-assembly method and applied for ultra-sensitive surface-enhanced resonance Raman scattering (SERRS) detection of BPA. A simple and rapid coupling reaction of Pauly's reagents and BPA not only solved the problem of poor affinity between BPA and noble metals, but also provided the SERRS activity of BPA azo products. The distribution of hot spots and the influence of incremental introduction of noble metals on the performance of SERRS were analyzed by a finite-difference time-domain (FDTD) algorithm. The abundance of hot spots generated by core-shell-satellite structure and outstanding SERRS performance of Au@Ag nanocrystals were responsible for excellent SERRS sensitivity of CSSN NCs in the results. The limit of detection (LOD) of CSSN NCs for BPA azo products was as low as 10-10 M. In addition, the saturation magnetization (Ms) value of CSSN NCs was 53.6 emu·g-1, which could be rapidly enriched and collected under the condition of external magnetic field. These magnetic core-shell-satellite NCs provide inspiration idea for the tailored design of ultra-sensitive SERRS substrates, and thus exhibit limitless application prospects in terms of pollutant detection, environmental monitoring, and food safety.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Min Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Zhibo Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wangsheng Lai
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | | | - Huilian Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
38
|
Intelligent biogenic amine-responsive fluorescent label for visual and real-time monitoring of seafood freshness. Food Chem 2022; 388:132963. [DOI: 10.1016/j.foodchem.2022.132963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/27/2022] [Accepted: 04/10/2022] [Indexed: 01/07/2023]
|
39
|
Li Y, Yu H, Tang Z, Wang J, Zeng T, Lu S. Effect of Coreopsis tinctoria microcapsules on tyramine production by Enterococcus faecium in smoked horsemeat sausage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Luo L, Luo SZ, Jia BZ, Zhang WF, Wang H, Wei XQ, Shen YD, Lei HT, Xu ZL, Yang JY. A high-resolution colorimetric immunoassay for tyramine detection based on enzyme-enabled growth of gold nanostar coupled with smartphone readout. Food Chem 2022; 396:133729. [PMID: 35872493 DOI: 10.1016/j.foodchem.2022.133729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
In this work, a specific monoclonal antibody against tyramine was produced based on a new hapten design. Then, we developed a high-resolution multicolor colorimetric immunoassay for tyramine based on this antibody by integrating enzyme-induced multicolor generation with smartphone-assistant signal readout. The multicolor generation is due to the shift of the local surface plasmon resonance band of gold nanostructure controlled by alkaline phosphatase-induced the growth of gold nanostars. Quantitative detection of tyramine was achieved via analyzing the red/blue channel values of assay solution's image taken by a smartphone with the support of a color recognizer application. The limit of detection of this immunoassay for tyramine detection in beef, pork and yoghurt was 19.7 mg/kg or L. The average recoveries were between 83 % and 103 %., and the results were validated by high performance liquid chromatography to be reliable. Overall, this developed immunoassay provides a promising platform for on-site detection of tyramine.
Collapse
Affiliation(s)
- Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shuang-Zi Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Bao-Zhu Jia
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Wen-Feng Zhang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center of Rapid Testing Instrument for Food Nutrition and Safety, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Qun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jin-Yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
41
|
Effect of Biogenic Amine-Degrading Lactobacillus on the Biogenic Amines and Quality in Fermented Lamb Jerky. Foods 2022; 11:foods11142057. [PMID: 35885300 PMCID: PMC9322946 DOI: 10.3390/foods11142057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022] Open
Abstract
This study compares five types of lamb jerky, namely, CO (without starter culture), PL-4 (with producing putrescine, cadaverine, histamine, and tyramine), BL4-8 (degrading putrescine, cadaverine, histamine, and tyramine), CL4-3 (degrading putrescine and tyramine), and X3-2B (degrading histamine and tyramine). A study was performed to examine the effects of starter culture on the physical−chemical quality, flavor, and biogenic amines (BAs) during fermentation and ripening. At the end of fermentation, the pH value of the BL4-8 group (4.75) was significantly lower than that of other groups (p < 0.05). After high-temperature roasting, the water activity (0.55), water content (22.6%), nitrite residue (0.41 mg/kg), and TBARS value (0.27 mg/100 g) of the X3-2B group were significantly lower than those of other groups (p < 0.05). The findings show that adding starter BL4-8, CL4-3, and X3-2B can increase the variety and content of flavor in the product. The levels of histamine, putrescine, and tyramine were significantly lower in the BL4-8, CL4-3, and X3-2B groups than in CO and PL-4 groups. This study shows that BL4-8, CL4-3, and X3-2B are potential starters for fermented meat products.
Collapse
|
42
|
He Y, Xie Z, Xu Y, Zhao X, Zhao L, Yang H. Preservative effect of slightly acid electrolysed water ice generated by the developed sanitising unit on shrimp (Penaeus vannamei). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Profiling the occurrence of biogenic amines in wine from Chinese market and during fermentation using an improved chromatography method. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Zhang Y, Shan B, Gong J, Hu Y. Mechanism of biogenic amine synthesis of Enterococcus faecium isolated from Sanchun ham. Food Sci Nutr 2022; 10:2036-2049. [PMID: 35702279 PMCID: PMC9179149 DOI: 10.1002/fsn3.2820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/19/2023] Open
Abstract
Sanchuan ham, produced in Yunnan, China, is food with ethnic characteristics favored by consumers. However, it can contain biogenic amines such as tyramine that are harmful to health, and the synthesis mechanism of biogenic amines in Sanchuan ham is not clear. This study focuses on the regulation of biogenic amine synthesis by quorum sensing. We used high-performance liquid chromatography to detect the content of biogenic amine in different kinds of ham and found that the content of biogenic amine in Sanchuan ham was higher than that in others. Tyramine-producing strain isolated from Sanchuan ham was identified as Enterococcus faecium. By monitoring the growth and tyramine synthesis of Enterococcus faecium under cultured conditions, the results found that high temperature and low salt increased tyramine production by E. faecium. After seven exogenous amino acids were applied to E. faecium, only tyrosine could promote the production of tyramine in E. faecium, and tyramine could not be synthesized in E. faecium until a certain amount was reached, indicating the presence of microbial quorum sensing signal molecules in the synthesis of tyramine in E. faecium. Untargeted metabolomics analysis of the differential metabolites produced by E. faecium showed that the contents of some peptides, especially alanyl-leucine, were significantly increased. Further experiments with synthetic alanyl-leucine illustrated that alanyl-leucine activated the expression of tyrosine decarboxylase (tyrDC), thereby regulating the synthesis of tyramine by E. faecium. Alanyl-leucine acted as quorum sensing signal molecules for biogenic amine synthesis by E. faecium, which provided a theoretical basis for reducing biogenic amine accumulation in ham. It is beneficial to control the content of biogenic amines in ham in the future.
Collapse
Affiliation(s)
- Yunhe Zhang
- Collage of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Bo Shan
- Collage of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Jiashun Gong
- Collage of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Yongjin Hu
- Collage of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
45
|
Lin Z, Wu ZY, Zhang WX. Bioinformatics analysis of amino acid decarboxylases related to four major biogenic amines in pickles. Food Chem 2022; 393:133339. [PMID: 35653994 DOI: 10.1016/j.foodchem.2022.133339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Microbial amino acid decarboxylases (AADs) produce biogenic amines (BAs) in fermented food. However, a systematic comparison of the AADs' properties from different microorganisms in pickle fermentation remains unexplored. Here, we bioinformatically analyzed the amino acid sequences of AADs corresponding to four major BAs for common microorganisms in pickle fermentation. We showed that their sequences, besides tyrosine decarboxylase, differed among microorganisms. Overall, the AAD sequences varied lesser among bacterial species than between bacteria and fungi, with those in Lactobacillus sharing occasionally high similarity with other bacteria. Most AADs were predicted as stable cytosolic endoenzymes. Molecular docking showed that most commonly used spice components in pickle production, especially pepper, chili, and ginger, strongly bind to the AAD active sites, thus may inhibit the enzymes and reduce the BA accumulation. This study provides insights for deeply understanding the different microbial AAD properties in pickle fermentation and reducing BAs by appropriately using spices.
Collapse
Affiliation(s)
- Ze Lin
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Zheng-Yun Wu
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China.
| | - Wen-Xue Zhang
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| |
Collapse
|
46
|
Schirone M, Visciano P, Conte F, Paparella A. Formation of biogenic amines in the cheese production chain: favouring and hindering factors. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
|
48
|
Yi Z, Xie J. Genomic Analysis of Two Representative Strains of Shewanella putrefaciens Isolated from Bigeye Tuna: Biofilm and Spoilage-Associated Behavior. Foods 2022; 11:foods11091261. [PMID: 35563985 PMCID: PMC9100107 DOI: 10.3390/foods11091261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Shewanella putrefaciens can cause the spoilage of seafood and shorten its shelf life. In this study, both strains of S. putrefaciens (YZ08 and YZ-J) isolated from spoiled bigeye tuna were subjected to in-depth phenotypic and genotypic characterization to better understand their roles in seafood spoilage. The complete genome sequences of strains YZ08 and YZ-J were reported. Unique genes of the two S. putrefaciens strains were identified by pan-genomic analysis. In vitro experiments revealed that YZ08 and YZ-J could adapt to various environmental stresses, including cold-shock temperature, pH, NaCl, and nutrient stresses. YZ08 was better at adapting to NaCl stress, and its genome possessed more NaCl stress-related genes compared with the YZ-J strain. YZ-J was a higher biofilm and exopolysaccharide producer than YZ08 at 4 and 30 °C, while YZ08 showed greater motility and enhanced capacity for biogenic amine metabolism, trimethylamine metabolism, and sulfur metabolism compared with YZ-J at both temperatures. That YZ08 produced low biofilm and exopolysaccharide contents and displayed high motility may be associated with the presence of more a greater number of genes encoding chemotaxis-related proteins (cheX) and low expression of the bpfA operon. This study provided novel molecular targets for the development of new antiseptic antisepsis strategies.
Collapse
Affiliation(s)
- Zhengkai Yi
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China
- Correspondence: ; Tel.: +86-02161900391
| |
Collapse
|
49
|
Schirone M, Esposito L, D’Onofrio F, Visciano P, Martuscelli M, Mastrocola D, Paparella A. Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives. Foods 2022; 11:foods11060788. [PMID: 35327210 PMCID: PMC8947279 DOI: 10.3390/foods11060788] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/12/2023] Open
Abstract
Biogenic amines (BAs) can be found in a wide range of meat and meat products, where they are important as an index for product stability and quality, but also for their impact on public health. This review analyzes the scientific evidence gathered so far on the presence and role of biogenic amines in meat and meat products, also considering the effect of technological conditions on BAs accumulation or decrease. The data provided can be useful for developing solutions to control BAs formation during the shelf-life, for example by novel starters for dry cured products, as well as by packaging technologies and materials for fresh meats. Further research, whose trends are reviewed in this paper, will fill the knowledge gaps, and allow us to protect such perishable products along the distribution chain and in the home environment.
Collapse
Affiliation(s)
| | | | | | - Pierina Visciano
- Correspondence: (P.V.); (M.M.); Tel.: +39-0861-266911 (P.V. & M.M.)
| | | | | | | |
Collapse
|
50
|
Update on Biogenic Amines in Fermented and Non-Fermented Beverages. Foods 2022; 11:foods11030353. [PMID: 35159503 PMCID: PMC8834261 DOI: 10.3390/foods11030353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 01/12/2023] Open
Abstract
The formation of biogenic amines in food and beverages is mainly due to the presence of proteins and/or free amino acids that represent the substrates for microbial or natural enzymes with decarboxylation or amination activity. Fermentation occurring in many alcoholic beverages, such as wine, beer, cider, liqueurs, as well as coffee and tea, is one of the main processes affecting their production. Some biogenic amines can also be naturally present in some fruit juices or fruit-based drinks. The dietary intake of such compounds should consider all their potential sources by both foods and drinks, taking in account the health impact on some consumers that represent categories at risk for a deficient metabolic activity or assuming inhibiting drugs. The most important tool to avoid their adverse effects is based on prevention through the selection of lactic acid bacteria with low decarboxylating activity or good manufacturing practices hurdling the favoring conditions on biogenic amines' production.
Collapse
|