1
|
Gerasimova A, Nikolova K, Petkova N, Ivanov I, Dincheva I, Tumbarski Y, Yanakieva V, Todorova M, Gentscheva G, Gavrilova A, Yotkovska I, Nikolova S, Slavov P, Harbaliev N. Metabolic Profile of Leaves and Pulp of Passiflora caerulea L. (Bulgaria) and Their Biological Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1731. [PMID: 38999571 PMCID: PMC11243431 DOI: 10.3390/plants13131731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
At present, there are no data in the scientific literature on studies aimed at characterizing Passiflora caerulea L. growing in Bulgaria. The present study aimed to investigate the metabolic profile and elemental composition of the leaves and pulp of this Passiflora, as well as to evaluate the antioxidant, antimicrobial and anti-inflammatory activities of its leaf and pulp extracts. The results showed that the pulp predominantly contained the essential amino acid histidine (7.81 mg g-1), while it was absent in the leaves, with the highest concentration being tryptophan (8.30 mg g-1). Of the fatty acids, palmitoleic acid predominated both in the pulp and in the leaves. A major sterol component was β-sitosterol. Fructose (7.50%) was the predominant sugar in the pulp, while for the leaves, it was glucose-1.51%. Seven elements were identified: sodium, potassium, iron, magnesium, manganese, copper and zinc. The highest concentrations of K and Mg were in the pulp (23,946 mg kg-1 and 1890 mg kg-1) and leaves (36,179 mg kg-1 and 5064 mg kg-1). According to the DPPH, FRAP and CUPRAC methods, the highest values for antioxidant activity were found in 70% ethanolic extracts of the leaves, while for the ABTS method, the highest value was found in 50% ethanolic extracts. In the pulp, for all four methods, the highest values were determined at 50% ethanolic extracts. Regarding the antibacterial activity, the 50% ethanolic leaf extracts were more effective against the Gram-positive bacteria. At the same time, the 70% ethanolic leaf extract was more effective against Gram-negative bacteria such as Salmonella enteritidis ATCC 13076. The leaf extracts exhibited higher anti-inflammatory activity than the extracts prepared from the pulp. The obtained results revealed that P. caerulea is a plant that can be successfully applied as an active ingredient in various nutritional supplements or cosmetic products.
Collapse
Affiliation(s)
- Anelia Gerasimova
- Department of Chemistry, Faculty of Pharmacy, Medical University—Varna, 9000 Varna, Bulgaria;
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University—Varna, 9000 Varna, Bulgaria
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 4002 Plovdiv, Bulgaria; (N.P.); (I.I.)
| | - Ivan Ivanov
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 4002 Plovdiv, Bulgaria; (N.P.); (I.I.)
| | - Ivayla Dincheva
- Department of Agrobiotechnologies, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria;
| | - Yulian Tumbarski
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Velichka Yanakieva
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.T.); (S.N.)
| | - Galia Gentscheva
- Department of Chemistry and Biochemistry, Medical University—Pleven, 5800 Pleven, Bulgaria;
| | - Anna Gavrilova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Medical University—Pleven, 5800 Pleven, Bulgaria;
| | - Ina Yotkovska
- Department of Chemistry and Biochemistry, Medical University—Pleven, 5800 Pleven, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.T.); (S.N.)
| | - Pavlo Slavov
- Faculty of Medicine, Medical University—Varna, 9000 Varna, Bulgaria; (P.S.); (N.H.)
| | - Nikolay Harbaliev
- Faculty of Medicine, Medical University—Varna, 9000 Varna, Bulgaria; (P.S.); (N.H.)
| |
Collapse
|
2
|
Chañi-Paucar LO, Chagua-Rodríguez P, Cuadrado-Campó WJ, Lobato Calderón GR, Maceda Santivañez JC, Figueiredo Angolini CF, Meireles MAA. Tumbo, an Andean fruit: Uses, nutrition, processing, and biomolecules. Heliyon 2024; 10:e30327. [PMID: 38707414 PMCID: PMC11066424 DOI: 10.1016/j.heliyon.2024.e30327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Tumbo fruit has potential for industrialization due to its nutritional and functional properties, but scientific knowledge of this species is still limited compared to other species of the same genus, Passiflora. This review compiles the latest scientific advances on Tumbo, which cover the food technological aspects of Tumbo fruit, its uses and its potential as a source of bioactives for different industries, especially food, pharmaceutical, and cosmetics. The products (nectar, jellies, jams, wines, others) and by-products of the processing of the Tumbo fruit have various nutritional, sensory, and composition attributes for developing new food and non-food products. The potential applications of the fruit and its derivatives are broad, such as cosmetics, drugs, functional foods, and additives; these applications are due to its technological properties and its content of bioactive molecules. The Tumbo biorefinery presents an important perspective, especially for its bioactivity of high biological value for different industries.
Collapse
Affiliation(s)
- Larry Oscar Chañi-Paucar
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
| | - Perfecto Chagua-Rodríguez
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
| | - Walter Javier Cuadrado-Campó
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
| | | | - Julio Cesar Maceda Santivañez
- Mass Spectrometry and Chemical Ecology Laboratory (MS-CELL), Center for Natural and Human Sciences, Federal University of ABC, UFABC, Av. dos Estados 5001-Bangú, Santo André, São Paulo State, Brazil
| | - Célio Fernando Figueiredo Angolini
- Mass Spectrometry and Chemical Ecology Laboratory (MS-CELL), Center for Natural and Human Sciences, Federal University of ABC, UFABC, Av. dos Estados 5001-Bangú, Santo André, São Paulo State, Brazil
| | - Maria Angela A Meireles
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
- School of Food Engineering, University of Campinas (UNICAMP), R. Monteiro Lobato 80, Campinas, 13083-862, SP, Brazil
| |
Collapse
|
3
|
Leite MDMR, Bobrowski Rodrigues D, Brison R, Nepomuceno F, Bento ML, de Oliveira LDL. A Scoping Review on Carotenoid Profiling in Passiflora spp.: A Vast Avenue for Expanding the Knowledge on the Species. Molecules 2024; 29:1585. [PMID: 38611864 PMCID: PMC11013783 DOI: 10.3390/molecules29071585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
The Passiflora genus is recognised for its ethnopharmacological, sensorial, and nutritional significance. Yet, the screening of its dietary and bioactive molecules has mainly targeted hydrophilic metabolites. Following the PRISMA-P protocol, this review assessed the current knowledge on carotenoid composition and analysis within Passiflora, examining 968 records from seven databases and including 17 studies focusing on carotenoid separation and identification in plant parts. Those publications originated in America and Asia. P. edulis was the most frequently examined species of a total of ten, while pulp was the most studied plant part (16 studies). Carotenoid analysis involved primarily high-performance liquid chromatography separation on C18 columns and detection using diode array detectors (64.71%). Most studies identified the provitamin A β-carotene and xanthophylls lutein and zeaxanthin, with their geometric configuration often neglected. Only one study described carotenoid esters. Besides the methodology's insufficient description, the lack of use of more accurate techniques and practices led to a high risk of bias in the carotenoid assignment in 17.65% of the articles. This review highlights the opportunity to broaden carotenoid studies to other species and parts within the diverse Passiflora genus, especially to wild, locally available fruits, which may have a strategic role in enhancing food diversity and security amidst climatic changes. Additionally, it urges the use of more accurate and efficient analytical methods based on green chemistry to better identify Passiflora carotenoids.
Collapse
Affiliation(s)
- Marina de Macedo Rodrigues Leite
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| | - Daniele Bobrowski Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Raquel Brison
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| | - Fernanda Nepomuceno
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| | - Maria Lua Bento
- Department of Pharmacy, University of Brasília (UnB), Campus de Ceilândia, Brasilia 72220-275, DF, Brazil;
| | - Lívia de Lacerda de Oliveira
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| |
Collapse
|
4
|
Liu H, Agar OT, Imran A, Barrow CJ, Dunshea FR, Suleria HAR. LC-ESI-QTOF-MS/MS characterization of phenolic compounds in Australian native passion fruits and their potential antioxidant activities. Food Sci Nutr 2024; 12:2455-2472. [PMID: 38628172 PMCID: PMC11016391 DOI: 10.1002/fsn3.3928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Passion fruits, renowned globally for their polyphenolic content and associated health benefits, have enjoyed growing attention from consumers and producers alike. While global cultivar development progresses, Australia has pioneered several native cultivars tailored for its distinct planting conditions. Despite their cultivation, comprehensive studies on the phenolic profiles and antioxidant capacities of these Australian-native passion fruits are notably lacking. This study aims to investigate and compare the polyphenolic content present in the by-products, which are peel (L), and consumable portions, which are the pulp and seeds (P), of four indigenous cultivars: 'Misty Gem' (MG), 'Flamengo' (FG), 'Sweetheart' (SW), and 'Panama' (SH). Employing LC-ESI-QTOF-MS/MS for profiling, a comprehensive list of polyphenols was curated. Additionally, various antioxidant assays-DPPH, FRAP, ABTS, RPA, FICA, and •OH-RSA-were performed to evaluate their antioxidant potential. A total of 61 polyphenols were identified, categorized into phenolic acid (19), flavonoids (33), and other phenolic substances (9). In the antioxidant assays, the SHP sample exhibited the highest •OH--RSA activity at 98.64 ± 1.45 mg AAE/g, while the FGL sample demonstrated prominent DPPH, FRAP, and ABTS activities with values of 32.47 ± 1.92 mg TE/g, 62.50 ± 3.70 mg TE/g, and 57.84 ± 1.22 mg AAE/g, respectively. Additionally, TPC and several antioxidant assays had a significant positive correlation, including DPPH, FRAP, and ABTS. The Australian-native passion fruits revealed distinct polyphenolic profiles and diverse antioxidant capacities, establishing a foundation for deeper health benefit analyses. This study accentuates the significance of understanding region-specific cultivars and their potential nutraceutical applications.
Collapse
Affiliation(s)
- Haoyao Liu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Osman Tuncay Agar
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Department of Pharmacognosy, Faculty of PharmacySuleyman Demirel UniversityIspartaTurkey
| | - Ali Imran
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Department of Food Science, Faculty of Life ScienceGovernment College UniversityFaisalabadPakistan
| | - Colin J. Barrow
- Centre for Sustainable Bioproducts, School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Faculty of Biological SciencesThe University of LeedsLeedsUK
| | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
5
|
Nikolova K, Velikova M, Gentscheva G, Gerasimova A, Slavov P, Harbaliev N, Makedonski L, Buhalova D, Petkova N, Gavrilova A. Chemical Compositions, Pharmacological Properties and Medicinal Effects of Genus Passiflora L.: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:228. [PMID: 38256781 PMCID: PMC10820460 DOI: 10.3390/plants13020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Practically all aboveground plants parts of Passiflora vines can be included in the compositions of dietary supplements, medicines, and cosmetics. It has a diverse chemical composition and a wide range of biologically active components that determine its diverse pharmacological properties. Studies related to the chemical composition of the plant are summarized here, and attention has been paid to various medical applications-(1) anti-inflammatory, nephroprotective; (2) anti-depressant; (3) antidiabetic; (4) hepatoprotective; (5) antibacterial and antifungal; and (6) antipyretic and other. This review includes studies on the safety, synergistic effects, and toxicity that may occur with the use of various dietary supplements based on it. Attention has been drawn to its application in cosmetics and to patented products containing passionflower.
Collapse
Affiliation(s)
- Krastena Nikolova
- Department of Physics and Biophysics, Medical University-Varna, 9000 Varna, Bulgaria
| | - Margarita Velikova
- Department of Physiology, Medical University-Varna, 9000 Varna, Bulgaria;
| | - Galia Gentscheva
- Department of Chemistry and Biochemistry, Medical University-Pleven, 5800 Pleven, Bulgaria
| | - Anelia Gerasimova
- Department of Chemistry, Medical University-Varna, 9000 Varna, Bulgaria; (A.G.); (L.M.)
| | - Pavlo Slavov
- Faculty of Medicine, Medical University-Varna, 9000 Varna, Bulgaria; (P.S.)
| | - Nikolay Harbaliev
- Faculty of Medicine, Medical University-Varna, 9000 Varna, Bulgaria; (P.S.)
| | - Lubomir Makedonski
- Department of Chemistry, Medical University-Varna, 9000 Varna, Bulgaria; (A.G.); (L.M.)
| | - Dragomira Buhalova
- Department of Nutrient and Catering, University of Food Technology, 4002 Plovdiv, Bulgaria;
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technology, 4002 Plovdiv, Bulgaria;
| | - Anna Gavrilova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Medical University-Pleven, 5800 Pleven, Bulgaria;
| |
Collapse
|
6
|
Shi L, Zhu X, Qian T, Du J, Du Y, Ye J. Mechanism of Salt Tolerance and Plant Growth Promotion in Priestia megaterium ZS-3 Revealed by Cellular Metabolism and Whole-Genome Studies. Int J Mol Sci 2023; 24:15751. [PMID: 37958734 PMCID: PMC10647267 DOI: 10.3390/ijms242115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Approximately one-third of agricultural land worldwide is affected by salinity, which limits the productivity and sustainability of crop ecosystems. Plant-growth-promoting rhizobacteria (PGPR) are a potential solution to this problem, as PGPR increases crop yield through improving soil fertility and stress resistance. Previous studies have shown that Priestia megaterium ZS-3(ZS-3) can effectively help plants tolerate salinity stress. However, how ZS-3 regulates its metabolic adaptations in saline environments remains unclear. In this study, we monitored the metabolic rearrangement of compatibilisers in ZS-3 and combined the findings with genomic data to reveal how ZS-3 survives in stressful environments, induces plant growth, and tolerates stress. The results showed that ZS-3 tolerated salinity levels up to 9%. In addition, glutamate and trehalose help ZS-3 adapt to osmotic stress under low NaCl stress, whereas proline, K+, and extracellular polysaccharides regulate the osmotic responses of ZS-3 exposed to high salt stress. Potting experiments showed that applying the ZS-3 strain in saline and neutral soils could effectively increase the activities of soil acid phosphatase, urease, and invertase in both soils, thus improving soil fertility and promoting plant growth. In addition, strain ZS-3-GFP colonised the rhizosphere and leaves of Cinnamomum camphora well, as confirmed by confocal microscopy and resistance plate count analysis. Genomic studies and in vitro experiments have shown that ZS-3 exhibits a variety of beneficial traits, including plant-promoting, antagonistic, and other related traits (such as resistance to saline and heavy metal stress/tolerance, amino acid synthesis and transport, volatile compound synthesis, micronutrient utilisation, and phytohormone biosynthesis/regulatory potential). The results support that ZS-3 can induce plant tolerance to abiotic stresses. These data provide important clues to further reveal the interactions between plants and microbiomes, as well as the mechanisms by which micro-organisms control plant health.
Collapse
Affiliation(s)
- Lina Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxia Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Qian
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jiazhou Du
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanyuan Du
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Wang H, Chen H, Lin Y, Li M, Liu Q, Lin Y, Jiang X, Chen Y. Insights into the Isolation, Identification, and Biological Characterization Analysis of and Novel Control Strategies for Diaporthe passiflorae in Postharvest Passion Fruit. J Fungi (Basel) 2023; 9:1034. [PMID: 37888288 PMCID: PMC10608467 DOI: 10.3390/jof9101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Postharvest diseases seriously restrict developments in the passion fruit industry. In this study, we aimed to identify the postharvest pathogen affecting passion fruit, investigate its pathogenicity, and explore relevant control methods. The pathogen was isolated from rotting passion fruit and identified using morphological characteristics, ITS sequences, and phylogenetic tree analyses. Additionally, preliminary studies were conducted to assess the biological characteristics of the pathogen and evaluate the efficacy of various treatments for disease control. The fungus on the passion fruit called B4 was identified as Diaporthe passiflorae. Optimal conditions for mycelial growth were observed at 25-30 °C and pH 5-6, with starch as the carbon source and peptone as the nitrogen source. Infection by D. passiflorae accelerated fruit decay, reduced the h° value of the peel, and increased the peel cell membrane permeability when compared to the control. Notably, treatments with appropriate concentrations of ɛ-poly-l-lysine, salicylic acid, and melatonin showed inhibitory effects on the pathogen's growth in vitro and may thus be potential postharvest treatments for controlling brown rot caused by D. passiflorae in passion fruit. The results provide a scientific basis for the development of strategies to control postharvest decay and extend the storage period of passion fruit.
Collapse
Affiliation(s)
- Huiling Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongbin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Yu Lin
- Department of Intelligent Manufacturing, MinXi Vocational and Technical College, Longyan 364021, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingqing Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuzhao Lin
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Zhang J, Tao S, Hou G, Zhao F, Meng Q, Tan S. Phytochemistry, nutritional composition, health benefits and future prospects of Passiflora: A review. Food Chem 2023; 428:136825. [PMID: 37441935 DOI: 10.1016/j.foodchem.2023.136825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Passiflora, also known as "passion fruit", is widely grown in tropical and subtropical regions. It is not only eaten raw but is also widely used in processed foods. Various extracts, juices and isolated compounds show a wide range of health effects and biological activities, such as antioxidant, anti-inflammatory, sedative, and neuroprotective effects. In this review, we not only review the phytochemical properties of Passiflora but also highlight the potential of Passiflora for food applications and the use of all parts as a source of ingredients for medicines and cosmetics that promote health and well-being. This will provide theoretical support for the integrated use of such natural products.
Collapse
Affiliation(s)
- Juan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Siyu Tao
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Shenpeng Tan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
9
|
Krajewska A, Dziki D. Enrichment of Cookies with Fruits and Their By-Products: Chemical Composition, Antioxidant Properties, and Sensory Changes. Molecules 2023; 28:molecules28104005. [PMID: 37241744 DOI: 10.3390/molecules28104005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Cookies made from wheat have become increasingly popular as a snack due to their various advantages, such as their convenience as a ready-to-eat and easily storable food item, wide availability in different types, and affordability. Especially in recent years, there has been a trend towards enriching food with fruit additives, which increase the health-promoting properties of the products. The aim of this study was to examine current trends in fortifying cookies with fruits and their byproducts, with a particular focus on the changes in chemical composition, antioxidant properties, and sensory attributes. As indicated by the results of studies, the incorporation of powdered fruits and fruit byproducts into cookies helps to increase their fiber and mineral content. Most importantly, it significantly enhances the nutraceutical potential of the products by adding phenolic compounds with high antioxidant capacity. Enriching shortbread cookies is a challenge for both researchers and producers because the type of fruit additive and level of substitution can diversely affect sensory attributes of cookies such as color, texture, flavor, and taste, which have an impact on consumer acceptability.
Collapse
Affiliation(s)
- Anna Krajewska
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland
| |
Collapse
|
10
|
Luo Y, Wang K, Zhuang H, Li D, Meng X, Shi M, Yao L, Song S, Sun M, Wang H, Feng T. Elucidation of aroma compounds in passion fruit (Passiflora alata Ait) using a molecular sensory approach. J Food Biochem 2022; 46:e14224. [PMID: 35561053 DOI: 10.1111/jfbc.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
In this experiment, Guangxi passion fruit was used as the raw material for natural aroma extraction using the spinning cone column (Spinning Cone Column, SCC) technique. In combination with the semi-quantitative method, the aroma characteristics of the raw pulp (raw whole-fruit puree, PU) before SCC processing, residue (Residue, RS) and extract (Extract, EX) after SCC processing, and passion fruit juice (Juice, JU) were evaluated for their aroma characteristics using headspace gas chromatography-mass spectrometry (HS-SPME-GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS), electronic nose, and sensory evaluation. As a result, a total of 110 aroma substances were detected in four samples, and 33, 38, 73, and 28 aroma components were detected from PU, RS, EX, and JU, respectively. There are 50 compounds in EX with concentrations greater than 10 μg/kg, and 19 of them had OAV values greater than 1, including β-Ionone and linalool, which contributed significantly to the aroma. The aroma profiles and characteristics were further analyzed for JU and EX using the e-nose sensor, and it was found that both showed similar aroma profiles. The sensory evaluation results were also in general agreement with the results obtained from the electronic nose, with EX having mainly "floral", "fruity," and "sweet" aromas. The results demonstrated that the spinning cone column technique can increase the fresh and natural fruity aroma of passion fruit in the extract, which has the effect of enriching the aroma and improving the aftertaste. This study will make a foundation for passion fruit SCC extract application in drinks. PRACTICAL APPLICATIONS: Compared with traditional extraction technology, spinning cone column technology has the advantages of high mass transfer efficiency, short extraction time, a wide range of temperature control, and the most complete extracted flavor substances, which greatly reduces the damage degree of heat-sensitive flavor substances and condense aroma. It is widely used in beverages, wine, dairy products, fruit and vegetable, spice essential oil, and other industries. Passion fruit flavor prepared by SCC technology has the advantages of high purity and high concentration, which can be used in solid drinks, baked food, convenience food, tobacco, perfume, and other products. Besides, GC-IMS is an efficient and rapid new analytical technique, which has been widely used in the flavor analysis of volatile organic compounds in food and traditional Chinese medicine samples.
Collapse
Affiliation(s)
- Yang Luo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Kai Wang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Haining Zhuang
- School of Health & Society Care, Shanghai Urban Construction Vocational College, Shanghai, China
| | - Dejun Li
- R&D Center of Shanghai Apple Flavor & Fragrance Group Co., Ltd., Shanghai, China
| | - Xianle Meng
- R&D Center of Shanghai Apple Flavor & Fragrance Group Co., Ltd., Shanghai, China
| | - Mingliang Shi
- R&D Center of Shanghai Apple Flavor & Fragrance Group Co., Ltd., Shanghai, China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
11
|
Condessa BMB, da Silva KV, da Silva JFM, de Morais PB, Leal Zimmer FMA, de Almeida AF, Niculau EDS, Nogueira KL, Santos CCADA. Performance of wild
Saccharomyces
and Non‐
Saccharomyces
yeasts as starter cultures in dough fermentation and bread making. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Paula Benevides de Morais
- Bionorte – Legal Amazon Biodiversity and Biotechnology Network Federal University of Tocantins Palmas Brazil
| | | | - Alex Fernando de Almeida
- Graduate Program in Food Science and Technology Federal University of Tocantins (UFT) Palmas Brazil
| | | | | | | |
Collapse
|
12
|
Tropical fruits from Australia as potential treatments for metabolic syndrome. Curr Opin Pharmacol 2022; 63:102182. [PMID: 35149297 DOI: 10.1016/j.coph.2022.102182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
Australia has a unique and diverse flora, including indigenous fruits, used by Australian Aboriginals for food and medicines for up to 45,000 years as well as recently introduced fruits for commercial production. However, this range of fruits has not led to the development of functional foods, for example for chronic inflammatory diseases such as metabolic syndrome including obesity, hypertension, fatty liver and diabetes. This review examines the potential of tropical and subtropical fruits from Australia to be used as functional foods for metabolic syndrome, including Davidson's plum, Queen Garnet plum, durian, litchi, breadfruit, jackfruit, mangosteen, papaya, jabuticaba, coffee and seaweed. Preclinical studies have defined potential responses of these functional foods in metabolic syndrome but the usefulness in humans with metabolic syndrome requires clinical studies which are scarce in the relevant literature. Overall, these Australian examples show that tropical fruits can provide functional foods to decrease chronic inflammatory diseases.
Collapse
|
13
|
Evidences of Colletotrichum fructicola Causing Anthracnose on Passiflora edulis Sims in China. Pathogens 2021; 11:pathogens11010006. [PMID: 35055953 PMCID: PMC8777589 DOI: 10.3390/pathogens11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
Passion fruit (Passiflora edulis) is a tropical and subtropical plant that is widely cultivated in China due to its high nutritional value, unique flavor and medicinal properties. In August 2020, typical anthracnose symptoms with light brown and water-soaked lesions on Passiflora edulis Sims were observed, which result in severe economic losses. The incidence of this disease was approximately 30%. The pathogens from the infected fruit were isolated and purified by the method of tissue isolation. Morphological observations showed that the colony of isolate BXG-2 was gray to celadon and grew in concentric circles. The orange conidia appeared in the center after 14 days of incubation. The pathogenicity was verified by Koch’s postulates. The internal transcribed spacer (ITS), chitin synthase (CHS-1), actin (ACT), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were amplified by relevant PCR programs. The multi-gene (ITS, GAPDH, ACT, CHS-1) phylogeny analysis confirmed that isolate BXG-2 belongs to Colletotrichum fructicola. The inhibitory effect of six synthetic fungicides on the mycelial growth of the pathogen was investigated, among which difenoconazole 10% WG showed the best inhibitory effect against C. fructicola with an EC50 value of 0.5579 mg·L−1. This is the first report of anthracnose on Passiflora edulis Sims caused by Colletotrichum fructicola in China.
Collapse
|
14
|
de Araújo Esteves Duarte I, Milenkovic D, Borges TK, de Lacerda de Oliveira L, Costa AM. Brazilian passion fruit as a new healthy food: from its composition to health properties and mechanisms of action. Food Funct 2021; 12:11106-11120. [PMID: 34651638 DOI: 10.1039/d1fo01976g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Brazilian biodiversity is one of the largest in the world, with about 41 000 species cataloged within two global biodiversity hotspots: Atlantic Forest and Cerrado, the Brazilian savannah. Passiflora, known also as passion flowers, is a genus of which 96% of its species are distributed in the Americas, mainly Brazil and Colombia. Passion fruit extracts have a commercial value on a global scale through the pharmaceutical, nutraceutical, self-care, and food and beverage industries. Passiflora are widely studied due to their potential antioxidant, anti-inflammatory, anxiolytic, antidepressant and vascular and neuronal protective effects, probably owing to their content of polyphenols. Passiflora setacea DC is a species of wild passion fruit from the Brazilian Cerrado, rich in flavonoid C-glycosides, homoorientin, vitexin, isovitexin and orientin. Intake of these plant food bioactives has been associated with protection against chronic non-communicable diseases (CNDCs), including cardiovascular diseases, cancers, and neurodegenerative diseases. In this review, we aimed to discuss the varieties of Passiflora, their content in plant food bioactives and their potential molecular mechanisms of action in preventing or reversing CNDCs.
Collapse
Affiliation(s)
- Isabella de Araújo Esteves Duarte
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Dragan Milenkovic
- Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Tatiana Karla Borges
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, Brasília DF 70.910-900, Brazil
| | - Livia de Lacerda de Oliveira
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Ana Maria Costa
- Laboratory of Food Science, Embrapa Cerrados, Planaltina DF 73.310-970, Brazil
| |
Collapse
|