1
|
Bogusz R, Onopiuk A, Żbik K, Pobiega K, Piasecka I, Nowacka M. Chemical and Microbiological Characterization of Freeze-Dried Superworm ( Zophobas morio F.) Larvae Pretreated by Blanching and Ultrasound Treatment. Molecules 2024; 29:5447. [PMID: 39598836 PMCID: PMC11597884 DOI: 10.3390/molecules29225447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Edible insects may solve the current problem of the greater demand for food for the world's growing human population. This work aimed to examine the impact of blanching (BL) and ultrasound (US) at 20 and 50 °C as a pretreatment method on the chemical composition, mineral composition, FTIR spectra, presence of allergens and microorganisms, and properties of the isolated oil of freeze-dried superworm larvae. The US treatment resulted in significantly lower protein content (31.65-33.34 g/100 g d.m.) compared to untreated (36.38 g/100 g d.m.) and BL (37.72 g/100 g d.m.) samples. The study demonstrated that the US-treated insects exhibited a lower content of crustacean and mollusk allergens than the BL insects, and the lowest content of tested allergens was found in the US_50°C superworm larvae. Furthermore, oil isolated from US_50°C insects exhibited the lowest SFA and the highest PUFA content and the best prospective nutritional properties expressed through theoretical health indices. The presence of Enterobacteriaceae and anaerobic spore-forming bacteria was not detected in the tested insects, proving suitable microbiological quality. It appears that using US treatment is a promising alternative to traditional blanching of insects before drying.
Collapse
Affiliation(s)
- Radosław Bogusz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Anna Onopiuk
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland; (A.O.)
| | - Klara Żbik
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland; (A.O.)
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Iga Piasecka
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland
| |
Collapse
|
2
|
Zheng C, Man YB, Wong MH, Cheng Z. Optimizing food waste bioconversion with sodium selenite-enhanced Lucilia sericata maggots: a sustainable approach for chicken feed production and heavy metal mitigation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:508. [PMID: 39520635 DOI: 10.1007/s10653-024-02277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Recycling food waste by feeding it to insects can result in the continuous production of high-quality animal feed protein and organic fertilizer. However, the bioconversion efficiency and safety of using insects as feed protein for animal breeding are important factors limiting the development of this technology. Therefore, we aimed to optimize the efficiency of bioconversion of food waste using Lucilia sericata maggot (LSM). Sodium selenite (SS) was used to improve the quality and safety of each trophic-level organism. The results showed that an SS concentration of 15 mg kg-1 w.w. in the food waste culture substrate (SS15), the yield and quality of the obtained LSMs were optimal. The total selenium (Se) content of LSMs was 82.4 ± 1.16 mg kg-1 d.w., and non-inorganic Se accounted for 96.4% ± 2.01% of the total Se content. Additionally, the conversion efficiency of food waste was 18.7% higher than that in the control group (p < 0.05). When SS15 was used to raise maggots as a protein substitute for fish meal (commercial feed), the weight of the chickens and the crude protein content were 1.09-1.26 times and 1.09-1.13 times, respectively (p < 0.05), in comparison with the corresponding findings obtained with the use of ordinary maggots and commercial feed. In this group, glutathione peroxidase, superoxide dismutase, catalase, and immunoglobulin A and G activities were significantly higher than those obtained with the other feeds (p < 0.05). During this cyclic utilization process, the total Se content in chickens (0.31 ± 0.05 mg kg-1 w.w. in the breast, 0.19 ± 0.01 mg kg-1 w.w. in the leg, and 0.57 ± 0.01 mg kg-1 w.w. in the liver) significantly increased (p < 0.05). Meanwhile, the Cu and Zn contents in the LSMs and chickens increased, whereas cadmium, lead, chromium, and nickel absorption was inhibited (p < 0.05). Health risk assessment based on the levels of Se and heavy metals showed that Se-enriched chickens produced using this method can be safely consumed.
Collapse
Affiliation(s)
- Chao Zheng
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Yu Bon Man
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
3
|
Bogusz R, Bryś J, Onopiuk A, Pobiega K, Tomczak A, Kowalczewski PŁ, Rybak K, Nowacka M. The Impact of Drying Methods on the Quality of Blanched Yellow Mealworm ( Tenebrio molitor L.) Larvae. Molecules 2024; 29:3679. [PMID: 39125083 PMCID: PMC11314216 DOI: 10.3390/molecules29153679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The growing world population necessitates the implementation of appropriate processing technologies for edible insects. The objective of this study was to examine the impact of distinct drying techniques, including convective drying at 70 °C (70CD) and 90 °C (90CD) and freeze-drying (FD), on the drying kinetics, physical characteristics (water activity, color), chemical characteristics (chemical composition, amino acid profile, oil properties, total polyphenol content and antioxidant activity, mineral composition, FTIR), and presence of hazards (allergens, microorganisms) of blanched yellow mealworm larvae. The freeze-drying process results in greater lightness and reduced moisture content and water activity. The study demonstrated that the freeze-dried insects exhibited lower contents of protein and essential amino acids as compared to the convective-dried insects. The lowest content of total polyphenols was found in the freeze-dried yellow mealworm larvae; however, the highest antioxidant activity was determined for those insects. Although the oil isolated from the freeze-dried insects exhibited the lowest acid and peroxide values, it proved to have the lowest PUFA content and oxidative stability. All the samples met the microbiological criteria for dried insects. The results of the study demonstrate that a high temperature during the CD method does not result in the anticipated undesirable changes. It appears that freeze-drying is not the optimal method for preserving the nutritional value of insects, particularly with regard to the quality of protein and oil.
Collapse
Affiliation(s)
- Radosław Bogusz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Anna Onopiuk
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Aneta Tomczak
- Department of Food Analysis and Biochemistry, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-623 Poznan, Poland;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland;
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
4
|
Syahrulawal L, Torske MO, Sapkota R, Næss G, Khanal P. Improving the nutritional values of yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) larvae as an animal feed ingredient: a review. J Anim Sci Biotechnol 2023; 14:146. [PMID: 38042833 PMCID: PMC10693714 DOI: 10.1186/s40104-023-00945-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/06/2023] [Indexed: 12/04/2023] Open
Abstract
Yellow mealworm larvae (YML; Tenebrio molitor) are considered as a valuable insect species for animal feed due to their high nutritional values and ability to grow under different substrates and rearing conditions. Advances in the understanding of entomophagy and animal nutrition over the past decades have propelled research areas toward testing multiple aspects of YML to exploit them better as animal feed sources. This review aims to summarize various approaches that could be exploited to maximize the nutritional values of YML as an animal feed ingredient. In addition, YML has the potential to be used as an antimicrobial or bioactive agent to improve animal health and immune function in production animals. The dynamics of the nutritional profile of YML can be influenced by multiple factors and should be taken into account when attempting to optimize the nutrient contents of YML as an animal feed ingredient. Specifically, the use of novel land-based and aquatic feeding resources, probiotics, and the exploitation of larval gut microbiomes as novel strategies can assist to maximize the nutritional potential of YML. Selection of relevant feed supplies, optimization of ambient conditions, the introduction of novel genetic selection procedures, and implementation of effective post-harvest processing may be required in the future to commercialize mealworm production. Furthermore, the use of appropriate agricultural practices and technological improvements within the mealworm production sector should be aimed at achieving both economic and environmental sustainability. The issues highlighted in this review could pave the way for future approaches to improve the nutritional value of YML.
Collapse
Affiliation(s)
- Linggawastu Syahrulawal
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, Steinkjer, 7713, Norway
| | - Magnhild Oust Torske
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, Steinkjer, 7713, Norway
| | - Rumakanta Sapkota
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, Roskilde, 4000, Denmark
| | - Geir Næss
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, Steinkjer, 7713, Norway
| | - Prabhat Khanal
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, Steinkjer, 7713, Norway.
| |
Collapse
|
5
|
Ma L, Xu J, Yu Y, Wang D, Yu M, Zhang X, Yang X, Xu X. Effect of high-intensity ultrasound on the structural and functional properties of proteins in housefly larvae (Musca demestica). ULTRASONICS SONOCHEMISTRY 2023; 101:106673. [PMID: 37931343 PMCID: PMC10654224 DOI: 10.1016/j.ultsonch.2023.106673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Insect protein has gradually attracted wide attention from the international research community as a promising source of high-quality protein that can replace traditional protein sources. The larvae of the housefly, a prevalent and widespread species, contain high levels of protein with beneficial properties, namely, anti-fatigue, anti-radiation, and anti-aging functions, as well as liver protection and immunity enhancement. This work thoroughly examined the impact of high-intensity ultrasound (HIUS) on the structural and functional characteristics of housefly larval concentrate protein (HLCP). HLCP samples were sonicated for 20 min at a frequency of 20 kHz with varying energies (0, 100, 200, 300, 400, and 500 W). The findings demonstrated that sonication considerably altered the secondary and tertiary structures of HLCP but had no effect on molecular weight. With an increase in ultrasonic power, HLCP's particle size shrank, more hydrophobic groups were exposed, more free sulfhydryl groups were present, the solution's stability improved, and HLCP's solubility rose. In addition, HLCP's emulsification and foaming abilities were improved by HIUS treatment. It is anticipated that this study's findings will offer fresh insights into the implementation of HLCP in the food sector.
Collapse
Affiliation(s)
- Longkai Ma
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinzhao Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yansong Yu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Danping Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Miao Yu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xuyan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoying Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Peng X, Liu J, Li B, Wang S, Chen B, Zhang D. An Acyl Carrier Protein Gene Affects Fatty Acid Synthesis and Growth of Hermetia illucens. INSECTS 2023; 14:300. [PMID: 36975985 PMCID: PMC10052031 DOI: 10.3390/insects14030300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Acyl carrier protein (ACP) is an acyl carrier in fatty acid synthesis and is an important cofactor of fatty acid synthetase. Little is known about ACP in insects and how this protein may modulate the composition and storage of fatty acids. We used an RNAi-assisted strategy to study the potential function of ACP in Hermetia illucens (Diptera: Stratiomyidae). We identified a HiACP gene with a cDNA length of 501 bp and a classical conserved region of DSLD. This gene was highly expressed in the egg and late larval instars and was most abundant in the midgut and fat bodies of larvae. Injection of dsACP significantly inhibited the expression level of HiACP and further regulated the fatty acid synthesis in treated H. illucens larvae. The composition of saturated fatty acids was reduced, and the percentage of unsaturated fatty acids (UFAs) was increased. After interfering with HiACP, the cumulative mortality of H. illucens increased to 68.00% (p < 0.05). H. illucens growth was greatly influenced. The development duration increased to 5.5 days, the average final body weights of larvae and pupae were decreased by 44.85 mg and 14.59 mg, respectively, and the average body lengths of larvae and pupae were significantly shortened by 3.09 mm and 3.82 mm, respectively. The adult eclosion rate and the oviposition of adult females were also severely influenced. These results demonstrated that HiACP regulates fatty acid content and influences multiple biological processes of H. illucens.
Collapse
|
7
|
Delgado L, Garino C, Moreno FJ, Zagon J, Broll H. Sustainable Food Systems: EU Regulatory Framework and Contribution of Insects to the Farm-To-Fork Strategy. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2130354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Lidia Delgado
- European Commission, Joint Research Center (JRC), Belgium
| | - Cristiano Garino
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Jutta Zagon
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Hermann Broll
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
8
|
The flavour of edible insects: A comprehensive review on volatile compounds and their analytical assessment. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Sánchez M, Villamizar-Sarmiento MG, Harmsen I, Valdés F, Villanueva V, Ceballos R, Wacyk J, Oyarzun-Ampuero F, Valenzuela C. Encapsulation of house fly larvae (Musca domestica) meal by ionic gelation as a strategy to develop a novel nutritive food ingredient with improved aroma and appearance. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Franco A, Salvia R, Scieuzo C, Schmitt E, Russo A, Falabella P. Lipids from Insects in Cosmetics and for Personal Care Products. INSECTS 2021; 13:insects13010041. [PMID: 35055884 PMCID: PMC8779901 DOI: 10.3390/insects13010041] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary The use of insects as a new source of lipids is a topic of great interest from both environmental and economic points of view. In addition to use in feed and energy applications, lipids could be used for the formulation of personal care products. The cosmetics industry is always in search of new ingredients to use in novel product formulations. The processes mediated by bioconverter insects, such as Hermetia illucens, are really advantageous because starting from substrates of low economic and biological value (agri-food by-products, zootechnical, catering, and other waste), it is possible to obtain products of high commercial value. The composition of insect lipids depends on the feeding substrate, as well as the insect species, therefore for each personal care application, it is possible to find the most suitable starting conditions. In this review, we display a general outlook on insect lipids, the extraction processes, and their use in cosmetics and personal care fields. Abstract Insects, the most varied group of known organisms on Earth, are arousing great interest also for the possibility to use them as a feed and food source. The mass rearing of some species, defined as “bioconverters”, is spreading worldwide, thanks to their sustainability. At the end of the bioconversion process, breeders obtain eco-friendly biomolecules of high biological and economic value, including proteins and lipids, from larvae of bioconverter insects, in particular Hermetia illucens. Besides the most classical use of insect lipids as food additives, they are also used in the formulation of several products for personal care. The composition of insect lipids depends on the substrate on which the insects are reared but also on the insect species, so the cosmetic producers should consider these features to choose their insect starting point. The most abundant fatty acids detected in H. illucens are lauric, myristic, palmitic, and oleic acids, regardless of feed substrate; its fatty acids composition is favorable for soap composition, while their derivatives are used for detergent and shampoo. Here, we offer an overview of insect lipids, their extraction methods, and their application in cosmetics and personal care products.
Collapse
Affiliation(s)
- Antonio Franco
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.F.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.F.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence: (R.S.); (P.F.)
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.F.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Eric Schmitt
- Protix B.V., Industriestaat 3, 5107 NC Dongen, The Netherlands;
| | - Antonella Russo
- Greenswitch s.r.l., Strada Provinciale Ferrandina—Macchia, 75013 Ferrandina, Italy;
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.F.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence: (R.S.); (P.F.)
| |
Collapse
|