1
|
Wang Z, An X, Chitrakar B, Li J, Yuan Y, Liu K, Nie X, Zhang Y, Zhao X, Zhao Z, Liu M, Ao C. Spatial and Temporal Distribution of Phenolic and Flavonoid Compounds in Sour Jujube (Ziziphus. Acidojujuba Cheng et Liu) and Their Antioxidant Activities. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:46-51. [PMID: 36279034 DOI: 10.1007/s11130-022-01015-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In order to comprehensively analyze the antioxidant substances in sour jujube, total phenolic content (TPC) and total flavonoids contents (TFC) in different organs, including stem, leaf, flower, fruit pulp, and seed were analyzed for their contents and antioxidant activities. The results showed that leaves possessed significantly higher TPC and TFC (20.4 and 20.5 mg/g, respectively) than the other organs and have the highest antioxidant activity, which were also higher than the wild blueberry (A well-known for its high TPC). Subsequently, the variations in the antioxidant content and antioxidant activity of leaves were analyzed during leaf development. TPC in leaves sampled in may and august were significantly higher than that in other months, while the highest one was found in may. The n-hexane, ethyl acetate, n-butanol, and water fractions obtained from the main methanol extract of sour jujube leaves were evaluated for TPC and TFC and their antioxidant activity and it was found that ethyl acetate fraction displayed the highest TPC and TFC (184.5 and 193.3 mg/g, respectively), as well as the best antioxidant activity. In addition, using LC-MS and HPLC, ethyl acetate fraction was analyzed from qualitative and quantitative aspects; 31-one phenolic compounds, including catechin (33.0 mg/g), epigallocatechin (15.3 mg/g), quercetin 3-O-glucoside (11.4 mg/g), naringenin (6.7 mg/g), esculetin (4.8 mg/g), and chlorogenic acid (4.6 mg/g) were identified. Catechin, esculetin, epigallocatechin, chlorogenic acid, quercetin 3-O-glucoside, and naringenin exhibited high antioxidant activity. These results provide a theoretical basis for further study and utilization of flavonoid and polyphenols in sour jujube.
Collapse
Affiliation(s)
- Zijuan Wang
- College of Food Science and Technology, Hebei Agricultural University, 071000, Baoding, China
| | - Xiaowen An
- College of Food Science and Technology, Hebei Agricultural University, 071000, Baoding, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, 071000, Baoding, China
| | - Jiamin Li
- College of Food Science and Technology, Hebei Agricultural University, 071000, Baoding, China
| | - Ye Yuan
- College of Horticulture, Hebei Agricultural University, 071000, Baoding, China
| | - Kexin Liu
- College of Food Science and Technology, Hebei Agricultural University, 071000, Baoding, China
| | - Xinyu Nie
- College of Food Science and Technology, Hebei Agricultural University, 071000, Baoding, China
| | - Yifan Zhang
- College of Food Science and Technology, Hebei Agricultural University, 071000, Baoding, China
| | - Xin Zhao
- College of Horticulture, Hebei Agricultural University, 071000, Baoding, China
| | - Zhihui Zhao
- College of Horticulture, Hebei Agricultural University, 071000, Baoding, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, 071000, Baoding, China
| | - Changwei Ao
- College of Food Science and Technology, Hebei Agricultural University, 071000, Baoding, China.
| |
Collapse
|
2
|
Chen Z, Zhang L, Peng M, Zhu S, Wang G. Preharvest application of selenite enhances the quality of Chinese flowering cabbage during storage via regulating the ascorbate-glutathione cycle and phenylpropanoid metabolisms. Food Res Int 2023; 163:112229. [PMID: 36596157 DOI: 10.1016/j.foodres.2022.112229] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is a candidate of selenium (Se) accumulator, but it is not clear whether and how preharvest Se treatment affects its quality after harvest. Here, we showed that preharvest application of 100 μmol/L selenite to roots enhanced storage quality of Chinese flowering cabbage. It increased antioxidant capacity and reduced weight loss, leaf yellowing, and protein degradation after harvest. Furthermore, it increased the activities of antioxidant enzymes such as POD, CAT, GSH-Px, and GR, as well as contents of AsA, GSH, phenolics, and flavonoids during storage. Metabolome analysis revealed that phenolic acids including p-Coumaric acid, caffeic acid, and ferulic acid; flavonoids such as naringenin, eriodictyol, apigenin, quercetin, kaempferol, and their derivatives were notably increased by preharvest selenite treatment. Consistently, the total antioxidant capacity, evaluated by DPPH, ABTS, and FRAP methods, were all markedly enhanced in selenite-treated cabbage compared to the control. Transcriptomics analysis showed that the DEGs induced by selenite were significantly enriched in AsA-GSH metabolisms and phenylpropanoids biosynthesis pathways. Moreover, preharvest selenite treatment significantly up-regulated the expressions of BrGST, BrGSH-Px, BrAPX, BrASO, BrC4H, BrCOMT, BrCHS, and BrFLS during storage. These results suggest that preharvest selenite treatment enhanced quality of cabbage not only by increasing Se biological accumulation, but also through regulating AsA-GSH cycle and increasing phenolics and flavonoids synthesis after harvest. This study provides a novel insight into the effects of preharvest Se treatment on quality of Chinese flowering cabbage during storage.
Collapse
Affiliation(s)
- Zhuosheng Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ling Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Miaomiao Peng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shijiang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Guang Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Hassoun A, Jagtap S, Garcia-Garcia G, Trollman H, Pateiro M, Lorenzo JM, Trif M, Rusu AV, Aadil RM, Šimat V, Cropotova J, Câmara JS. Food quality 4.0: From traditional approaches to digitalized automated analysis. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Izcara S, Perestrelo R, Morante-Zarcero S, Câmara JS, Sierra I. High throughput analytical approach based on μQuEChERS combined with UHPLC-PDA for analysis of bioactive secondary metabolites in edible flowers. Food Chem 2022; 393:133371. [PMID: 35661599 DOI: 10.1016/j.foodchem.2022.133371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Mallow blue (Malva sylvestris L.), hibiscus (Hibiscus rosa-sinensis L.) and nasturtium (Tropaeolum majus L.), are common edible flowers rich in bioactive secondary metabolites (BASMs) whose use in sophisticated gastronomy present currently as increasing trend. In this study the BASMs profile of these edible flowers was established using an emerging green extraction technique, μQuEChERS followed by ultra-high performance liquid chromatography coupled to a photodiode array detection system (UHPLC-PDA). After validation the μQuEChERS/UHPLC-PDA methodology allow to identify that apigenin and epigallocatechin gallate are the most abundant BASMs in mallow blue flowers, while catechin and dicaffeoylquinic acid are predominant in hibiscus flowers, and myricitrin and dicaffeoylquinic acid in nasturtium flowers. Total polyphenol content is the highest in the extract of hibiscus. Nasturtium shows the greatest radical scavenging activity. The results revealed that these flowers constitute a potential source of BASMs with different bioactive properties suggesting its use in design of new functional foods.
Collapse
Affiliation(s)
- Sergio Izcara
- ESCET- Escuela Superior de Ciencias Experimentales y Tecnología, Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Sonia Morante-Zarcero
- ESCET- Escuela Superior de Ciencias Experimentales y Tecnología, Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Isabel Sierra
- ESCET- Escuela Superior de Ciencias Experimentales y Tecnología, Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
5
|
Liang ZX, Zhang JZ, Xin C, Li D, Sun MY, Shi L. Analysis of edible characteristics, antioxidant capacities, and phenolic pigment monomers in Lilium bulbs native to China. Food Res Int 2022; 151:110854. [PMID: 34980390 DOI: 10.1016/j.foodres.2021.110854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/04/2022]
Abstract
Lilium is cherished for its health-promoting properties in China. The bulbs of Lilium are rich in phenolic compounds, which are associated with antioxidant capacity. However, no systematic evaluation on phenolic compositions and antioxidant capacities for the edible Lilium native to China has been conducted. Herein, bulbs of 56 wild populations and three cultivars were collected. Their edible characteristics, antioxidant capacities, and pigments have been investigated and analyzed. The results showed that phenolic compounds contributed to the major colors (red, yellow and white) in Lilium bulbs. The seven phenolic pigment monomers responsible for the color of bulbs-cyanidin-3-O-rutinoside, isoquercitrin, regaloside B, regaloside C, regaloside H, regaloside A and regaloside D-were identified by the combination of HPLC-MS and NMR analysis. The population Lilium regale E. H. Wilson (Maoxian County, Sichuan Province) had the highest antioxidant capacity. According to the quantification results, Lilium bulbs with darker and redder colors possessed larger biomass, better nutrient compositions, significantly higher bioactive constituents, and higher antioxidant capacities than the three currently consumed cultivars of edible lily bulbs. Overall, these findings suggest that the mountainous area of southwest China could be the fourth source of edible lilies with the bulb-colored Lilium species.
Collapse
Affiliation(s)
- Zhen-Xu Liang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China.
| | - Jin-Zheng Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Chao Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Dong Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Mei-Yu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|